
Myriad: Cost-effective Disaster Tolerance

Fay Chang, Minwen Ji, Shun-Tak A. Leung, John MacCormick, Sharon E. Perl, Li Zhang
Compaq Systems Research Center

Palo Alto, CA, 94301

Abstract

This paper proposes a new approach for achieving dis-
aster tolerance in large, geographically-distributed stor-
age systems. The system, called Myriad, can achieve the
same level of disaster tolerance as a typical single mir-
rored solution, but uses considerably fewer physical re-
sources, by employing cross-site checksums (via erasure
codes) instead of direct replication.

The key technical contribution of the paper is a proto-
col permitting cross-site checksums to be updated in such
a way that data recovery is always possible. Another im-
portant contribution is the specification of a protocol for
recovering from disasters, explicitly verifying the claim
of disaster tolerance. Further, it is shown by direct cal-
culation and analytical modeling that Myriad compares
favorably with mirroring in terms of both total cost of
ownership and reliability.

1 Introduction

A geoplex is a collection of geographically distributed
sites, each consisting of servers, applications, and data
[7]. The sites of a geoplex cooperate to improve relia-
bility and/or availability of applications and data through
the use of redundancy. Data redundancy in geoplexes
typically takes the form of mirroring, where one or more
full copies of the logical data are maintained at remote
sites. In this paper we present alternative approaches
to mirroring for cross-site data redundancy in geoplexes.
While the alternatives are not as generally applicable as
mirroring, they have noticeably lower cost, provide ad-
ditional flexibility, and are appropriate for a significant
class of applications.

Mirroring has a number of desirable properties. It is
conceptually simple, and does not compromise perfor-
mance when it operates in an asynchronous mode for re-
mote updates. Its recovery procedure is simple. In addi-
tion to the ability to reconstruct data after a site failure,
it offers the choice of active-active configurations (where

Sharon E. Perl and Shun-Tak A. Leung are currently with Google, Inc.
and can be reached at {sharon, shuntak}@google.com. The other au-
thors can be reached at {Fay.Chang, Minwen.Ji, John.MacCormick,
L.Zhang}@compaq.com.

all sites are actively processing some work) and active-
passive configurations (where fast failover is possible
from the primary site to a secondary site). On the nega-
tive side, mirroring has a high cost because the amount
of storage required for the logical data must be doubled
or more depending on the number of mirror copies. For
very high reliability, more than one mirror copy generally
is required. While the high cost for remote mirroring has
been accepted by customers with mission-critical appli-
cations, such as online transaction processing systems, a
geoplex is hardly a low-cost product available for many
other applications with large data sets, such as data min-
ing and scientific computing.

We investigate the possibility of offering more flexible,
often lower, pricing of a geoplex by supporting a variety
of data redundancy schemes across sites. The system,
called Myriad, uses redundancy schemes based on era-
sure codes [16] (error-correcting codes where the posi-
tion of the error is known). Erasure codes form the basis
for the approaches to disk array redundancy known as
RAID levels 3, 4, 5, and 6 [10]. We study this approach
for maintaining redundancy of data spread across geo-
graphically distant sites rather than across disks in a disk
array.

We start by examining the reasons erasure codes have
not previously been employed in geoplexes. It is per-
ceived that although erasure codes reduces the number of
disks needed for a given amount of data, the dollar sav-
ing is insignificant because disks account for only a small
portion (10-25%) of the total cost of ownership (TCO) of
the entire storage solution. There is a perception that the
software implementation of erasure codes across servers
offers lower reliability than mirroring, and it is too com-
plicated to be commercializable even within a local site.

The TCO includes all costs attributable to a storage
system over its lifetime, including purchase, installation,
power, floor space and human labor costs for administer-
ing and maintaining the system. By analyzing compo-
nents of the TCO, we discover that requiring less hard-
ware lowers not just the purchase cost but also other TCO
components such as environmental and administration
costs. Therefore, a scheme using less hardware could
reduce the TCO by a noticeable amount. For example,
our analysis shows that, in order to implement a geo-

plex across 5 sites with 20 terabytes of data on each site,
single mirroring costs about 80% more than the original
(non-redundant) scheme, while a parity-based scheme
(an instance of an erasure code) costs only about 40%
more. Section 3 presents our TCO analysis.

We also compare the reliability of various cross-site
redundancy schemes, primarily through analytical mod-
eling. We derive equations for the mean time to data
loss (MTTDL) of these schemes. Across a spectrum of
system configurations, we find, not surprisingly, that the
MTTDL of a Myriad scheme with one checksum (sin-
gle redundancy) is worse than that of a mirrored system
but much better than if there is no cross-site redundancy.
Moreover, the MTTDL of a Myriad scheme with two
checksums (double redundancy) is worse than that of a
double mirroring system but much better than that for a
mirrored system. Section 4 discusses the results of the
reliability analysis in more details.

The complexity of non-mirroring redundancy schemes
is an issue for both local-area and cross-site storage sys-
tems. However, we have observed enough differences in
the two systems to believe that their protocols should be
quite different. In a local-area parity scheme, such as the
storage layer in xFS [20], the local-area network (LAN)
connecting servers is assumed to be fast and cheap (e.g.,
Ethernet). The design goal is to parallelize reads and
writes across disks for large aggregate bandwidth and
to present an image of a single system. Therefore, the
design challenges lie in data layout, coordination across
servers, cache coherence, and decentralization of control.

In the systems we are targeting, the wide-area network
(WAN) connecting sites is assumed to be slow and ex-
pensive (e.g., leased T1 or T3 lines). Consequently, ap-
plications running on each site are configured to be inde-
pendent of applications running on other sites; in other
words, a logical piece of data is not stored across sites.
For example, suppose a hospital chain has branches in
multiple cities and each branch has its own file system
for local employees and patients. In order to imple-
ment Myriad-style data redundancy across branches, one
only needs to add a certain amount of physical storage
to each branch, which will be dedicated to storing the re-
dundancy information (i.e., checksums) of data on other
sites. Although branches may manage to gain access to
each other by mounting remote file systems, the stor-
age layout of the local file systems does not have to be
changed. Therefore, at the block storage level, there is
no issue about parallelism or single-system image across
sites. Rather, the goal of our design is to reliably and
consistently deliver data to the remote checksum sites for
protection while hiding the long latency of WAN from
the critical path of data access.

We have designed a cross-site update/recovery protocol
that supports redundancy based on erasure codes, where

the number of data and checksum disks may vary. As it
happens, mirroring is a degenerate case of erasure coding
where there is a single data block per group of checksum
blocks, so our protocol supports mirroring as well. How-
ever, it is expected to have higher complexity and over-
head than a protocol designed solely for mirroring. There
are two major reasons for this: (1) the reconstruction of
data with a non-mirroring scheme is substantially more
difficult than with a mirroring scheme; (2) the operation
of updating a checksum is not idempotent, in contrast to
that of a mirror. Nevertheless, we design our protocol
so that it requires no more WAN bandwidth than a pure
mirroring protocol. Sections 5 and 6 discuss our design
in detail.

2 System Overview

A Myriad system achieves disaster tolerance by storing
data at a number of geographically distinct sites. Each
site consists of disks, servers, a LAN, and some local
redundancy such as hardware RAID-5; the sites are con-
nected by a WAN. Each site is assumed to employ a stor-
age area network (SAN).

