
Chord: A scalable peer-to-peer lookup service for Internet applications

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan
�

Abstract

Efficiently determining the node that stores a data item in a distributed network is an important and challenging problem.

This paper describes the motivation and design of the Chord system, a decentralized lookup service that stores key/value

pairs for such networks. The Chord protocol takes as input an � -bit identifier (derived by hashing a higher-level application-

specific key), and returns the node that stores the value corresponding to the key. Each Chord node is identified by an � -bit

identifier and each node stores the key identifiers in the system closest to the node’s identifier. Each node maintains an � -

entry routing table that allows it to look up keys efficiently. Results from theoretical analysis, simulations, and experiments

show that Chord is incrementally scalable, with insertion and lookup costs scaling logarithmically with the number of Chord

nodes.

1 Introduction

A review of the features included in recent peer-to-peer applications yields a long list. These include redundant storage,

permanence, efficient data location, selection of nearby servers, anonymity, search, authentication, and hierarchical nam-

ing. At their core, however, all these applications need an efficient method for determining the location of a data item.

The contribution of this paper is a protocol that solves the lookup problem and a simple system that uses it for storing

information.

The Chord system is an efficient distributed lookup service based on the Chord protocol. The Chord system supports

five operations: the addition and departure of Chord server nodes, and insert, update, and lookup of unstructured key/value

pairs. All operations use the lookup primitive offered by the Chord protocol. We have used the Chord system to build a

peer-to-peer file sharing application [2].

The Chord protocol supports just one operation: given a key, it will determine the node responsible for storing the key’s

value. The Chord protocol uses a variant of consistent hashing [11] to assign keys to Chord server nodes. Under consistent

hashing load tends to be balanced (all nodes receive at most
�������
	

times the average number of key/value pairs). Also

when an �
��� node joins (or leaves) the network, on average only an � ����� � 	
fraction of the key/value pairs are moved to a

different location.

Previous work on consistent hashing assumed that nodes were aware of most other nodes in the network, making it

impractical to scale to large number of nodes. We show how each node can get by with “routing” information about a small

number of other nodes. Because the routing table is distributed, a node resolves the hash function by communicating with

a few other nodes. In the steady state, in an � -node network, each node maintains information only about � ������� � 	
other

nodes, and resolves all lookups via � ������� � 	
messages to other nodes. We also explain how the hash function and the

routing information are revised when a node joins or leaves the network. These updates require � ��������� � 	
messages when

a node joins or leaves.
�
Authors in reverse alpha-betical order.

1

The final contribution of this paper is an evaluation of the Chord protocol and system. We present proofs that support

the theoretical claims. We also present simulation results with up to 10,000 nodes that confirm that the theoretical results

are obtainable in practice. Finally, we present measurements of an efficient implementation of the Chord system. These

measurements confirm the simulation results.

The rest of this paper is structured as follows. Section 2 contrasts Chord with related work. Section 3 presents the

system model that motivates the Chord protocol. Section 4 presents the base Chord protocol. Section 5 presents extensions

to handle concurrent joins and failures. Section 6 outlines results from theoretical analysis of the Chord protocol. Section 7

confirms the analysis through simulation. Section 8 presents the implementation of the Chord system. Finally, Section 9

summarizes our conclusions.

2 Related Work

Conceptually the Chord system functions analogously to the DNS system [16]. Both systems map names to values. Chord’s

algorithms have no special servers, however, in contrast to DNS which relies on a set of special root servers. In addition,

Chord doesn’t put restrictions on the format and meaning of names; Chord names are just the keys of key/value pairs. Chord

doesn’t attempt to solve the administrative problems of DNS.

The Chord system may also be compared to to Freenet [5, 6]. Like Freenet, Chord is decentralized, symmetric, and

automatically adapts when hosts leave and join. Unlike Freenet, Chord queries always result in success or definitive failure.

