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What is Pregel?

• Scalable and fault-tolerant graph processing framework

• Provides flexible API for expressing arbitrary graph 
algorithms

• Vertex-centric computation model (think like a vertex)

• Bulk Synchronous Parallel (BSP) message-passing model for 
communication and synchronization
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BSP Model

• In BSP, computation is a sequence of supersteps

• In each superstep:

• Each process reads input messages, executes code 
independently, and sends messages to other processes

• When a process completes, it waits for others to complete

• All messages are delivered at the start of the next superstep

Process 0

Process 1

Process 2

Process n
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Pregel Computation Model

• Programmer writes a user-defined function that 
operates on a vertex (think like a vertex)

• Similar to map-reduce, or stream processing, 
which operate on a single key

• Vertex state:

Vertex ID
Current value
List of outgoing edges and their values
A queue containing incoming message
A flag to determine if vertex is active
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Pregel Computation Model

• Each vertex:

• Receives messages sent in the previous superstep

• Executes the user-defined function

• May modify its state or state of outgoing edges

• May send messages to outgoing edge vertices

• These messages are received at the start of the next superstep

• May mutate the topology of the graph (e.g., add edge)

• Votes to halt if it has no further work to do

• Program termination:

• When all vertices are inactive, 
and no messages in transit
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Pregel API

• Programmer subclasses Vertex class

override

incoming msgs

outgoing message
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Example: Parallel SSSP in Pregel
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Example taken from talk by Taewhi Lee, 2010
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Example: Parallel SSSP in Pregel
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Example: Parallel SSSP in Pregel

0

10

5





10

5

2 3

2

1

9

7

4 6

Inactive Vertex

Active Vertex

Edge weight

Message

x

x



10

Example: Parallel SSSP in Pregel

0

10

5





10

5

2 3

2

1

9

7

4 6

Inactive Vertex

Active Vertex

Edge weight

Message

x

x
11

7

14

12

8



11

Example: Parallel SSSP in Pregel
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Example: Parallel SSSP in Pregel
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Example: Parallel SSSP in Pregel
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Example: Parallel SSSP in Pregel
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Example: Parallel SSSP in Pregel
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SSSP Vertex Class

else

  VoteToHalt();
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Pregel Architecture

• Pregel uses a master/worker model

• Master coordinates workers, handles worker failures

• Workers process their tasks, communicate with other workers 
asynchronously (computation and communication overlap)

Graph data stored persistently
in GFS or BigTable
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Pregel Execution

• Master decides the number of graph partitions and 
assigns one or more partitions to each worker

• A vertex is deterministically mapped to a partition based on ID

• So, all workers know the partition to which any vertex belongs

• Workers load input graph data in parallel

• Each worker initializes its vertices,
marks them active

• Each worker executes compute()
on all active vertices in a loop,
using a separate thread 
per partition

18
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Combiners

• A worker can combine messages sent to a given vertex

• Requires combiner() to be commutative and associative

• Reduces message traffic and disk space on the receiver side

• E.g., for SSSP, say v0-v5 send a message to v6

a = min(v0, v1, v2) b = min(v3, v4, v5)

min(a, b)

𝑣0

𝑣1

𝑣2
𝑣3

𝑣4

𝑣5

𝑣6
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Aggregator

• Used for global communication, and synchronization

• E.g., compute aggregate statistics from vertex-reported values

• During a superstep:

• Each worker aggregates values from its vertices to form a 
partially aggregated value

• At the end of superstep, partially aggregated values from each 
worker are aggregated into a global aggregate

• Global aggregate is sent to the master

• Master sends global aggregate values to all workers at 
the beginning of next superstep
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Topology Mutations

• Needed for clustering applications

• Output is a smaller graph

• Problem is that mutations may race and conflict 

• Two requests to add vertex V with different values

• Solution: apply the mutations at start of next superstep, 
in order:

• Remove edges, then vertices

• Add vertices, then edges

• Resolve rest of the conflicts with user-defined handlers
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Pregel Fault Tolerance

• Uses checkpointing for failure recovery

• The master periodically instructs workers to save the state of 
their partitions to persistent storage

• Partition state includes vertex values, edge values, incoming messages

• Failure detection

• Master uses regular ping messages

• Failure recovery

• The master reassigns graph partitions to the currently 
available workers

• All workers reload their partition state from most recent 
available checkpoint
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Evaluation

SSSP on a 1 billion vertex binary tree
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Evaluation

SSSP on log-normal graph (mean out-degree is 127.1) 
with 800 workers
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Conclusions

• “Think like a vertex” computation model

• Combiners, aggregator, topology mutations enable 
many graph algorithms to be run on Pregel

• Highly influential

• Apache Giraph builds on Pregel design

• Facebook made improvements, used it on its trillion-edge 
social graph (look for: scaling apache giraph to a trillion edges)
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Discussion
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Q1

• We have discussed it briefly but let’s reconsider why 
Map-Reduce is not a good fit for graph processing?
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Q2

• Why must the combiner() function be commutative and 
associative?
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Q3

• Worker processing in each superstep is shown below:

1. Receive incoming messages

2. Persist incoming messages, graph state (vertex, edge values)

3. Compute, modify vertex and outgoing edge state

4. Buffer outgoing messages

5. Barrier

• What guarantees are provided by Pregel's processing 
model (and how)? Why are these guarantees useful?
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