The essential idea behind Myriad is that, in addition
to any local redundancy such as RAID, each block of
data participates in precisely one cross-site redundancy
group. A cross-site redundancy group is a set of blocks,
one per site, of which one or more are checksum blocks.
Thus, the blocks in a given group protect one another’s
data. The simplest possible example is single parity, in
which one of the blocks is the XOR of the others — this
is equivalent to running a distributed form of RAID-5.
The system can reconstruct the current, correct contents
of a lost site on a replacement site.

Much greater disaster tolerance can be achieved by us-
ing more redundancy. For instance, one can use all but
two of the blocks in every cross-site redundancy group
for data, and use the remaining two blocks as checksums
computed using a Reed-Solomon erasure code [2]. This
type of the system, which is equivalent to running dis-
tributed RAID-6, can recover from up to two site losses.

An application using a Myriad storage system must sat-
isfy two properties:

1. Dispersed data: data is dispersed over multiple
sites. The Myriad protocol (section 6) formally re-
quires as few as two sites (single redundancy) or
three sites (double redundancy), but as discussed in
section 3, the efficiency gains of the Myriad system
(as compared with mirroring) are more compelling
when there are more (say 5 or more). In addition,
the amount of data at each site should be roughly
equal; otherwise, the efficiency gains are again re-
duced. (This is the same as the problem of using
disks of different sizes in a RAID-5 array.)

2. Local computation: computations on the data are
collocated with the data. In other words, an appli-
cation running at a given site does not access data
at other sites. This assumption is motivated by the
economic justification of the Myriad approach: if
computations are not local, the cost of WAN band-
width is likely to exceed Myriad’s cost benefits
which result from using less physical storage.

A relatively broad class of storage customers meet both
the “dispersed data” and the “local computation” con-
ditions. A typical such customer has several different
sites, each of which runs its own application and stor-
age system. For example, different sites might perform
various payroll, finance, and technical functions. Alter-
natively, as with the example of a hospital chain given
earlier, the sites could be running independent instantia-
tions of the same application, but using only local data.
Another potential customer for Myriad is an application
service provider (ASP) or storage service provider (SSP)
that wants to offer disaster tolerance to their customers
cost-effectively.

3 Total Cost of Ownership

The present paradigm for achieving disaster tolerance
in a storage system is to mirror all data at a remote site.
However, mirroring is expensive: the amount of physical
data is twice the amount of logical data (often referred
to as “100% space overhead”), so one must purchase and
administer twice as much storage as for a basic (disaster-
vulnerable) system. As described later, a typical Myriad
system with 5 sites might have only 20–40% space over-
head, while retaining or even improving on the disaster
tolerance of a mirrored system. So the physical require-
ment and hence purchase cost for Myriad are as much
as 40% (= 1 − 100+20

100+100) less than those for mirroring.
Although the purchase cost of a storage system is widely
known to be only a small fraction of the TCO (reports
estimate 10–25% [1, 12, 18]), this section will show by
explicit calculation that a Myriad system would still rep-
resent significant TCO savings over a mirrored system.

3.1 Cost Model and Assumptions

A good starting point for calculating the TCO of the
system is a report by Gartner Group [1], which estimates
the components for the storage TCO of a single-site sys-
tem; the estimates are shown in Figure 1. In the fol-
lowing analysis, the Hardware Management category is
combined with Administration, and the Downtime cate-
gory is eliminated since it is an opportunity cost related
to system reliability.

We first determine what proportion of each cost cat-
egory scales with the physical, as opposed to logical,

cost category % of storage TCO
administration 13%
purchase 20%
environmentals 14%
backup/restore 30%
hardware management 3%
downtime 20%

Figure 1: Storage TCO (Source: Gartner, “Don’t Waste
Your Storage Dollars: What you Need To Know”, Nick
Allen, March 2001 [1].)

amount of storage. Specifically, let Physical be the
amount of physical storage, Logical the amount of logical
storage (i.e., storage for user data, including local redun-
dancy), and Cadmin, Cpurch, Cenv and Cbackup the admin-
istration, purchase, environmental and backup/restore
costs respectively. Each type of cost is modeled as a lin-
ear combination of Physical and Logical. For example,

Cadmin = αadmin(λadminPhysical + (1 − λadmin)Logical)
(1)

Intuitively, each category is parameterized by λ ∈ [0, 1]
specifying how much the cost depends on Physical rather
than Logical. This defines an “effective storage size”
λPhysical+(1−λ)Logical for the category. The absolute
cost of the category is obtained by multiplying by a coef-
ficient α, which is the category cost in $/GB of effective
storage.

Appropriate values for the λ and α parameters can be
inferred as follows. First, λpurch = 1 by definition. En-
vironmental costs include power, UPS, and floor space,
all of which scale directly with Physical, so λenv = 1
also. The value of αpurch can be determined directly from
published component prices (see Figure 2 for an exam-
ple), and so we express the remaining α-values in terms
of αpurch. Following the proportions in Figure 1, we take
αadmin = 16

20αpurch, αenv = 14
20αpurch, αbackup = 30

20αpurch.
That leaves λbackup and λadmin. We estimate λbackup to be
0. This is conservative in that that it makes a mirrored so-
lution look as good as possible in comparison to Myriad.
As for λadmin, by itemizing the tasks of a system admin-
istrator and considering whether each depends primar-
ily on physical or logical data size, we estimate λadmin

to be 0.5. (Tasks scaling primarily with logical data
size include most software management tasks, such as
array control management, cross-site redundancy man-
agement, snapshot operation, and local network manage-
ment. Tasks scaling primarily with physical data size
include monitoring, reporting on, and altering physical
storage resources, and implementing volume growth.)
But since the value of λadmin may be controversial, we
leave it as a free variable for now.

item no. price cost component
($) ($K)

NICs 46 600 28 NC6134 GB NIC 1Gbps
enclosures 46 3500 161 StorageWorks 4354R
drives 616 900 580 36.4GB 10K Ultra3
LAN port 46 400 18 Asante IntraCore 65120
controllers 46 800 37 Smart Array 431
total 823

Figure 2: Purchase cost breakdown for a typical 20TB
storage system, based on component prices posted on
Compaq and Asante web sites.

Let Overhead be the space overhead of the remote re-
dundancy scheme, so that Physical = (1 + Overhead) ×
Logical, and let CWAN denote the cost of WAN bandwidth
consumed by the system over its lifetime. After substitu-
tions and simplifications, we arrive at

TCO = αpurch Logical [(0.8λadmin + 1.7)
×Overhead + 4.0] + CWAN. (2)

For concreteness, consider a storage system with
100TB of logical data distributed over five sites (or
20TB/site). If each site runs RAID-5 locally in hard-
ware, and reserves one hot spare in every 14-drive en-
closure, the purchase cost of physical equipment is about
$823K/site for the particular choice of components listed
in Figure 2; this corresponds to a value of α purch =
$42/GB.

