PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

Ashvin Goel

Electrical and Computer Engineering University of Toronto

ECE1724

Authors: Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, Carlos Guestrin

Power-Law Graphs

- **Degree** of vertex is number of edges attached to vertex
- Real-world graphs have power-law degree distribution
 - Highly skewed, long-tailed distribution
 - Most vertices have few edges
 - Some vertices have many edges

Understanding Power-Law Graphs

- Probability that a vertex has degree d: $P(d) \propto 1/d^a$
 - *a* is a constant, *a* > 0, typical value is 2
 - *a* ↓ ⇒ skew (vertices with high degree) ↑ density (#edges/#vertices) ↑
- Intuition
 - Say d = 100, and it goes up by 1
 - $P(101)/P(100) = 100^2/101^2 = 0.98$ (close to 1)
 - So, significant probability of high degree vertices
 - Compare with exponential distribution: $P(d) \propto 1/e^d$
 - P(101)/P(100) = 1/e = 0.37, low probability of high degree vertices

Power-Law Degree Distribution

Why PowerGraph?

- Power-law graphs are hard to partition well
- Distributed graph computation systems perform poorly on such graphs
 - Hard to balance computation and storage load
 - Significant communication across partitions

The Graph-Parallel Abstraction

- A user-defined vertex program runs on each vertex
- Graph constrains interaction along edges
 - Using messages, e.g. Pregel
 - Using shared memory, e.g., GraphLab
- Parallelism: run multiple vertex programs concurrently

The Pregel Abstraction

Vertex programs interact by sending messages

```
Pregel_PageRank(i, messages):
    // Receive all the messages
    total = 0
    foreach( msg in messages) :
        total = total + msg
```

// Update the rank of this vertex
R[i] = 0.15 + total

// Send new messages to neighbors
foreach(j in out_neighbors[i]) :
 Send msg(R[i] * w_{ij}) to vertex j

The GraphLab Abstraction

Vertex programs directly read the neighbor's state

```
GraphLab_PageRank(i)
```

```
// Compute sum over neighbors
total = 0
foreach( j in in_neighbors(i)):
   total = total + R[j] * w<sub>ii</sub>
```

// Update the PageRank
R[i] = 0.15 + total

// Trigger neighbors to run again
if R[i] not converged then
 foreach(j in out_neighbors(i)):
 signal vertex-program on j

Challenges of High-Degree Vertices

Sequentially process edges

Edge metadata too large for single machine

Sends many messages (Pregel)

Synchronous execution prone to stragglers (Pregel)

Accesses a large fraction of graph (GraphLab)

Asynchronous execution needs heavy locking (GraphLab)

Key Idea in PowerGraph

- Split high-degree vertices
 - Parallelize processing of high-degree vertices
 - Guarantee split and non-split vertices operate equivalently

How to Split Vertex Processing?

Insight: each vertex program consists of three steps

<pre>GraphLab_PageRank(i) // Compute sum over neighbors total = 0 foreach(j in in_neighbors(i)): total = total + R[j] * W_{ji}</pre>	Gather information from neighbors
<pre>// Update the PageRank R[i] = 0.15 + total</pre>	Update vertex
<pre>// Trigger neighbors to run again if R[i] not converged then foreach(j in out_neighbors(i)): signal vertex-program on j</pre>	Signal neighbors & modify edge data

How to Split Vertex Processing?

Work is proportional to vertex degree in first, third steps

PowerGraph GAS Abstraction

- PowerGraph splits the 3 steps of vertex processing into:
 - Gather (gather information from neighbors)
 - Apply (update vertex)
 - Scatter (signal neighbors, update edge data)
- Parallelizes Gather and Scatter phases by moving these computation phases to the data

- Split a high-degree vertex across multiple machines
- Mark one a master, rest are mirrors

• Run Gather on all edges, in parallel on the machines

- Run Gather on all edges, in parallel on the machines
 - Send partial sum from mirrors to master
 - Similar to Pregel Combiners

- Run Gather on all edges, in parallel on the machines
 - Send partial sum from mirrors to master
- Apply update based on partial sums on master vertex

- Run Gather on all edges, in parallel on the machines
 - Send partial sum from mirrors to master
- Apply update based on partial sums on master vertex
 - Sent vertex update to mirrors

- Run Gather on all edges, in parallel on the machines
 - Send partial sum from mirrors to master
- Apply update based on partial sums on master vertex
 - Sent vertex update to mirrors
- Run Scatter on all edges, in parallel on the machines

PageRank in PowerGraph

Gather and Scatter operate on single edge, not all edges

```
PowerGraph_PageRank(i)
```

// Compute sum over neighbors

```
Gather(j->i): return R[j] * w<sub>ji</sub>
sum(a, b) = a + b:
```

```
// Update the PageRank
Apply(I, \Sigma): R[i] = 0.15 + \Sigma
```

```
// Trigger neighbors to run again
Scatter(i->j):
if R[i] not converged then
    signal vertex-program on j
```

Graph Partitioning

- GAS model spreads processing load for high-degree vertices by splitting them across machines
- This approach enables a new method of graph partitioning called vertex cut
 - Assign each edge to a machine
 - A vertex may span machines
- For power-law graph, vertex cuts help:
 - Improve load balancing
 - Reduce communication and storage overhead

Edge Cuts versus Vertex Cuts

• Power-law graphs have many more edges than vertices

Assign vertices to partitions

- 2. Edges may be duplicated across partitions
- 3. Must synchronize many edges

- 1. Assign edges to partitions
- 2. Vertices may be duplicated across partitions
- 3. Must synchronize fewer vertices

Constructing Vertex Cuts

- Goals
 - Assign edges to machines evenly
 - Minimize number of machines spanned by each vertex
 - Assign each edge as it is loaded, without reassigning it again
- Three distributed approaches
 - Random edge placement
 - Coordinated greedy edge placement
 - Place an edge on a machine that already has vertices of that edge
 - Requires coordination to track current vertex->machine assignment
 - Oblivious greedy edge placement
 - Same as above, but use local approximation of vertex->machine assignment, so no coordination required

Synchronization

- PowerGraph supports three execution modes:
 - Synchronous
 - Each of the GAS phases run in bulk-synchronous model
 - Asynchronous
 - The GAS phases run completely asynchronously
 - Lock GAS parameters to avoid races
 - Asynchronous + Serializable
 - Neighboring vertices do not run simultaneously
 - Similar to Dining Philosopher problem

Comparison with Pregel & GraphLab

PageRank on Synthetic Power-Law Graphs

Partitioning Cost

Twitter Graph: 41M vertices, 1.4B edges

Performance With Different Partitioning Schemes

Conclusions

- Real-world graphs are power-law graphs
- Computation on power-law graph is challenging
 - High-degree vertices
 - Low-quality edge-cuts
- PowerGraph proposes: 1) GAS decomposition model for splitting, parallelizing vertex programs, 2) Vertex cuts for partitioning power-law graphs
- PowerGraph theoretically and experimentally outperforms Pregel and GraphLab
- PowerGraph is available as Apache GraphLab 2.1

Discussion

• What problems do power-law distributions cause for graph processing?

• Why do vertex cuts make it easier to perform load balancing compared to edge cuts?

• Powergraph splits processing into three steps:

gather + sum apply scatter

- Assuming a node X has four neighbors A, B, C, D, the sum operation is performed as follows:
- sum(gather(A), gather(B), gather(C), gather(D))
- Why does the **sum** operation need to be commutative and associative?