Furthermore, Chord is scalable: the cost of inserting and retrieving values, as well as the cost of adding and removing hosts,

grows slowly with the total number of hosts and key/value pairs. Chord’s gains come at the cost of anonymity, which is

implemented separately [2].

The Ohaha system [19] uses a consistent hashing-like algorithm for mapping documents to nodes, and a Freenet-style

method for routing queries for documents. As a result, it shares some of the weaknesses of Freenet. Archival Intermemory

uses an off-line computed tree to map logical addresses to machines that store the data [4].

The Globe system [3] has a wide-area location service to map object identifiers to locations to support moving objects.

Globe arranges the Internet as a hierarchy of geographical, topological, or administrative domains, effectively constructing

a static world-wide search tree, much like DNS. Information about an object is stored in particular leaf domain and pointer

caches provide search short cuts [22]. As pointed out by the authors, the search tree doesn’t scale, because higher-level

nodes in the tree serve large number of requests and also have high storage demands.

The distributed data location protocol developed by Plaxton et al. [7], a variant of which is used in OceanStore [12], is

perhaps the closest algorithm to the Chord protocol. It provides stronger guarantees than Chord: like Chord it guarantees

that queries make a logarithmic number hops and that keys are well balanced, but the Plaxton protocol also ensures, subject

to assumptions about network structures, that queries never travel further in network distance than the node where the key

is stored. Chord instead has a heuristic to achieve network proximity and its protocols are substantially less complicated.

Chord’s routing procedure may be thought of as a one-dimensional analogue of the Grid [14] location system. The Grid

relies on geographic-location information to route its queries, while Chord doesn’t require the availability of geographic-

location information.

Chord can be used as a lookup service to implement a variety of systems, as discussed in Section 3. In particular, it can

help avoid single points of failure or control that systems like Napster [18] possess, and the lack of scalability that systems

like Gnutella [9] display because of their widespread use of broadcasts.

2

Function Description

insert(key, value) Inserts a key/value binding at � distinct nodes.

Under stable conditions, exactly � nodes contain the key/value binding.

lookup(key) Returns the value associated with the key.

update(key, newval) Inserts the key/newval binding at � nodes.

Under stable conditions, exactly � nodes contain key/newval binding.

join(n) Causes a node to add itself as a server to the Chord system that node � is part of.

Returns success or failure.

leave() Leave the Chord system.

No return value.

Table 1: API of the Chord system.

3 System model

The Chord protocol has essentially one operation: given a key, it will determine the node responsible for the key. One can

construct a wide range of systems using this primitive. To guide the explanation of the protocol this section defines one

such a system, which we have labeled the Chord system.

The Chord system provides a distributed lookup service that allows applications to insert, lookup, and delete values

using a key as a handle. The Chord system treats the key simply as an array of bytes and uses it to derive a unique,

effectively random � -bit key identifier, and does not associate any meaning to the key provided by the application. Like a

key, the value provides by the application is simply treated as an array of bytes. Depending on the application, these values

could correspond to network locations where application data or services may be found (in which case the Chord system

helps in the “rendezvous” process), or to the actual data itself (e.g., files). We expect the predominant use of the Chord

system to be as a lookup service for rendezvous, rather than for transferring documents or large files.

The API provided by the Chord system consists of five main functions, shown in Table 1. When insert(key,

value) is called, Chord inserts the key/value pair at � carefully chosen nodes. The quantity � is a Chord system parameter

that depends on the degree of redundancy desired. When lookup(key) is called, Chord efficiently finds the key/value

binding from some node in the system, and returns the value to the caller. Finally, Chord allows updates to a key/value

binding, but currently only by the originator of the key. This restriction simplifies the mechanisms required to provide

correct update semantics when network partitions heal. The Chord system does not provide an explicit delete operation—

an application that requires this feature may implement it using update(key, value) with a value corresponding to

the “delete-operation” that is interpreted by the application as such (this choice is arbitrary and independent of the chord

protocol). The final two API calls are functions for nodes to join and leave a Chord system.