To calculate the lifetime WAN cost CWAN, note that
WAN bandwidth is only for redundancy information up-
dates because client data accesses are local. Assume that
bandwidth costs $500/Mbps/month/site, that the lifetime
of the system is five years, that all the data is overwritten
on average twice per year, and that the system achieves
an average 33% utilization of the purchased bandwidth,
due to burstiness. (The bandwidth cost is typical of ISPs
at the time of writing; the other numbers are just exam-
ples chosen here for concreteness — the actual data write
rate and burstiness are highly application-dependent.)
This gives

CWAN =
Logical × bandwidth cost × lifetime

utilization × turnover period

= $4.8M/year

The resulting bandwidth requirement between any two
sites is 16Mb/s. The bandwidth costs are doubled for
double redundancy, whether in a mirroring scheme or in
Myriad. Additional bandwidth is required for recovery;
this adds less than 1% to the WAN cost using worst-case
parameters from the next section, assuming that the price
for extra bandwidth is the same as for standard band-
width. Although ISPs do not currently sell bandwidth

in this “expandable” manner, this may change in the near
future [8].

3.2 Results and Discussion

Figure 3(a) shows the TCO for such a system with
varying values for the space overhead of the remote
redundancy scheme, assuming five sites and λadmin =
0.5. Note that Myriad with one checksum site (re-
mote RAID-5, Overhead = 25%) costs 22% less than
a standard singly-mirrored system (Overhead = 100%),
and Myriad with two checksum sites (remote RAID-6,
Overhead = 67%) costs 27% less than double-mirroring
(Overhead = 200%). Figure 3(b) shows a breakdown
into cost categories.

Our sensitivity analysis finds that these results are not
too sensitive to λadmin. They are somewhat sensitive,
however, to the assumptions about WAN bandwidth re-
quirements. If the between-site requirement is in fact half
the earlier estimate (i.e., 8Mb/s), Myriad’s cost advan-
tages are 24% and 30%. If the requirement is twice that
(i.e., 32Mb/s), they drop to 19% and 22%. Also note
that the cost of a Myriad system with two checksum sites
is only 6% above the cost of a standard singly-mirrored
system. As Section 4 shows, this small additional cost
buys significantly more reliability.

Of course, the model (1) is not sufficiently realistic
to predict the costs of all storage systems — such sys-
tems vary too widely for any single formula to be ac-
curate. Nevertheless, we believe this model conveys the
essence of how TCO depends on physical data size, and
hence yields a valid comparison between the mirroring
and Myriad approaches.

Finally, the above analysis assumes that the raw data
cannot be significantly compressed (perhaps because it
is already compressed). Otherwise, mirrored systems
could become more attractive by compressing their re-
mote copy.

4 Reliability

The previous section argued that, contrary to common
supposition, the cost of disaster tolerance is highly de-
pendent on the storage overhead of the cross-site data
redundancy scheme. In this section, we study the reli-
ability of different cross-site data redundancy schemes
and demonstrate that lower-overhead schemes can pro-
vide substantial reliability benefits.

We use the mean time to data loss (MTTDL) as our re-
liability metric. In analyzing the MTTDL of a multi-site
storage system, we assume that each site is already using
some local data redundancy scheme. In particular, we
assume that the blocks at each site are stored on hard-
ware RAID boxes that are implementing a RAID level

additional TCO to achieve disaster
tolerance for 5-site system

(RAID-5,
none)

(RAID-5,
mirror)

(RAID-5,
double mirror)

(RAID-5,
RAID-5)

(RAID-5,
RAID-6)

0%

40%

80%

120%

160%

200%

0% 50% 100% 150% 200%

overhead of remote redundancy scheme

TCO Breakdown (100TB logical data)

0
5

10
15
20
25
30
35
40
45
50

(RAID-5,
none)

(RAID-5,
mirror)

(RAID-5,
double
mirror)

(RAID-5,
RAID-5)

(RAID-5,
RAID-6)

$M

WAN
backup/restore
environmentals
purchase
admin

(a) (b)

Figure 3: (a) The TCO given by equation (2). The vertical axis is the cost of adding disaster-tolerance to a raw (i.e.
non-disaster-tolerant) system, expressed as a percentage of the cost of a raw system. Space overhead Overhead is on
the horizontal axis, and λadmin = 0.5. Five specific combinations of redundancy schemes are marked, assuming five
sites. The key is (local redundancy scheme, remote redundancy scheme). Note that the Myriad systems — (RAID-5,
RAID-5) and (RAID-5, RAID-6) — deliver significant savings over the corresponding mirrored solutions, respectively
(RAID-5, mirror) and (RAID-5, double mirror). (b) Breakdown of the TCO, using the same assumptions as (a), and
αpurch = $42/GB, Logical = 100TB.

that provides some redundancy (i.e., any level other than
RAID-0). This is a reasonable assumption because hard-
ware RAID boxes enable fast redundant updates, and
both good performance during and fast recovery from the
common failure cases. We also make the simplifying as-
sumption that only two types of components need to be
considered in our reliability analysis — hardware RAID
boxes and sites — and that failures of different com-
ponents are exponentially distributed [10], independent,
and complete (i.e. when a component fails, all blocks on
that component are lost). Note that the analysis is a com-
parison of hardware failures only; other types of failure
(such as software and operator errors) can be significant
sources of data loss, but they are not addressed here.

Consider a storage system with D data (as opposed to
checksum) blocks spread out over N sites. Assume that
each hardware RAID box contains approximately B raw
blocks not used for the local parity scheme, such that
there are R = D/B RAIDs-worth of data in the sys-
tem. Let τr and τs represent the mean time to failure of a
hardware RAID box and a site, respectively, and ρr and
ρs represent the mean time to repair of a hardware RAID
box and site, respectively. Finally, let

(
n
r

)
be the standard

binomial coefficient.
We calculate the MTTDL of the system with five differ-

ent cross-site redundancy schemes: no cross-site redun-
dancy, cross-site RAID-5, cross-site mirroring, cross-site
RAID-6, or cross-site double mirroring. It’s important
to realize that MTTDL for cross-site RAID depends on
the precise layout of redundancy groups. Take cross-site
RAID-5 as an example: if the “parity partners” of blocks

in a given physical RAID box are distributed randomly
across boxes at other sites, any pair of box failures at
distinct sites causes data loss. We call this the “worst-
case layout”, and include its results primarily for com-
pleteness. An implementation would certainly avoid this
worst case, and strive to achieve the “best-case layout”,
in which blocks from any physical RAID box partner
with blocks from only one box at each other site: with
this layout, fewer pairs of failures lead to data loss, and
the MTTDL is larger. It’s easy to achieve this best case
for mirroring, so only the best-case results are shown for
the mirroring schemes.

Under these assumptions, standard manipulations of
the exponential distribution [10, 19] lead to the formu-
las for 1/MTTDL shown in Figure 4. To obtain good
performance, it is assumed that write calls to the storage
system are permitted to return as soon as the write has
been committed in a locally redundant fashion. There-
fore, MTTDL should also include terms for failures of
RAID boxes which have data that has been committed
locally but not remotely. However, the amount of “re-
motely uncommitted” data can be traded off with local
write performance in a manner analogous to the trade-off
between locally unprotected data and write performance
in an AFRAID system [17]. If one assumes the network
is reliable, such data loss can be made vanishingly small,
and accordingly we neglect it here. The investigation of
unreliable networks and details of the write performance-
data loss trade-off are left to future work.

