Pregel: A System for Large-Scale
Graph Processing

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Authors: Grzegorz Malewicz, Matthew Austern, Aart Bik, James Dehnert, llan
Horn, Naty Leiser, Grzegorz Czajkowski (Google, Inc.)

Some slides adapted from Aishwarya G, Subhasish Saha

What is Pregel?

* Scalable and fault-tolerant graph processing framework

* Provides flexible API for expressing arbitrary graph
algorithms

* Vertex-centric computation model (think like a vertex)

e Bulk Synchronous Parallel (BSP) message-passing model for
communication and synchronization

BSP Model

* |n BSP, computation is a sequence of supersteps

* |n each superstep:

* Each process reads input messages, executes code
independently, and sends messages to other processes

 When a process completes, it waits for others to complete

* All messages are delivered at the start of the next superstep

Process 1

Process 2 | Initial dala ::' Compufe
Process n

| | | |
Superstep 0 Superstep 1

Inpait 8

ITi

Pregel Computation Model

 Programmer writes a user-defined function that
operates on a vertex (think like a vertex)

e Similar to map-reduce, or stream processing,
which operate on a single key

* \Vertex state:

Vertex ID

Current value

List of outgoing edges and their values
A gueue containing incoming message
A flag to determine if vertex is active

Pregel Computation Model

e Each vertex:

* Receives messages sent in the previous superstep
* Executes the user-defined function
* May modify its state or state of outgoing edges

* May send messages to outgoing edge vertices
* These messages are received at the start of the next superstep

 May mutate the topology of the graph (e.g., add edge)

e Votes to haltif it has no further work to do

* Program termination: Vote to halt
II_,.r-d-_—h.llnl--" 'xlf _H Ty
* When all vertices are inactive, | Active x_I“ﬂﬂti"’%_D
"!*-,______ ___~"‘"HF

and no messages in transit Message received

Pregel API

* Programmer subclasses Vertex class

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>
class . Vertex { override
public: y
virtual void Compute(Messagelterator* msgs) = O;

const string& vertex_id() const;) i
int64 superstep() const; Incoming msgs
const VertexValue& GetValue();

VertexValue* MutableValue() ;

OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
¥ outgoing message

Example: Parallel SSSP in Pregel

@—0
e

2 |

2

5

o /|
S~
7
\J \J
|
2

Example taken from talk by Taewhi Lee, 2010

Inactive Vertex
Active Vertex
Edge weight

Message

Example: Parallel SSSP in Pregel

(O Inactive Vertex
© Active Vertex

X Edge weight

X Message

Example: Parallel SSSP in Pregel

1
e

Active Vertex

@ 3 9 4 6
\ X Edge weight

% A) O Inactive Vertex
O

2

5 7

\ ' ' X Message

@—©

Example: Parallel SSSP in Pregel

Inactive Vertex
Active Vertex
Edge weight

Message

10

Example: Parallel SSSP in Pregel

O~

EN

Yol
2
5

\j

O

Inactive Vertex
Active Vertex
Edge weight

Message

11

Example: Parallel SSSP in Pregel

v
BN

10
@]
5 10

\j

O

-@

A
13

Inactive Vertex
Active Vertex
Edge weight

Message

12

Example: Parallel SSSP in Pregel

O~

EN

Y al
2
5

\j

O

Inactive Vertex
Active Vertex
Edge weight

Message

13

Example: Parallel SSSP in Pregel

O~

EN

Y al
2
5

\j

O

Inactive Vertex
Active Vertex
Edge weight

Message

14

Example: Parallel SSSP in Pregel

O~

EN

Y al
2
5

\j

O

Inactive Vertex
Active Vertex
Edge weight

Message

15

SSSP Vertex Class

class ShortestPathVertex
: public Vertex<int, int, int> {
void Compute (Messagelterator* msgs) {
int mindist = IsSource(vertex_id()) 7 O : INF;
for (; 'msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgelterator iter = GetOutEdgelterator();
for (; 'iter.Done(); iter.Next())
SendMessageTo(iter.Target(),
mindist + iter.GetValue());
} else

VoteToHalt();

16

Pregel Architecture

* Pregel uses a master/worker model

 Master coordinates workers, handles worker failures

 Workers process their tasks, communicate with other workers
asynchronously (computation and communication overlap)

Aggregate value Barrier Synchronization
/g]

.ﬁ"-—
-

’-' oy =
f'— Sy
Q imey
F 3

Messages between 2 nodes
can be combined

Load and Checkpoint r_

Graph DB

Graph data stored persistently
. . —
in GFS or BigTable 8 8 8 8

17

Pregel Execution

 Master decides the number of graph partitions and
assigns one or more partitions to each worker

