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What is Pregel?

* Scalable and fault-tolerant graph processing framework

* Provides flexible API for expressing arbitrary graph
algorithms

* Vertex-centric computation model (think like a vertex)

e Bulk Synchronous Parallel (BSP) message-passing model for
communication and synchronization



BSP Model

* |n BSP, computation is a sequence of supersteps

* |n each superstep:

* Each process reads input messages, executes code
independently, and sends messages to other processes

 When a process completes, it waits for others to complete

* All messages are delivered at the start of the next superstep
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Pregel Computation Model

 Programmer writes a user-defined function that
operates on a vertex (think like a vertex)

e Similar to map-reduce, or stream processing,
which operate on a single key

* \Vertex state:

Vertex ID

Current value

List of outgoing edges and their values
A gueue containing incoming message
A flag to determine if vertex is active



Pregel Computation Model

e Each vertex:

* Receives messages sent in the previous superstep
* Executes the user-defined function
* May modify its state or state of outgoing edges

* May send messages to outgoing edge vertices
* These messages are received at the start of the next superstep

 May mutate the topology of the graph (e.g., add edge)

e Votes to haltif it has no further work to do

* Program termination: Vote to halt
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Pregel API

* Programmer subclasses Vertex class

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>
class . Vertex { override
public: y
virtual void Compute(Messagelterator* msgs) = O;

const string& vertex_id() const; ) i
int64 superstep() const; Incoming msgs
const VertexValue& GetValue();

VertexValue* MutableValue() ;

OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
¥ outgoing message



Example: Parallel SSSP in Pregel
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SSSP Vertex Class

class ShortestPathVertex
: public Vertex<int, int, int> {
void Compute (Messagelterator* msgs) {
int mindist = IsSource(vertex_id()) 7 O : INF;
for (; 'msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgelterator iter = GetOutEdgelterator();
for (; 'iter.Done(); iter.Next())
SendMessageTo(iter.Target(),
mindist + iter.GetValue());
} else

VoteToHalt();
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Pregel Architecture

* Pregel uses a master/worker model

 Master coordinates workers, handles worker failures

 Workers process their tasks, communicate with other workers
asynchronously (computation and communication overlap)
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Pregel Execution

 Master decides the number of graph partitions and
assigns one or more partitions to each worker

* Avertex is deterministically mapped to a partition based on ID

* So, all workers know the partition to which any vertex belongs

 Workers load input graph data in parallel

e Each worker initializes its vertices
marks them active

e Each worker executes compute()
on all active vertices in a loop, \
using a separate thread N riirtaig:mg
per partition



Combiners

* A worker can combine messages sent to a given vertex

 Requires combiner() to be commutative and associative

 Reduces message traffic and disk space on the receiver side

 E.g., for SSSP, say vO-v5 send a message to v6

Worker 1 Worker 2

a = min(v0, vl, v2) —

Ref e f

Combiner Combiner| <=t |y = min(V3, V4, VS)
\ W 3 /
Combiner | €=——1t= m|n(a b
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Aggregator

 Used for global communication, and synchronization

 E.g., compute aggregate statistics from vertex-reported values

* During a superstep:

 Each worker aggregates values from its vertices to form a
partially aggregated value

* At the end of superstep, partially aggregated values from each
worker are aggregated into a global aggregate

* Global aggregate is sent to the master

 Master sends global aggregate values to all workers at
the beginning of next superstep
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Topology Mutations

 Needed for clustering applications

e Qutputis asmaller graph

 Problem is that mutations may race and conflict

 Two requests to add vertex V with different values

* Solution: apply the mutations at start of next superstep,
in order:

 Remove edges, then vertices

e Add vertices, then edges

e Resolve rest of the conflicts with user-defined handlers
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Pregel Fault Tolerance

 Uses checkpointing for failure recovery

The master periodically instructs workers to save the state of
their partitions to persistent storage

e Partition state includes vertex values, edge values, incoming messages

e Failure detection

Master uses regular ping messages

* Failure recovery

The master reassigns graph partitions to the currently
available workers

All workers reload their partition state from most recent
available checkpoint
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Evaluation
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Evaluation
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Conclusions

* “Think like a vertex” computation model

e Combiners, aggregator, topology mutations enable
many graph algorithms to be run on Pregel

* Highly influential
* Apache Giraph builds on Pregel design

* Facebook made improvements, used it on its trillion-edge
social graph (look for: scaling apache giraph to a trillion edges)
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Discussion
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Ql

We have discussed it briefly but let’s reconsider why
Map-Reduce is not a good fit for graph processing?
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Q2

Why must the combiner() function be commutative and
associative?
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Q3

Worker processing in each superstep is shown below:

Receive incoming messages
Persist incoming messages, graph state (vertex, edge values)
Compute, modify vertex and outgoing edge state

Buffer outgoing messages

A A

Barrier

What guarantees are provided by Pregel's processing
model (and how)? Why are these guarantees useful?
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