Figure 5 shows MTTDL of five-site storage systems,
calculated using the equations above. Each graph shows

cross-site
scheme

1/MTTDL

None R
τr

+ N
τs

RAID-5
Worst

NR2ρr

(N−1)τ2
r

+ NR(ρr+ρs)
τrτs

+ N(N−1)ρs

τ2
s

RAID-5
Best

NRρr

τ2
r

+ NR(ρr+ρs)
τrτs

+ N(N−1)ρs

τ2
s

Mirror 2Rρr

τ2
r

+ 2R(ρr+ρs)
τrτs

+ Nρs

τ2
s

RAID-6
Worst

3(N
3)R3ρ2

r

(N−2)3τ3
r

+ (N
2)R2ρr(ρr+2ρs)

(N−2)τ2
r τs

+
(N

2)Rρs(2ρr+ρs)

τrτ2
s

+
3(N

3)ρ2
s

τ3
s

RAID-6
Best

(N
2)Rρ2

r

τ3
r

+ (N
2)Rρr(ρr+2ρs)

τ2
r τs

+
(N

2)Rρs(2ρr+ρs)

τrτ2
s

+
3(N

3)ρ2
s

τ3
s

Double Mir-
ror

3Rρ2
r

τ3
r

+ 3Rρr(ρr+2ρs)
τ2

r τs
+

3Rρs(2ρr+ρs)
τrτ2

s
+ Nρ2

s

τ3
s

Figure 4: Formulas for 1/MTTDL for various redun-
dancy schemes

MTTDL for storage systems that contain some particu-
lar amount of data, such that results are shown for a wide
range of potential storage system sizes (approximately
10 TB to 1 PB, assuming the components listed in Fig-
ure 2). Reliability is calculated using a set of conserva-
tive failure parameters, and a set of more optimistic fail-
ure parameters. For example, our conservative τr (RAID
box MTTDL) is 150 years, which is less than the MTTF
of a single disk drive. Note that, in contrast to some pre-
vious work [10, 17], our τr includes only failures that
cause data loss. For example, we are not including the
common case of a RAID controller failure after which
all the data can be retrieved simply by moving the disks
to another RAID box. NVRAM failures were also ne-
glected.

We also developed an event-driven simulator to inves-
tigate factors that were difficult to include in the analyt-
ical model. In particular, we investigated whether tem-
porary outages (of sites and hardware RAID boxes) or
WAN bandwidth limitations substantially changed the
results shown above. We found that both outages and
WAN bandwidth limitations did shift the curves, but the
shifts were small and did not change our conclusions.
The intuition behind why the shifts were small is that, in
both cases, the effect is essentially the same as slightly
increasing the mean times to recovery, ρs and ρr .

The most important observation to be made from Fig-

ure 5 is that if blocks are distributed according to a “best-
case layout”, the MTTDL of a RAID-5 system is 2–3
times worse than that of a mirroring system, but much
better (around 100 times better) than that of a system
with no cross-site redundancy. Furthermore, the MTTDL
of a RAID-6 system is worse (by a factor of 10 or so) than
that of a double mirroring system, but much better (50–
1000 times better) than for a mirrored system. A final
summary of the TCO and reliability analyses, using only
the base case numbers, is:

cross-site none RAID-5 mirror RAID-6 double

scheme mirror

cost 1 1.4 1.8 1.9 2.6
MTTDL 1 100 300 105 106

where all the numbers are multipliers based on the index
“none” = 1.

5 Cross-Site Redundancy

We now go on to describe our design for cross-site re-
dundancy based on erasure codes. This section gives
an overview of how we maintain redundancy informa-
tion, including in particular a static scheme for grouping
blocks across sites. The next section describes our pro-
tocol for update and recovery.

In a bird’s eye view of Myriad, local storage systems on
different sites, each serving only local clients, cooperate
to achieve disaster tolerance for client data. On each site,
the local storage system provides a logical disk abstrac-
tion to its clients. Clients see only a logical address space
divided into blocks of some fixed size, which we call log-
ical blocks. Each logical block is identified by its logical
address. Clients read or write logical blocks; the storage
system manages physical data placement. Such a storage
system in itself poses many important design issues, but
they are beyond the scope of this paper. Petal [14] is one
such system.

Local storage systems on different sites cooperate to
protect data against site disasters by forming cross-site
redundancy groups. A cross-site redundancy group (or
“group” for short) consists of logical blocks (which we
call data blocks since they contain client data), and
checksum blocks, which contain checksums computed
from the data blocks. The data and checksum blocks
in a group come from different sites, which we call the
data sites and checksum sites of the group. Each group
is globally identified by a group id, and each data block
by its site and (site-specific) logical address.

To tolerate at most m simultaneous site disasters, each
group should consist of n (n > 1) data blocks and m
(m > 1) checksum blocks for a geoplex with n + m
sites. As for the encoding of the checksum, similar to
previous approaches (e.g. [2]), we use a Reed-Solomon

0 100 200 300 400
Mean time to site disaster (years)

0.01

0.1

1

 10

 100

 1000

10000

1e+05

1e+06

1e+07

M
T

T
D

L
 o

f
5-

si
te

 s
to

ra
g

e
sy

st
em

 (
ye

ar
s)

25 RAIDs-worth of data

0 100 200 300 400
Mean time to site disaster (years)

0.001

0.01

0.1

1

 10

 100

 1000

10000

1e+05

1e+06
250 RAIDs-worth of data

0 100 200 300 400
Mean time to site disaster (years)

1e-05

 1e-04

0.001

0.01

0.1

1

 10

 100

 1000

10000

1e+05
2,500 RAIDs-worth of data

Double mirror RAID-6 Mirror RAID-5 None
Realistic (black) : RAID MTTF = 1500 years, RAID MTTR = 2 days, Site MTTR = 4 weeks
Conservative (gray) : RAID MTTF = 150 years, RAID MTTR = 1 week, Site MTTR = 8 weeks
 Filled symbols = Best-case layout Unfilled symbols = Worst-case layout

Cross-site redundancy :

Figure 5: Mean time to data loss for different cross-site redundancy schemes. The results on each graph are for systems
with the same amount of logical data D, but different amounts B of data per RAID box, and hence differing values of
R = D/B, the total number of RAID boxes. Left: R = 25. Middle: R = 250. Right: R = 2500.

code ([16] Ch. 9) to allow incremental update. In other
words, a checksum site can compute the new checksum
using the old checksum and the XOR between the old
and new contents of the data block updated, instead of
computing the new checksum from scratch. It degener-
ates to parity for m = 1.

Blocks can be grouped in various ways. In our scheme,
we require the checksum blocks be distributed so that
they rotate among the sites for logically consecutive data
blocks at each individual site. This can be done by using
some simple static function to map each data block to
a group number and a site number. The following is the
function we use. The checksum sites for group g are sites
(g − j) mod N , where 0 ≤ j < m. The bth data block
at site s is mapped into group g, where

g =
{

b + m · (�(b− s)/n� + 1) s ≤ n,
b + s− n + m · �b/n� s > n.

It can be verified that this formula realizes a layout satis-
fying the requirement. Similarly, we can write a formula
to compute b from s and g.

6 Update and Recovery

When a client updates a data block, we must update the
corresponding checksum blocks. Here, we face two chal-
lenges that remote mirroring does not. First, unlike a mir-
ror update, the incremental calculation of a checksum is
not idempotent and so must be applied exactly once. Sec-
ond, a checksum protects unrelated data blocks from dif-
ferent sites; therefore, the update and recovery processes
of a data block may interfere with those of other blocks in

the same redundancy group; for example, inconsistency
between a data block and its checksum affects all data
blocks in the group, while inconsistency between a data
block and its mirror affects no other blocks.

