
1

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs

Authors: Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson,
Carlos Guestrin

2

Power-Law Graphs

• Degree of vertex is number of edges attached to vertex

• Real-world graphs have power-law degree distribution

• Highly skewed, long-tailed distribution

• Most vertices have few edges

• Some vertices have many edges

3

Understanding Power-Law Graphs

• Probability that a vertex has degree d: P(d) ∝ 1/𝑑𝑎

• a is a constant, a > 0, typical value is 2

• a ↓ ⇒ skew (vertices with high degree) ↑
 density (#edges/#vertices) ↑

• Intuition

• Say d = 100, and it goes up by 1

• P(101)/P(100) = 1002/1012= 0.98 (close to 1)

• So, significant probability of high degree vertices

• Compare with exponential distribution: P(d) ∝ 1/𝑒𝑑

• P(101)/P(100) = 1/e = 0.37, low probability of high degree vertices

4

Power-Law Degree Distribution

10
0

10
2

10
6

10
8

10
0

10
2

10
4

10
6

10
8

10
10

10
4

degree

AltaVista WebGraph
1.4B Vertices, 6.6B Edges

Degree

More than 108 vertices
have one neighbor

Top 1% of vertices
are adjacent to
50% of edges!

N
u

m
b

er
 o

f
ve

rt
ic

es

Obama
Followers

High-degree vertex,
with star-like motif

5

Why PowerGraph?

• Power-law graphs are hard to partition well

• Distributed graph computation systems perform poorly
on such graphs

• Hard to balance computation and storage load

• Significant communication across partitions

6

The Graph-Parallel Abstraction

• A user-defined vertex program runs on each vertex

• Graph constrains interaction along edges

• Using messages, e.g. Pregel

• Using shared memory, e.g., GraphLab

• Parallelism: run multiple vertex programs concurrently

7

The Pregel Abstraction

iPregel_PageRank(i, messages):
// Receive all the messages
total = 0
foreach(msg in messages) :
total = total + msg

// Update the rank of this vertex
R[i] = 0.15 + total

// Send new messages to neighbors
foreach(j in out_neighbors[i]) :
Send msg(R[i] * wij) to vertex j

Vertex programs interact by sending messages

8

The GraphLab Abstraction

i
GraphLab_PageRank(i)
// Compute sum over neighbors
total = 0
foreach(j in in_neighbors(i)):
total = total + R[j] * wji

// Update the PageRank
R[i] = 0.15 + total

// Trigger neighbors to run again
if R[i] not converged then
foreach(j in out_neighbors(i)):

signal vertex-program on j

Vertex programs directly read the neighbor’s state

9

Challenges of High-Degree Vertices

Accesses a large fraction
of graph (GraphLab)

Sends many
messages (Pregel)

Sequentially process
edges

Edge metadata too large
for single machine

Synchronous execution
prone to stragglers (Pregel)

Asynchronous execution
needs heavy locking (GraphLab)

10

Key Idea in PowerGraph

• Split high-degree vertices

• Parallelize processing of high-degree vertices

• Guarantee split and non-split vertices operate equivalently

Run on ThisProgram on This

Machine 1 Machine 2

11

How to Split Vertex Processing?

GraphLab_PageRank(i)
// Compute sum over neighbors
total = 0
foreach(j in in_neighbors(i)):
total = total + R[j] * wji

// Update the PageRank
R[i] = 0.15 + total

// Trigger neighbors to run again
if R[i] not converged then
foreach(j in out_neighbors(i)):

signal vertex-program on j

Gather information

from neighbors

Update vertex

Signal neighbors &

modify edge data

Insight: each vertex program consists of three steps

12

How to Split Vertex Processing?

GraphLab_PageRank(i)
// Compute sum over neighbors
total = 0
foreach(j in in_neighbors(i)):
total = total + R[j] * wji

// Update the PageRank
R[i] = 0.15 + total

// Trigger neighbors to run again
if R[i] not converged then
foreach(j in out_neighbors(i)):

signal vertex-program on j

Gather information

from neighbors

Update vertex

Signal neighbors &

update edge data

Work is proportional to vertex degree in first, third steps

13

PowerGraph GAS Abstraction

• PowerGraph splits the 3 steps of vertex processing into:

• Gather (gather information from neighbors)

• Apply (update vertex)

• Scatter (signal neighbors, update edge data)

• Parallelizes Gather and Scatter phases by
moving these computation phases to the data

14

GAS Abstraction

• Split a high-degree vertex across multiple machines

• Mark one a master, rest are mirrors

Machine 1 Machine 2 MasterMirror

15

GAS Abstraction

• Run Gather on all edges, in parallel on the machines

Machine 1 Machine 2

16

GAS Abstraction

• Run Gather on all edges, in parallel on the machines

• Send partial sum from mirrors to master

• Similar to Pregel Combiners

Machine 1 Machine 2

17

GAS Abstraction

• Run Gather on all edges, in parallel on the machines

• Send partial sum from mirrors to master

• Apply update based on partial sums on master vertex

Machine 1 Machine 2

18

GAS Abstraction

• Run Gather on all edges, in parallel on the machines

• Send partial sum from mirrors to master

• Apply update based on partial sums on master vertex

• Sent vertex update to mirrors

Machine 1 Machine 2

19

GAS Abstraction

• Run Gather on all edges, in parallel on the machines

• Send partial sum from mirrors to master

• Apply update based on partial sums on master vertex

• Sent vertex update to mirrors

• Run Scatter on all edges, in parallel on the machines

Machine 1 Machine 2

20

PageRank in PowerGraph

PowerGraph_PageRank(i)
// Compute sum over neighbors

Gather(j->i): return R[j] * wji
sum(a, b) = a + b:

