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Power-Law Graphs

• Degree of vertex is number of edges attached to vertex

• Real-world graphs have power-law degree distribution

• Highly skewed, long-tailed distribution

• Most vertices have few edges

• Some vertices have many edges
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Understanding Power-Law Graphs

• Probability that a vertex has degree d: P(d) ∝ 1/𝑑𝑎

• a is a constant, a > 0, typical value is 2

• a ↓ ⇒ skew (vertices with high degree) ↑
          density (#edges/#vertices) ↑

• Intuition

• Say d = 100, and it goes up by 1

• P(101)/P(100) = 1002/1012= 0.98 (close to 1)

• So, significant probability of high degree vertices

• Compare with exponential distribution: P(d) ∝ 1/𝑒𝑑

• P(101)/P(100) = 1/e = 0.37, low probability of high degree vertices
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Power-Law Degree Distribution
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Why PowerGraph?

• Power-law graphs are hard to partition well

• Distributed graph computation systems perform poorly 
on such graphs

• Hard to balance computation and storage load

• Significant communication across partitions
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The Graph-Parallel Abstraction

• A user-defined vertex program runs on each vertex

• Graph constrains interaction along edges

• Using messages, e.g. Pregel

• Using shared memory, e.g., GraphLab

• Parallelism: run multiple vertex programs concurrently
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The Pregel Abstraction

iPregel_PageRank(i, messages):
// Receive all the messages 
total = 0
foreach( msg in messages) : 
total = total + msg

// Update the rank of this vertex 
R[i] = 0.15 + total

// Send new messages to neighbors
foreach(j in out_neighbors[i]) :
Send msg(R[i] * wij) to vertex j

Vertex programs interact by sending messages
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The GraphLab Abstraction

i
GraphLab_PageRank(i)
// Compute sum over neighbors 
total = 0
foreach( j in in_neighbors(i)): 
total = total + R[j] * wji

// Update the PageRank 
R[i] = 0.15 + total

// Trigger neighbors to run again 
if R[i] not converged then
foreach( j in out_neighbors(i)):

signal vertex-program on j

Vertex programs directly read the neighbor’s state



9

Challenges of High-Degree Vertices

Accesses a large fraction
of graph (GraphLab)

Sends many 
messages (Pregel)

Sequentially process 
edges

Edge metadata too large
for single machine

Synchronous execution 
prone to stragglers (Pregel)

Asynchronous execution 
needs heavy locking (GraphLab)
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Key Idea in PowerGraph

• Split high-degree vertices

• Parallelize processing of high-degree vertices

• Guarantee split and non-split vertices operate equivalently

Run on ThisProgram on This

Machine 1        Machine 2
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How to Split Vertex Processing?

GraphLab_PageRank(i)
// Compute sum over neighbors 
total = 0
foreach( j in in_neighbors(i)): 
total = total + R[j] * wji

// Update the PageRank 
R[i] = 0.15 + total

// Trigger neighbors to run again 
if R[i] not converged then
foreach( j in out_neighbors(i)):

signal vertex-program on j

Gather information 

from neighbors

Update vertex

Signal neighbors & 

modify edge data

Insight: each vertex program consists of three steps
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How to Split Vertex Processing?

GraphLab_PageRank(i)
// Compute sum over neighbors 
total = 0
foreach( j in in_neighbors(i)): 
total = total + R[j] * wji

// Update the PageRank 
R[i] = 0.15 + total

// Trigger neighbors to run again 
if R[i] not converged then
foreach( j in out_neighbors(i)):

signal vertex-program on j

Gather information 

from neighbors

Update vertex

Signal neighbors & 

update edge data

Work is proportional to vertex degree in first, third steps
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PowerGraph GAS Abstraction 

• PowerGraph splits the 3 steps of vertex processing into:

• Gather (gather information from neighbors)

• Apply (update vertex)

• Scatter (signal neighbors, update edge data)

• Parallelizes Gather and Scatter phases by 
moving these computation phases to the data
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GAS Abstraction