Therefore, we want our protocol to ensure the idempo-
tent property of each checksum update, and to isolate as
much as possible the update and recovery processes of
each data block from those of others. And, as in remote
mirroring cases, we also attempt to keep remote updates
from degrading local write performance.

6.1 Update

6.1.1 Invariants

An important goal of our update protocol is to ensure that
redundancy groups are always “consistent” and hence
can be used for recovery whenever needed. Let n be the
number of data blocks in a redundancy group, m be the
number of checksum blocks, di, 1 ≤ i ≤ n be the con-
tent of the ith data block, cj, 1 ≤ j ≤ m be the content of
the jth checksum block, and Cj, 1 ≤ j ≤ m be the jth
checksum operation. The group {d1, ..., dn, c1, ..., cm}
is consistent if and only if ∀j, 1 ≤ j ≤ m, cj ==
Cj({di|1 ≤ i ≤ n}). The checksums, {cj |1 ≤ j ≤ m},
are consistent with each other if and only if they belong
in the same consistent group.

We maintain consistency by writing the new content
of a data block (called a new version) in a new phys-
ical location instead of overwriting the old content in
place, a technique known as shadow paging or version-
ing. Each new version is identified by a monotonically
increasing version number. Accordingly, a checksum can

be uniquely identified by a version vector consisting of
version numbers of the (data block) versions from which
this checksum is computed.

We say that a checksum block cj is consistent with a
data version di,vi and vice verse if and only if there exists
a set O of versions of other data blocks in the group,
i.e. O = {dk,vk|1 ≤ k ≤ n, k �= i}, such that cj ==
Cj({d′|d′ == di,vi||d′ ∈ O}. We say that a data version
d∗i,vi

is stable at a given time if and only if all checksum
sites are capable of providing a consistent checksum for
that version at that time. In contrast, a data version that
has not been stable is called outstanding.

However, the fact that every checksum site is capable
of providing a consistent checksum for every data block
in a redundancy group does not guarantee the group
consistency, because a checksum site may not be ca-
pable of providing a checksum that is consistent with
all data blocks. Therefore, we introduce the concept
of set consistency. Let S be a set of data versions, i.e.
S = {dil|1 ≤ l ≤ n′}, where n′ is the size of S,
1 ≤ n′ ≤ n, and ∀l, dil is from data site il. A checksum
block cj is consistent with S or vice verse if and only if
there exists a set O of versions of other data blocks in the
group, i.e. O = {dk|1 ≤ k ≤ n&&∀l, k �= il}, such that
cj == Cj({d′|d′ ∈ S||d′ ∈ O}).

We maintain the following two invariants in our update
protocol:

1. At any time, at least one stable version of each data
block exists.

2. If it is capable of providing a consistent checksum
for each individual data version in the set S =
{dil|1 ≤ l ≤ n′}, then a checksum site is capable
of providing a consistent checksum for the entire S.

We can infer the following:

1. At any time, there exists a set S∗ of stable data ver-
sions, i.e. S∗ = {d∗i |1 ≤ i ≤ n}, and each check-
sum site is capable of providing a consistent check-
sum for each individual data version d∗

i in S∗. (In-
variant 1)

2. Each checksum site j is capable of providing a con-
sistent checksum c∗j for the entire S∗. (Invariant 2)

3. The redundancy group {d∗1, ...d∗n, c∗1, ...c∗m} is con-
sistent. (Definition of group consistency)

Therefore, the redundancy group is always consistent
and can be used for recovery.

We believe that the versioning approach permits a sim-
pler, less error-prone protocol than an update-in-place
approach. Because recovery never relies on blocks in
transition states, we need not deal with detecting and cor-
recting such states.

6.1.2 Two-Phase Commit

A naive way of guaranteeing at least one stable version
per block (invariant 1) is to keep all old versions and their
checksums. To save space, however, we should delete
old versions and reclaim their physical storage as soon
as a new stable version is created.

We maintain invariant 1 without storing unnecessary
old versions by implementing the transition from an old
stable version to a new one with a two-phase commit pro-
tocol across the data site and all checksum sites. In the
prepare phase, each site writes enough information to lo-
cal persistent storage to ensure that, in the face of system
crashes and reboots, it will be capable of providing either
the new data version (if it is the data site) or a consistent
checksum for the new data version (if it is a checksum
site). When all sites have reached the commit point, i.e.
have completed the writes, they proceed to the commit
phase, i.e. delete the old versions. Site/network outages
may delay the communications across sites, but we en-
sure that the operation will proceed and the unnecessary
blocks will be reclaimed once the the communications
are reestablished (Section 6.1.3). The update process for
a new data version will be aborted only if there is data
loss in the redundancy group during the prepare phase,
and there are not enough surviving sites to recover the
new version. If the process is aborted, the new version
will be deleted and the old kept. In fact, the decision for
an abort cannot be made until the lost sites have been
recovered (Section 6.2).

Figure 6 shows the steps in the update protocol.
When a client writes to a (logical) data block, we create

a new outstanding data version by writing the data into a
free physical block and logging the outstanding version
with the new physical address. Here, we take advantage
of the mapping from logical to physical blocks main-
tained by the local storage system (Section 5). Though
subsequent client operations will be performed on the
newest version only, the old versions are kept because
they may still be needed for recovering data on other
sites.

Next, the delta between the newest and the second
newest data versions is sent to all checksum sites in an
update request. (Consecutive writes to the same block
can be collapsed into one update request unless they
straddle a “sync” operation. See Section 6.3.) Each
checksum site writes the data delta into a free block in
its local disk, logs the outstanding version with the ad-
dress of the delta, and replies to the data site that it is
now capable of providing a checksum for the new data
version. In addition, since the delta of each data block
in the same group is stored independently, the checksum
site is capable of computing a new checksum with the old
checksum and any combination of the deltas; therefore,

Messages and operations:

1. MyriadWrite(laddr, new data)

2. DiskWrite(new paddr, new data)

3. AddToLog(laddr, new vernum, new paddr)

4. WriteCompleted

5. old data← DiskRead(old paddr), delta← old data⊕
new data

6. UpdateRequest(data site id, laddr, new vernum, delta)

7. DiskWrite(delta addr, delta)

8. AddToLog(group id, data site id, new vernum,
delta addr)

9. UpdateReply(checksum site id, laddr, new vernum)

10. UpdateMap(laddr, new paddr, new vernum),
FreeBlock(old paddr)

11. CommitRequest(data site id, laddr, new vernum)

12. RemoveFromLog(laddr, new vernum)

13. old checksum← DiskRead(checksum addr),
new checksum← ChecksumOp(old checksum, delta)

14. DiskWrite(checksum addr, new checksum)

15. FreeBlock(delta addr), RemoveFromLog(group id,
data site id, new vernum)

Meanings of variable names:

• laddr: logical address of a data block

• paddr: physical address of a data block

• delta addr: address of the newly allocated physical block
for the delta

• checksum addr: address of the checksum block

Figure 6: The update protocol at a glance. The disks in
the diagram are used to store data only. The NVRAM
is used to store metadata and backed by redundant disks,
which are not shown in the diagram.

invariant 2 is maintained.
Once it receives update replies from all checksum sites,

the data site makes the new version the stable version by
pointing the logical-to-physical map entry to the physi-
cal address of the new version, frees the physical block
that holds the old stable version, sends a commit request
to each checksum site, and then removes the outstanding
version from the log. When it receives the commit re-
quest, a checksum site computes the new checksum with
the new data delta, writes it on disk, deletes the delta, and
removes the outstanding version from the log.