The Chord system is implemented as an application-layer overlay network of Chord server nodes. Each node maintains

a subset of the key/value pairs, as well as routing table entries that point to a subset of carefully chosen Chord servers.

Chord clients may, but are not constrained to, run on the same hosts as Chord server nodes. This distinction is not important

to the Chord protocol described in this paper.

The service model provided by the Chord system may be thought of as a “best-effort persistence” model. As long

as at least one of the � nodes in the Chord network storing a key is available, the key/value binding is persistent. If the

underlying network connecting Chord servers suffers a partition, the servers in each partition communicate with each other

to reorganize the overlay within the partition, assuring that there will be eventually � distinct nodes storing each binding.

When partitions heal, a stabilization protocol assures that there will be exactly � distributed locations for any binding in any

3

connected partition. The Chord system does not provide tight bounds on consistency, preferring instead (in the “best-effort”

sense) to rely on eventual consistency of key/value bindings. Insertions and updates are also not guaranteed to be atomic.

The Chord system’s simple API and service model make it useful to a range of Internet applications, particularly be-

cause a wide variety of namespaces and values can be used by a Chord application. For example, to implement lookup

functionality for the Domain Name System (DNS), the values stored in the Chord system could correspond to the various

DNS records associated with the name. The Chord system can also be used by resource discovery servers storing bindings

between networked services (names) and their locations (values) [1, 10, 21, 23].

Today, each application requiring the ability to store and retrieve key/value bindings has to re-implement this basic

functionality, often having to reconcile several conflicting goals. For example, a key requirement for DNS is scalability,

for which it uses administrative hierarchies and aggressive caching; unfortunately, its caching model, based on a time-to-

live field, conflicts with its ability to support rapid updates. Some of today’s peer-to-peer file sharing systems show that

scalability is hard to achieve; Napster, for example, uses a centralized directory that is a single point of failure; Gnutella

relies on broadcasts of increasing scope; and Freenet aggressively replicates documents, but cannot guarantee the retrieval

of a document within a bounded number of steps nor update documents. The Chord system can serve as a useful lookup

service for these applications.

Based on the needs of applications like the ones mentioned above and conditions on the Internet, we set the following

design goals for the Chord system:

1. Scalability. The system should scale well to potentially billions of keys, stored on hundreds or millions of nodes.

This implies that any operations that are substantially larger-than-logarithmic in the number of keys are likely to be

impractical. Furthermore, any operations that require contacting (or simply keeping track of) a large number of server

nodes are also impractical.

2. Availability. Ideally, the lookup service should be able to function despite network partitions and node failures.

While guaranteeing correct service across all patterns of network partitions and node failures is difficult, we provide

a “best-effort” availability guarantee based on access to at least one of � reachable replica nodes.

3. Load-balanced operation. If resource usage is evenly distributed among the machines in the system, it becomes

easier to provision the service and avoid the problem of high peak load swamping a subset of the servers. Chord

takes a step in this direction by distributing the keys and their values evenly among the machines in the system. More

refined load balancing, for example to deal with a single highly popular key by replicating it, can be layered atop the

basic system.

4. Dynamism. In a large distributed system, it is the common case that nodes join and leave, and the Chord system

needs to handle these situations without any “downtime” in its service or massive reorganization of its key/value

bindings to other nodes.

5. Updatability. Key/value bindings in many applications are not static; it should be possible for these to be updated by

the application.

6. Locating according to “proximity”. If the target of a query is near the originating node, then the originating node

should not have to contact distant nodes to resolve the query. We do not provide formal guarantees for this property,

but describe some heuristic modifications that should perform well in practice.

The Chord system could provide other properties as well and, in fact, for certain peer-to-peer application it should. For

example, certain applications might require that the system provide anonymity, that inserts be authenticated, that stronger

consistency be provided in the face of network partitions, or that the system protect against malicious servers (e.g., ones

4

that lie about their identity). We are optimistic that the protocols we propose can be extended to provide support for these

features, but that is beyond the scope of this paper. Instead, this paper focuses on the Chord protocol, which solves the

problem of determining the node in a distributed system that stores the value for a given key. This problem is challenging,

independent of whether the system offers a simple or a more richer service model.

