Special Topics in Software Engineering: Dependable Software

Ashvin Goel

Electrical and Computer Engineering University of Toronto

ECE 1724S, Winter 2006

Topics

- What are dependable systems?
 - Why do we care about them?
- Why do systems stop?
 - What can we do about it?
- Topics
- Class format

Overview of Class Format

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Sign up for class by joining the class mailing list
 - Instructions available from class website
- Seminar style course
 - Reading, discussion, presentation
- A survey assignment
- Project, presentation
- No quizzes or final exams

What are Dependable Systems?

Dependable Systems

- Hard to define, but examples are easy to find
 - Transportation, e.g., cars, airplanes
 - Appliances, e.g., toaster, fridge, TV
 - Medical devices, e.g., MRI, X-rays, prosthesis

Dependable Systems

- Hard to define, but examples are easy to find
 - Transportation, e.g., cars, airplanes
 - Appliances, e.g., toaster, fridge, TV
 - Medical devices, e.g., MRI, X-rays, prosthesis
- Properties
 - Traditionally, have redundancy, keep running
 - Easily understood operation model
 - Allow monitoring for (well-documented) errors
 - Degrade gracefully
- Bug free? Secure? No configuration?

Computer Systems

- Tightly intertwined with our lives
 - Increased networking, e.g., wireless
 - Cheap devices, e.g., cell phones
- Complex, failure-prone and insecure
- Hard to manage
- Dependability problems dominate TCO
 - Total cost of ownership

Current Challenges

- "The products of forty years of OS research are sitting in everyone's desktop computer, cell phone, car, etc., — and it is not a pretty picture."
 - Researchers from Microsoft, 2005.

Current Challenges

- "The products of forty years of OS research are sitting in everyone's desktop computer, cell phone, car, etc., — and it is not a pretty picture."
 - Researchers from Microsoft, 2005.
- Some key problems
 - Dependability
 - Frequent unexpected behavior
 - Security
 - Systems protect users from each other, not from outside threats
 - Configuration
 - DLL hell

Insight

- Performance is not the only key concern today
 - Few applications require all available resources
- Use resources to improve dependability
- Examples
 - Store all versions of data to guard against data loss
 - Read "A Conversation with Jim Gray" (acmqueue.org)
 - Replicate processes, data
 - Use intrusion detection methods

Why Do Systems Stop?

Jim Gray, 1985

Conventional TP Systems

- On average, fail for 90 min every 2 weeks
- Restart time includes
 - Detection time
 - Time to take snapshot for later analysis
 - OS, database, communication n/w reboot
 - Client (e.g, ATM machines) reboot
 - Users take time to refocus on job
- 99.6% availability (2 weeks / (2 weeks + 90 min))
 - Sounds wonderful
 - Isn't!

Highly Fault-Tolerant System

- Analyzed failure reports of 2000 systems running a fault-tolerant Tandem system
- Analysis covered 10M system hours
 - 1300 system years!
- 166 failures reported
- Mean time between failure (MTBF) = 7.8 years!
- Where did the failures occur?

Breakup of Failures

- 59 "infant mortality" failures
 - Recurrent failures due to new software or hardware
 - Bugs should have been fixed before deployment
- Contributors to the other 107 failures

Maintenance, operations — configuration

Administration	42.00%
Software	25.00%
Hardware	18.00%
Environment	14.00%

Fire, flood, >4 hr power loss

Implications

- Reliability requires tolerating software faults and administration errors
- Hardware becomes more reliable over time
 - Hardware fault tolerance is feasible
- New and changing systems have higher failure
 - If it's not broken, don't fix it
- High percentage of outages caused by known bugs
 - Install software and hardware fixes ASAP
- Contradiction?

Hardware Fault Tolerance

- Modularize hardware to limit faults
- Make each module fail-fast
 - Either it does the right thing or stops
- Detect faults promptly
 - Have module signal failure
- Configure extra backup modules
- Resulting MTBF is in years to decades!

Software Fault Tolerance

- Use techniques similar to h/w fault tolerance?
- Software modularity via processes and messages
- Fail-fast modules
- Process-pairs to tolerate transient software faults
 - Bohrbug/Heisenbug hypothesis
- Transactions to provide data integrity
- Combine process-pairs and transactions

Administration Errors

- "Dealing with system configuration, operations and maintenance remains an unsolved problem"
 - Jim Gray, 1985.

Topics

Main Topics

- Dependability Challenges
 - Faults and Defects
 - Security
 - Configuration
- Growing realization that avoidance is hard!
- Focus on
 - Detection
 - Isolation
 - Recovery

Faults and Defects

- Bug detection
- Fault isolation
- Failure recovery

Security

- Intrusion analysis and detection
- Safe execution
- Intrusion response

Configuration

- System misconfiguration
- Performance misconfiguration

Class Format

Overview

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Sign up for class by joining the class mailing list
 - Instructions available from class website
- Seminar style course
 - Reading, discussion, presentation
- A survey assignment
- Project, presentation
- These slides on website

Reading and Discussion

- Advanced
- Background in OS, N/W, distributed systems
- 2-3 papers per week
 - Unless marked optional, all papers are required reading
- Will take about 3-6 hours per week!
- Allows discussion in class
- It will show if you don't do the reading!

Presentation

- For discussion, you must prepare five questions
 - One slide for each question
 - Then one slide for each of your answers
- Detailed instructions on website
- Please follow carefully
 - E.g., make sure you number slides!
 - Fonts should be reasonably large (>24)
 - Follow this style

Choosing A Paper to Present

- First-come, first served
- Pick paper from website
- Send mail with your first choice to mailing list
- If you send me a paper choice that is taken, then you will be asked to send me another choice by mail and your mail will be queued at the back!

Survey Assignment

- A survey of an area of your choice
 - Area based on one of the weekly topics
 - Good idea to read all the papers of that week
 - Then read relevant papers in the bibliography
- 3-4 page report
 - Need to do in-depth study
 - Report should show that you have covered the area

Project

- Choose a project based on topics covered in class
- Sample topics will be posted on website
- Options
 - Implement and evaluate a system
 - Evaluate existing system
 - Write a research paper
- Write up your work
 - 8-10 pages
 - Ideally, use the survey as background material
- Present your work

Grading Policy

- Class presentation: 20%
- Survey assignment: 20%
- Class project: 40%
- Class participation: 20%

Please join class mailing list at

http://www.eecg.toronto.edu/~ashvin

Thanks!

Class Number has changed to ECE 1724S