// Update the PageRank
Apply(I, Σ): R[i] = 0.15 + Σ

// Trigger neighbors to run again
Scatter(i->j):
if R[i] not converged then

signal vertex-program on j

Gather and Scatter operate on single edge, not all edges

21

Graph Partitioning

• GAS model spreads processing load for high-degree
vertices by splitting them across machines

• This approach enables a new method of graph
partitioning called vertex cut

• Assign each edge to a machine

• A vertex may span machines

• For power-law graph, vertex cuts help:

• Improve load balancing

• Reduce communication and storage overhead

22

Edge Cuts versus Vertex Cuts

• Power-law graphs have many more edges than vertices

Y
1. Assign vertices to partitions
2. Edges may be duplicated across

partitions
3. Must synchronize many edges

CPU 1 CPU 2

Y Y
1. Assign edges to partitions
2. Vertices may be duplicated across

partitions
3. Must synchronize fewer vertices

Edge Cut

Vertex Cut

23

Constructing Vertex Cuts

• Goals

• Assign edges to machines evenly

• Minimize number of machines spanned by each vertex

• Assign each edge as it is loaded, without reassigning it again

• Three distributed approaches

• Random edge placement

• Coordinated greedy edge placement

• Place an edge on a machine that already has vertices of that edge

• Requires coordination to track current vertex->machine assignment

• Oblivious greedy edge placement

• Same as above, but use local approximation of vertex->machine
assignment, so no coordination required

24

Synchronization

• PowerGraph supports three execution modes:

• Synchronous

• Each of the GAS phases run in bulk-synchronous model

• Asynchronous

• The GAS phases run completely asynchronously

• Lock GAS parameters to avoid races

• Asynchronous + Serializable

• Neighboring vertices do not run simultaneously

• Similar to Dining Philosopher problem

25

Comparison with Pregel & GraphLab

Communication Runtime
10

8

6

4

2

0
1.8

To
ta

l N
et

w
o

rk
 (

G
B

)

30
25
20
15
10

5
0

2 2.2 1.8 2 2.2
Power-‐Law Constant α Power-‐Law Constant α

Se
co

n
d

s

Pregel (Piccolo)

GraphLab

Pregel (Piccolo)

GraphLab

High-degree vertices High-degree vertices

PageRank on Synthetic Power-Law Graphs

26

Partitioning Cost

1000

800

600

400

200

0Pa
rt

it
io

n
in

g
Ti

m
e

(S
ec

o
n

d
s)

8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64

Number of Machines Number of Machines

Cost Construction time

18

16

14

12

10

8

6

4

2A
vg

#
o

f
M

ac
h

in
es

 S
p

an
n

ed

Twitter Graph: 41M vertices, 1.4B edges

27

Performance With Different
Partitioning Schemes

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

PageRank Collaborative Shortest Path
Filtering

R
u

n
ti

m
e

R
el

at
iv

e
to

 R
an

d
o

m Random

Oblivious

Coordinated

28

Conclusions

• Real-world graphs are power-law graphs

• Computation on power-law graph is challenging

• High‐degree vertices

• Low-quality edge-cuts

• PowerGraph proposes: 1) GAS decomposition model for
splitting, parallelizing vertex programs, 2) Vertex cuts
for partitioning power-law graphs

• PowerGraph theoretically and experimentally
outperforms Pregel and GraphLab

• PowerGraph is available as Apache GraphLab 2.1

29

Discussion

30

Q1

• What problems do power-law distributions cause for
graph processing?

31

Q2

• Why do vertex cuts make it easier to perform load
balancing compared to edge cuts?

32

Q3

• Powergraph splits processing into three steps:

gather + sum
apply
scatter

• Assuming a node X has four neighbors A, B, C, D, the
sum operation is performed as follows:

• sum(gather(A), gather(B), gather(C), gather(D))

• Why does the sum operation need to be commutative
and associative?

	Slide 1: PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs
	Slide 2: Power-Law Graphs
	Slide 3: Understanding Power-Law Graphs
	Slide 4: Power-Law Degree Distribution
	Slide 5: Why PowerGraph?
	Slide 6: The Graph-Parallel Abstraction
	Slide 7: The Pregel Abstraction
	Slide 8: The GraphLab Abstraction
	Slide 9: Challenges of High-Degree Vertices
	Slide 10: Key Idea in PowerGraph
	Slide 11: How to Split Vertex Processing?
	Slide 12: How to Split Vertex Processing?
	Slide 13: PowerGraph GAS Abstraction
	Slide 14: GAS Abstraction
	Slide 15: GAS Abstraction
	Slide 16: GAS Abstraction
	Slide 17: GAS Abstraction
	Slide 18: GAS Abstraction
	Slide 19: GAS Abstraction
	Slide 20: PageRank in PowerGraph
	Slide 21: Graph Partitioning
	Slide 22: Edge Cuts versus Vertex Cuts
	Slide 23: Constructing Vertex Cuts
	Slide 24: Synchronization
	Slide 25: Comparison with Pregel & GraphLab
	Slide 26: Partitioning Cost
	Slide 27: Performance With Different Partitioning Schemes
	Slide 28: Conclusions
	Slide 29: Discussion
	Slide 30: Q1
	Slide 31: Q2
	Slide 32: Q3