6.1.3 Redo Logs

In order for an update to proceed after temporary
site/network outages, we need to maintain for each log-
ical disk on data sites a redo log, indexed by logical ad-
dresses. Each entry in the log contains a list of data struc-
tures for outstanding versions of the block. Each entry
in the list contains the outstanding version number, the
physical address, and the status of each checksum site
regarding the remote update of this version. The status
is “ready” if an update reply from the checksum site has
been received, or “pending” otherwise.

We also need to maintain for each logical checksum
disk on checksum sites a redo log, indexed by redun-
dancy group ids. Each entry in the log contains a list of
data structures for outstanding data versions in the group.
Each entry in the list contains the data site and outstand-
ing version number, and the address where the data delta
is stored.

The redo logs, together with other metadata such as the
logical-to-physical maps, need to be stored in a perma-
nent storage system that provides higher reliability than
those for regular data, since we would like to avoid the
cases where the loss of metadata causes surviving data
to be inaccessible. The metadata also needs to be cached
in memory for fast reads and batched writes to disk. In
an ideal configuration, the metadata ought to be cached
in non-volatile memory and backed by triple mirroring
disks, assuming that regular data is stored on RAID-5
disks.

During each operation, e.g. client read, client write or
recovery read, the redo log is always looked up before
the logical-to-physical map, so that the newest version is
used in the operation.

The redo log will be scanned during a system reboot or
a network reconnect. An entry in the log on a data site
is created after an outstanding data version is written to
disk, and deleted after update replies are received from
all checksum sites. Therefore, the presence of such an
entry during a system reboot or network reconnect indi-
cates that an update request with the data delta should
be resent to all checksum sites with a “pending” status.

On a checksum site, an entry in the redo log is created
after the data delta is written to disk, and deleted after
the checksum is recomputed with the delta and stored on
disk. Therefore, the presence of such an entry during a
system reboot or network reconnect indicates that an up-
date reply should be resent to the data site.

The redo logs can also be used to detect duplicate mes-
sages and hence to ensure idempotent updates. Upon
receiving an update request with an outstanding version
number, a checksum site first checks if the version num-
ber already exists in its redo log. If it does, the checksum
site learns that it has already committed the data delta,
therefore resends an update reply to the data site. Upon
receiving an update reply, the data site first looks up the
redo log for a corresponding entry. If none is found, the
data sites learns that the outstanding version has already
been committed locally, therefore resends a commit re-
quest to the checksum site. Upon receiving a commit
request, a checksum tries to locate a corresponding en-
try in the outstanding log. If it fails to do, it learns that
the version has already been committed, and therefore
ignores the request.

6.2 Recovery

Cross-site recovery is initiated when a site loses data
that cannot be recovered using local redundancy. The
recovered data can be stored either on the same site as
the lost data, or on a new site if the old site is destroyed
completely. In either case, the site where the recovered
data is to be stored serves as the coordinator during the
recovery process.

We assume that metadata (e.g., the redo logs and
logical-to-physical maps) on both data and checksum
sites is stored with high local reliability, such that it will
not be lost unless a site suffers a complete disaster. We do
not attempt to recover metadata from remote sites. In the
event of a site disaster, we rebuild metadata from scratch.

In the beginning of a recovery process, the coordina-
tor determines the logical addresses of the data blocks to
recover. If a site loses some storage devices but not the
metadata, it can determine the addresses of blocks on the
lost devices by scanning its logical-to-physical map. If
a site is completely destroyed, all blocks in the address
range from 0 to the capacity of the lost logical disk need
to be recovered.

To reconstruct a lost data block di, the coordinator
first determines which checksums (identified by a ver-
sion vector) from surviving checksum sites and which
data versions from surviving data sites to use. Then, the
coordinator requests those versions and compute the lost
data.

The version vector is determined in the following way.
The coordinator requests the newest version numbers of

the lost block di from surviving checksum sites, and the
stable version numbers of other blocks in the same group
from surviving data sites. (Such requests are referred to
VersionRequest below.) If k data blocks in the group are
lost, the newest recoverable version of block di is the one
for which at least k checksum sites are capable of provid-
ing a consistent checksum. It is guaranteed that at least
one such version, i.e. the stable version, exists as long
as k checksum sites survive (Section 6.1.1). (If fewer
than k checksum sites survive, recovery is simply im-
possible under the given encoding.) The stable versions
of other data blocks in the group are also guaranteed to
exist. The coordinator requests the explicit stable version
numbers from data sites because the checksum sites may
transiently have an old stable version and consider the
new stable version to be outstanding still.

The version vector of the checksums consists of the
newest recoverable version of the lost block di and the
stable versions of other data blocks. Upon replying to
a VersionRequest, a surviving site temporarily suspends
the commit operations for the block involved. This way,
the version selected by the coordinator will still be avail-
able by the time it is requested in the second step. Client
writes and remote updates of the involved block are not
suspended; only the deletion of the old stable version is
postponed.

Once the version vector is determined, the coordinator
requests the selected data versions and checksums from
the surviving sites, reconstructs the lost data block from
the returned blocks, and writes it onto a local disk. Af-
ter sending the requested block, each surviving site can
resume the commit operations for that block. If the data
reconstruction did not complete for any reason, e.g. the
coordinator crashes, a re-selection of version vector is
necessary.

Finally, the coordinator attempts to synchronize all
checksum sites with the recovered data version, i.e. to
commit the recovered version and to delete other (older
or newer) versions if there are any. The coordinator uses
the redo log to ensure eventual synchronization in the
face of site/network outages.

The protocol described above is for the recovery of a
data block. The recovery of a checksum block is simi-
lar, with small variations in the determination of group
numbers, in the selection of data versions and in the final
synchronization. We omit the details here in the interest
of space.

6.3 Serialization of Remote Updates

We need to ensure that consecutive writes to the same
data block are committed on both data and checksum
sites in the same order as the write operations return to
clients. This can be done by sending the update and com-

mit requests for the same block in the ascending order of
their version numbers.

Applications sometimes need explicit serialization of
writes as well. For example, a file system may want
to ensure that a data block is written before its inode
is updated to point to the block. In the presence of
buffer caches in storage systems, the serialization needs
to be done via a “sync” bit in a block write request or
a separate “sync” command (e.g. the SYNCHRONIZE
CACHE operation in SCSI-2 [13]); both sync requests
cause specified blocks to be flushed from cache to disk
before the requests are completed. It is required that
writes issued after a sync request are perceived to take
effect after the sync request does, in the face of system
crashes.

Unfortunately, it may not be practical to require that
remote checksums be committed as well before a sync
request is completed. The long latency in WAN commu-
nication may be unacceptable to certain applications. If a
checksum site is unreachable, the sync could be delayed
indefinitely.