* Avertex is deterministically mapped to a partition based on ID

* So, all workers know the partition to which any vertex belongs

 Workers load input graph data in parallel

e Each worker initializes its vertices
marks them active

e Each worker executes compute()
on all active vertices in a loop, \
using a separate thread N riirtaig:mg
per partition

Combiners

* A worker can combine messages sent to a given vertex

 Requires combiner() to be commutative and associative

 Reduces message traffic and disk space on the receiver side

 E.g., for SSSP, say vO-v5 send a message to v6

Worker 1 Worker 2

a = min(v0, vl, v2) —

Ref e f

Combiner Combiner| <=t |y = min(V3, V4, VS)
\ W 3 /
Combiner | €=——1t= m|n(a b

19

Aggregator

 Used for global communication, and synchronization

 E.g., compute aggregate statistics from vertex-reported values

* During a superstep:

 Each worker aggregates values from its vertices to form a
partially aggregated value

* At the end of superstep, partially aggregated values from each
worker are aggregated into a global aggregate

* Global aggregate is sent to the master

 Master sends global aggregate values to all workers at
the beginning of next superstep

20

Topology Mutations

 Needed for clustering applications

e Qutputis asmaller graph

 Problem is that mutations may race and conflict

 Two requests to add vertex V with different values

* Solution: apply the mutations at start of next superstep,
in order:

 Remove edges, then vertices

e Add vertices, then edges

e Resolve rest of the conflicts with user-defined handlers

21

Pregel Fault Tolerance

 Uses checkpointing for failure recovery

The master periodically instructs workers to save the state of
their partitions to persistent storage

e Partition state includes vertex values, edge values, incoming messages

e Failure detection

Master uses regular ping messages

* Failure recovery

The master reassigns graph partitions to the currently
available workers

All workers reload their partition state from most recent
available checkpoint

22

Evaluation

Runtime (seconds)

180

160+
140+-

120+
100+

ED_-

100 200 300 400 500 600 700 800

MNumber of worker tasks

SSSP on a 1 billion vertex binary tree

23

Evaluation

Runtime (seconds)

800

T00-
600
500+
400 -
300+
200
100

100M 200M 300M 400M 500M 600M ToOM 200M o00M 10

MNumber of vertices

SSSP on log-normal graph (mean out-degree is 127.1)

with 800 workers

24

Conclusions

* “Think like a vertex” computation model

e Combiners, aggregator, topology mutations enable
many graph algorithms to be run on Pregel

* Highly influential
* Apache Giraph builds on Pregel design

* Facebook made improvements, used it on its trillion-edge
social graph (look for: scaling apache giraph to a trillion edges)

25

Discussion

26

Ql

We have discussed it briefly but let’s reconsider why
Map-Reduce is not a good fit for graph processing?

27

Q2

Why must the combiner() function be commutative and
associative?

28

Q3

Worker processing in each superstep is shown below:

Receive incoming messages
Persist incoming messages, graph state (vertex, edge values)
Compute, modify vertex and outgoing edge state

Buffer outgoing messages

A A

Barrier

What guarantees are provided by Pregel's processing
model (and how)? Why are these guarantees useful?

29

	Slide 1: Pregel: A System for Large-Scale Graph Processing
	Slide 2: What is Pregel?
	Slide 3: BSP Model
	Slide 4: Pregel Computation Model
	Slide 5: Pregel Computation Model
	Slide 6: Pregel API
	Slide 7: Example: Parallel SSSP in Pregel
	Slide 8: Example: Parallel SSSP in Pregel
	Slide 9: Example: Parallel SSSP in Pregel
	Slide 10: Example: Parallel SSSP in Pregel
	Slide 11: Example: Parallel SSSP in Pregel
	Slide 12: Example: Parallel SSSP in Pregel
	Slide 13: Example: Parallel SSSP in Pregel
	Slide 14: Example: Parallel SSSP in Pregel
	Slide 15: Example: Parallel SSSP in Pregel
	Slide 16: SSSP Vertex Class
	Slide 17: Pregel Architecture
	Slide 18: Pregel Execution
	Slide 19: Combiners
	Slide 20: Aggregator
	Slide 21: Topology Mutations
	Slide 22: Pregel Fault Tolerance
	Slide 23: Evaluation
	Slide 24: Evaluation
	Slide 25: Conclusions
	Slide 26: Discussion
	Slide 27: Q1
	Slide 28: Q2
	Slide 29: Q3