• Split a high-degree vertex across multiple machines

• Mark one a master, rest are mirrors

Machine 1        Machine 2 MasterMirror
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GAS Abstraction

• Run Gather on all edges, in parallel on the machines 

Machine 1        Machine 2
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GAS Abstraction

• Run Gather on all edges, in parallel on the machines

• Send partial sum from mirrors to master

• Similar to Pregel Combiners

Machine 1        Machine 2
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GAS Abstraction

• Run Gather on all edges, in parallel on the machines

• Send partial sum from mirrors to master

• Apply update based on partial sums on master vertex

Machine 1        Machine 2
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GAS Abstraction

• Run Gather on all edges, in parallel on the machines

• Send partial sum from mirrors to master

• Apply update based on partial sums on master vertex

• Sent vertex update to mirrors

Machine 1        Machine 2
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GAS Abstraction

• Run Gather on all edges, in parallel on the machines

• Send partial sum from mirrors to master

• Apply update based on partial sums on master vertex

• Sent vertex update to mirrors

• Run Scatter on all edges, in parallel on the machines

Machine 1        Machine 2
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PageRank in PowerGraph

PowerGraph_PageRank(i)
// Compute sum over neighbors 

Gather(j->i): return R[j] * wji
sum(a, b) = a + b:

// Update the PageRank
Apply(I, Σ): R[i] = 0.15 + Σ

// Trigger neighbors to run again
Scatter(i->j):
if R[i] not converged then

signal vertex-program on j

Gather and Scatter operate on single edge, not all edges
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Graph Partitioning

• GAS model spreads processing load for high-degree 
vertices by splitting them across machines

• This approach enables a new method of graph 
partitioning called vertex cut

• Assign each edge to a machine

• A vertex may span machines

• For power-law graph, vertex cuts help:

• Improve load balancing

• Reduce communication and storage overhead
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Edge Cuts versus Vertex Cuts

• Power-law graphs have many more edges than vertices

Y
1. Assign vertices to partitions
2. Edges may be duplicated across 

partitions
3. Must synchronize many edges

CPU 1 CPU 2

Y Y
1. Assign edges to partitions
2. Vertices may be duplicated across 

partitions
3. Must synchronize fewer vertices

Edge Cut

Vertex Cut
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Constructing Vertex Cuts

• Goals

• Assign edges to machines evenly

• Minimize number of machines spanned by each vertex

• Assign each edge as it is loaded, without reassigning it again

• Three distributed approaches

• Random edge placement

• Coordinated greedy edge placement

• Place an edge on a machine that already has vertices of that edge

• Requires coordination to track current vertex->machine assignment

• Oblivious greedy edge placement 

• Same as above, but use local approximation of vertex->machine 
assignment, so no coordination required
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Synchronization

• PowerGraph supports three execution modes:

• Synchronous

• Each of the GAS phases run in bulk-synchronous model

• Asynchronous

• The GAS phases run completely asynchronously

• Lock GAS parameters to avoid races

• Asynchronous + Serializable

• Neighboring vertices do not run simultaneously

• Similar to Dining Philosopher problem
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Comparison with Pregel & GraphLab
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Partitioning Cost
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Performance With Different 
Partitioning Schemes
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Conclusions

• Real-world graphs are power-law graphs

• Computation on power-law graph is challenging

• High‐degree vertices

• Low-quality edge-cuts

• PowerGraph proposes: 1) GAS decomposition model for 
splitting, parallelizing vertex programs, 2) Vertex cuts 
for partitioning power-law graphs

• PowerGraph theoretically and experimentally 
outperforms Pregel and GraphLab

• PowerGraph is available as Apache GraphLab 2.1
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Discussion
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Q1

• What problems do power-law distributions cause for 
graph processing?
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Q2

• Why do vertex cuts make it easier to perform load 
balancing compared to edge cuts?
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Q3

• Powergraph splits processing into three steps:

gather + sum
apply
scatter

• Assuming a node X has four neighbors A, B, C, D, the 
sum operation is performed as follows:

• sum(gather(A), gather(B), gather(C), gather(D))

• Why does the sum operation need to be commutative 
and associative?
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