4 The base Chord protocol

Chord servers implement the Chord protocol, using it to return the locations of keys, to help new nodes bootstrap, and to

reorganize the overlay network of server nodes when nodes leave the system. We describe the base protocol in this section

for the sequential case, when no concurrent joins or leaves occur and no nodes fail. Section 5 describes enhancements to

the base protocol to handle concurrent joins and leaves, and node failures.

4.1 Overview

At its heart, chord provides fast distributed computation of a hash function mapping keys to machines responsible for them.

We use a previously developed consistent hash function [11, 13], which has several good properties. With high probability
�

the hash function balances load (all machines receive at most
��� � �
	

times the average number of keys). Also with high

probability, when an � ��� machine joins (or leaves) the network, only an � ����� � 	
fraction of the keys are moved to a

different location—this is clearly the minimum necessary to maintain a balanced load.

The previous work on consistent hashing assumed that most machines were aware of most other machines in the net-

work. This assumption does not scale. We show how each machine can get by with only a small amount of “routing”

information about other machines. Because the resolution information is distributed, a machine resolves the hash function

by communicating with a few other machines. We describe the information that each machine maintains in the steady state,

and the routing process used to resolve the hash function. More precisely, in an � -machine network, each machine main-

tains information only about � ������� � 	
other machines, and resolves all lookups via � ������� � 	

messages to other machines.

Finally, we also explain how the hash function and the routing information are revised when a machine joins or leaves

the network. These updates require � ������� � � 	
messages when a machine joins or leaves.

4.2 The Hash Function

The consistent hash function begins by assigning to each node and key in the system an � -bit identifier. The identifiers are

generated using a base hash function such as SHA-1. The node identifiers are chosen by hashing the IP address (or some

other unique ID) of the node to the � -bit identifier space. Similarly, the identifiers of the keys are produced by hashing the

keys to the � -bit space. (We will use the term “key” to refer to both the original key and its image under the hash function,

as the meaning will be clear from context. Similarly, the term node will refer to both the node and its identifier under the

hash function.)

As with any hash function, there is a small chance of a collision where two nodes hash to the same identifier; we take

� large enough to make this probability negligible. Alternatively, we can append a unique suffix (such as the node’s IP

address) to the identifier for each node to ensure unique node identifiers (this has no significant impact on our claimed

performance). Colliding identifiers for keys are unimportant as the keys themselves, not just the identifiers, are used to

resolve lookups.
�

High probability does not refer to any distribution assumptions about the input (machines and keys). Rather, our algorithm uses a small random seed

to define the hash function and routing scheme. With high probability in this choice of random seed, the properties we claim will hold regardless of the

configuration of machines and inputs.

5

0

6

1

2

3

4

5

6

7

1

2

successor(2) = 3

successor(6) = 0

successor(1) = 1

Figure 1: A network consisting of three nodes 0, 1, and 3, which stores three keys 2, 4, and 6. The size of the key-space,

� , in this example is 3 bits. Each key (and its associated value) is stored at the successor node of the key. The successor

node for an identifier,
���

, is the first node with an identifier that is equal to or follows
���

in the clockwise direction on the

identifier circle.

Given the identifiers, keys are assigned to nodes in a straightforward way. Each key, � , is stored on the first node whose

identifier,
���

, is equal to or follows � in the identifier space. This node is called the successor node of key � , and it is

denoted by successor
� � 	 . If node and key identifiers are represented on a circle marked with numbers from � to ��� , then�
	��
�
�����
� �

� � 	 is the first node that we encounter when moving in the clockwise direction starting from � . We call this circle

the identifier circle.