Therefore, we relax the semantics for sync requests in
the cross-site redundancy context for better performance
and availability. In our system, a sync request is com-
pleted after the requested data has reached local storage,
but before its delta reaches the checksum sites. In order
to prevent inconsistency upon recovery caused by out-of-
order writes, we guarantee that writes following a sync
request are propagated to the checksum sites only after
the data in the sync request has been committed on the
checksum sites. Therefore, we can collapse the update
requests for consecutive writes to the same data block
and propagate them as one request only if those writes
are between two consecutive sync operations.

The serialization during a redo process after a system
crash or network outage can be enforced by resending
update requests in the ascending order of version num-
bers. This indicates that version numbers of all data
blocks on the same logical disk need to be serializable.

We do not attempt to guarantee cross-site serialization
because Myriad is designed for independent applications
per site (Section 2).

6.4 Performance Implications

A client write operation involves a single disk write of
the new data and a few updates to the metadata in non-
volatile memory; therefore, we do not expect the client
to observe significant increase in write latency. A com-
plete remote update requires the following additional op-
erations on the data site: a disk read, an xor operation
and several updates to the metadata in non-volatile mem-
ory. It also requires the transmission of a block over
the WAN, and the following operations on each check-

sum site: a disk read, a checksum computation, two
disk writes, and several updates to the metadata in non-
volatile memory. Therefore, for a Myriad system with n
data sites, the write bandwidth on each data site is limited
by the minimum of the following: data site disk band-
width divided by 2, WAN bandwidth, and checksum site
disk bandwidth divided by 3. We expect the WAN band-
width to be the limiting factor.

The consumption of WAN bandwidth in our scheme is
comparable to that of a mirroring scheme able to survive
the same number of site losses. As Figure 6 shows, if
there are k checksum sites, for each logical block writ-
ten, an update request with the delta (of the size of a
block) is sent k times, once to each checksum site. A
system with k remote mirrors would also require send-
ing a newly written block of data k times, once to each
mirror site. We also send k commit requests and expect a
mirroring scheme to do the same if it also uses two-phase
commit to guarantee cross-mirror consistency. Similar
optimizations (e.g., collapsing consecutive writes to the
same block) can apply in both cases.

6.5 Storage Overhead

As discussed earlier in this section, we need a logical-
to-physical map for each logical disk on data sites. There
is an entry in the map for each logical data block, and
the map is indexed by logical block address. Each en-
try in the map contains the physical address of the stable
version, and the stable version number. We also need a
logical-to-physical map for each logical disk on check-
sum sites. There is an entry in the map for each re-
dundancy group, and the map is indexed by group id.
Each entry in the map contains the physical address of
the checksum block, and the stable version numbers of
data blocks in the group.

Assume that each redundancy group consists of n
data and m checksum blocks. For every n data
blocks, the storage required for the map entries is n ×
(sizeof(paddr)+sizeof(vernum)) bytes on the n data
sites, and m×(sizeof(paddr)+n×sizeof(vernum))
bytes on the m checksum sites. Therefore, the over-
all storage overhead for the maps is (1 + m

n) ×
sizeof(paddr) + (1 + m) × sizeof(vernum) bytes
per data block. For example, with n = 3, m = 2,
sizeof(paddr) = 4 bytes, and sizeof(vernum) = 4
bytes, it would amount to 18.7 bytes per data block. The
storage overhead for the maps is roughly 0.028% for a
block size of 64 KB and 0.45% for a block size of 4 KB.

We expect the maps to be much larger than the redo
logs because the latter contains only blocks “in transi-
tion”. The number of such blocks depends on the bursti-
ness of client writes and on the difference between the
local disk bandwidth and the WAN bandwidth.

7 Related Work

Myriad is most related to the distributed RAID algo-
rithm proposed by Stonebraker and Schloss [19]. Like
Myriad, they envision independent local storage sys-
tems on geographically separate sites protecting one an-
other’s data with a redundancy scheme other than mirror-
ing. However, a key difference is that their redundancy
groups consist of physical blocks while Myriad’s con-
sist of logical blocks. Physical blocks are overwritten in
place by client and redundancy update operations. Thus,
redundancy groups could become inconsistent, though
their recovery procedure can detect this and retry. Also,
local write latency is roughly doubled because a local
write cannot return until after the old data are read (to
compute the delta) and subsequently overwritten with the
new data. Myriad avoids these by forming redundancy
groups with logical blocks that may have multiple ver-
sions coexisting simultaneously. During a redundancy
update, the old versions of data and checksum are not
affected and remain consistent. And a local write can re-
turn immediately after a single I/O (to write the new data
version); the old data can be read and the delta computed
later.

Striped distributed file systems such as Swift [15], Ze-
bra [11] and xFS [20, 3] are related to Myriad in that
they also keep data and parity blocks on multiple stor-
age servers. However, they have different a technol-
ogy assumption, goal, and hence data layout. They are
designed for servers connected by a high-performance
LAN, while in our case servers are connected by a (rel-
atively) low-performance WAN. Since the LAN has low
latency and high bandwidth, these systems stripe the data
blocks in a file across servers to maximize read/write
bandwidth via server parallelism. For Myriad, since
moving data over a WAN is slow, related data reside
on the same site and client accesses are always lo-
cal. Checksum blocks are computed from unrelated data
blocks on different sites only for disaster tolerance.

TickerTAIP is a disk array architecture that distributes
controller functions across loosely coupled processing
nodes [4]. It is related to Myriad in that multiple nodes
cooperate to perform a client write and the correspond-
ing parity update. TickerTAIP uses a two-phase commit
protocol to ensure write atomicity, and proceeds with a
write when enough data has been replicated in more than
one node’s memory. After a node crashes and reboots,
the replicated data can be copied to that node so that the
operation will complete eventually. Myriad commits the
write when sufficient data has been written to permanent
storage so that each site can join a consistent group upon
crash and reboot without requesting data from other sites
first. The difference results from our attempt to avoid
as much as possible WAN communications. In another

respect, TickerTAIP preserves partial ordering of reads
and writes by offering an interface for each request to
explicitly list other requests that it depends on. It then
manages request sequencing by modeling each request
as a state machine. Myriad also attempts to preserve par-
tial ordering on the same site, but only using standard
interfaces, e.g. the SYNCHRONIZE CACHE operation
in SCSI-2 [13]. All reads and writes following a sync op-
eration implicitly depend on that operation. No cross-site
sequencing is supported because Myriad is designed for
independent applications per site. As a result, the man-
agement of sequencing in Myriad is much simpler than
that in TickerTAIP.

Aspects of Myriad’s design use classic techniques
widely used elsewhere. In Myriad, clients access blocks
using logical addresses, while the storage system decides
which physical block(s) actually contain the data. We
exploit this logical-physical separation to keep physical
blocks of data and checksums consistent during redun-
dancy updates. It has been used for many other purposes:
in Loge to improve disk write performance by allowing
new data to be written to any convenient location on a
disk surface [9], in Mime to enable a multi-disk storage
subsystem to provide transaction-like capabilities to its
clients [5], in Logical Disk to separate file management
from disk management and thus improve the structure
and performance of file systems [6], and in the HP Au-
toRAID hierarchical storage system to allow migration
of data between different RAID levels (namely RAID-1
and RAID-5) in a way transparent to clients [21].

Like AFRAID [17], Myriad trades a small window of
data vulnerability for write performance. Specifically,
Myriad updates remote redundancy information after the
client write has returned. We make this design choice
because client writes would otherwise be too slow. In
exchange, the newly written data will be vulnerable to a
site disaster before the update is completed. However,
other (previously written) data blocks in the same group
are not affected because we do not update in place and so
the old data and checksum versions remain consistent. In
contrast, the AFRAID disk array design physically over-
writes data blocks without parity updates, leaving the
group inconsistent until the parity block is recomputed
later. Before that, all data blocks in the group are vul-
nerable to a single-disk failure. We prefer not to take
a similar risk in Myriad. If we did, each site might al-
ways have some blocks that are not protected from dis-
aster simply because other blocks (on other, separately
operated sites) in the same redundancy group have just
been written by their local clients and the corresponding
redundancy updates are in progress. Moreover, to recom-
pute the checksum block(s) as AFRAID does, Myriad
would have to send all the data blocks in the group to the
checksum site(s) and to carefully orchestrate the recom-

putation as an atomic operation. These are much more
expensive and complex in a WAN-connected distributed
system like Myriad than in a disk array with a centralized
controller like AFRAID.

8 Conclusions and Future Work

The usual approach to ensuring that data in a geoplex
survives site failures is to mirror the data. We have pre-
sented early results of our study in using erasure codes
across sites as an alternative. Our motivation is to re-
duce the cost of providing data disaster tolerance while
retaining much of the reliability. Our results thus far indi-
cate that the TCO for the storage system can be reduced
by 20–25% (relative to mirroring) while providing re-
liability far beyond a non-disaster-tolerant system. We
also present a protocol for updates and recovery in a re-
dundancy scheme based on erasure codes. Our scheme
makes sense under the system and application assump-
tions in Section 2, although these are less general than
for mirroring.

While the related idea of software RAID has been stud-
ied in various contexts, we believe that our approach is
novel. In essence, we combine unrelated data blocks at
different sites into redundancy groups that protect the
data of their members. We assume that the data sites
provide a logical disk interface to their client applica-
tions. This simplifies our protocol design by using mul-
tiple data versions instead of overwriting data blocks in
place, making recovery much less error-prone.

There are several interesting future directions. While
static block grouping is simple, a more dynamic scheme
may offer more flexibility for site configurations. It in-
volves maintaining maps of group ids to the logical data
blocks each group consists of. Also, we would like to
have a systematic proof for the correctness of the update
and recovery protocol. Finally, since we use shadow pag-
ing, for now we can only exploit sequential disk access
within a block. So we want a relatively large block size,
which in turn makes the solution less general. It may be
worthwhile to explore alternatives that rely on intelligent
physical placement of data blocks.

9 Acknowledgments

Raymie Stata, Mike Burrows, and Mark Manasse con-
tributed to our early discussion.

References

[1] N. Allen. Don’t waste your storage dollars: What you
need to know. Research Note COM-13-1217, Gartner
Group, Stamford, CT, March 20, 2001. Available from
Gartner at http://www.gartner.com/.

[2] G. A. Alvarez, W. A. Burkhard, and F. Cristian. Tolerat-
ing multiple failures in RAID architectures with optimal
storage and uniform declustering. In Proceedings of the
24th Annual International Symposium on Computer Ar-
chitecture, pages 62–72, Denver, CO, June 1997. IEEE
Computer Society Press.

[3] T. Anderson, M. Dahlin, J. Neefe, D. Patterson,
D. Roselli, and R. Wang. Serverless network file systems.
In Proceedings of the 15th ACM Symposium on Operat-
ing System Principles, pages 109–126, Copper Mountain
Resort, Colorado, December 1995.

[4] P. Cao, S. Lim, S. Venkataraman, and J. Wilkes. The Tick-
erTAIP parallel RAID architecture. ACM Transactions on
Computer Systems, 12(3):236–269, August 1994.

[5] C. Chao, R. English, D. Jacobson, A. Stepanov, and
J. Wilkes. Mime: A high performance parallel storage
device with strong recovery guarantees. Technical Re-
port HPL-CSP-92-9 rev. 1, Hewlett-Packard Laborato-
ries, Palo Alto, CA, November 1992.

[6] W. de Jonge, M. F. Kasshoek, and W. C. Hsieh. The log-
ical disk: A new approach to improving file systems. In
Proceedings of the 14th ACM Symposium on Operating
System Principles, pages 15–28, Asheville, NC, Decem-
ber 1993.

[7] B. Devlin, J. Gray, B. Laing, and G. Spix. Scalability
terminology: Farms, clones, partitions, and packs: RACS
and RAPS. Technical Report MS-TR-99-85, Microsoft
Research, Redmond, CA, December 1999.

[8] M. L. Dolinov, B. Hannigan, and T. Dolan. Metro’s eth-
ernet future. Forrester Research, Cambridge, MA, Oc-
tober 2000. Available from Forrester with registration at
http://www.forrester.com/.

[9] R. M. English and A. A. Stepanov. Loge: A self-
organizing disk controller. In Proceedings of USENIX
1992 Winter Technical Conference, pages 237–251, San
Francisco, CA, January 1992.

[10] G. A. Gibson and D. A. Patterson. Designing disk ar-
rays for high data reliability. Journal of Parallel and
Distributed Computing, 17(1–2):4–27, January–February
1993.

[11] J. H. Hartman and J. K. Ousterhout. The Zebra striped
network file system. ACM Transactionson Computer Sys-
tems, 13(3):274–310, June 1995.

[12] T. Kraemer, J. Berlino, J. Griffin, D. Haynes, T. Herbig,
P. Stern, and A. Torres. The storage report — customer
perspectives and industry evolution. Joint industry study
by McKinsey & Company and Merrill Lynch, New York,
NY, June 19, 2001.

[13] L. Lamers, editor. Small Computer System Interface - 2,
Revision 10L. Computer and Business Equipment Manu-
facturers Association, September, 1993.

[14] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. In Proceedings of the Seventh International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 84–92, Cambridge,
MA, October 1996.

[15] D. D. E. Long, B. R. Montague, and L.-F. Cabrera.
Swift/RAID: a distributed RAID system. Technical Re-
port UCSC-CRL-94-06, University of California, Santa
Cruz, 1994.

[16] W. W. Peterson and E. J. Weldon. Error-correcting
Codes. The MIT Press, 2nd edition, 1972.

[17] S. Savage and J. Wilkes. AFRAID – a frequently redun-
dant array of independent disks. In Proceedings of the
1996 USENIX Technical Conference, pages 27–39, San
Diego, CA, January 1996.

[18] G. Schreck. Slaying the storage beast. Forrester Research,
Cambridge, MA, March 2001. Available from Forrester
with registration at http://www.forrester.com/.

[19] M. Stonebraker and G. A. Schloss. Distributed RAID –
a new multiple copy algorithm. In Proceedings of the
Sixth IEEE International Conference on Data Engineer-
ing, pages 430–437, February 1990.

[20] R. Wang and T. E. Anderson. xFS: A wide area mass stor-
age file system. In Proceedings of the Fourth Workshop
on Workstation Operating Systems, pages 71–78, Napa,
CA, 1993.

[21] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The
HP AutoRAID hierarchical storage system. ACM Trans-
actions on Computer Systems, 14(1):108–136, February
1996.