Figure 1 shows a simple example of a Chord network consisting of three nodes whose identifiers are 0, 1, and 3. The

set of keys (or more precisely, keys’ identifiers) is � ��� � ����� , and these need to be stored at the three nodes. Because the

successor of key
�

among the nodes in the network is node
�
, key

�
is stored at node

�
. Similarly, the successor of key �

is � , the first node found moving clockwise from � on the identifier circle. For key
�
, the successor (node �) is found by

wrapping around the circle, so key
�

is stored at node � .

Consistent hashing was designed to let nodes enter and leave the network with minimal disruption. To maintain the

consistent hashing mapping when a node � joins the network, certain keys previously assigned to � ’s successor become

assigned to � . When node � leaves the network, all of its assigned keys are reassigned to � ’s successor. No other changes

in assignment of keys to nodes need occur. In the example above, if a node were to join with identifier 6, it would capture

the key with identifier 6 from the node with identifier 7.

The following results are proven in the paper that introduced consistent hashing [11]:

Theorem 1 For any set of � nodes and � keys, with high probability:

1. Each machine is responsible for at most
��� � �
	 � � � keys

2. When an
� � � ��	�� � machine joins or leaves the network, � � � � � 	

keys are moved (and only to or from the joining

or leaving machine).

The consistent hashing paper used a “ � -universal hash function” to map nodes and keys to identifiers. This function

is defined by a random seed, and the “high probability” statement in the theorem refers to the choice of random seed.

In practice, any good hash function (such as SHA-1) should be sufficient to achieve the claimed bounds. To achieve the��� � �
	 � � � bound on load with small
�
, each node actually needs to run

����� � “virtual nodes,” each with its own hashed

identifier [13]. For simplicity, in the remainder of this section we dispense with the assumption of “virtual nodes.” In this

case, the load on a machine may exceed the average by (at most) an � ������� � 	
factor with high probability.

6

Notation Definition

finger � ����� ����� � � � � � �
	�� � 	
mod � � ,

��
 �
 �

finger � ����� � � � � ��� ��� � finger � ����� ����� � � � finger � � ��� ��� ����� � � 	 � if
��
 ��� �

� finger � ����� ����� � � � � 	 � if ��� �

finger � ����� � � � � first node whose identifier is equal to or follows

��� finger � ����� ����� � �
successor immediate successor of node � on the identifier circle;

successor ��� � ��� � ��� � ��� � � � �
predecessor immediate predecessor of node � on the identifier circle

Table 2: Definition of variables for node � , where � is represented using � bits.

4.3 Scalable key location

Consistent hashing is straightforward to implement (with the same constant-time operations as standard hashing) in a cen-

tralized environment where all machines are known. However, such a system does not scale. In this section we show a

distributed implementation of the hash function. More precisely, we discuss what routing information each node needs to

maintain, and how a routing decision is made by a node when it does not know the successor of the requested key.

As before, let � be the number of bits in the binary representation of key/node identifiers. Each node, � , maintains a

routing table with � entries, called the finger table. The
� ��� entry in the table at node � contains the identity of the first

node, � , that succeeds � by at least �
� � �

on the identifier circle, i.e., � � � 	��
�
����� � �
� � � �
� � � 	

, where
�
 �

� (and all

arithmetic is modulo � �). We call node � the
� ��� finger of node � , and denote it by ��� finger � � ��� � � � � (see Table 2). Note that

the first finger of � is its immediate successor on the circle.

In the example shown in Figure 2, the finger table of node �!� �
stores the successors of identifiers

� � � �#" 	 mod �%$&� � ,��� � � � 	
mod � $ � � , and

� � � � � 	 mod � $ �(' , respectively. The successor of identifier � is node � , as this is the first node

that follows � , the successor of identifier � is (trivially) node � , and the successor of ' is node � .

It is important to make two observations of this scheme. First, each node stores information about only a small number

of other nodes, and the amount of information maintained about other nodes falls off exponentially with the distance in

key-space between the two nodes. Second, the finger table of a node may not contain enough information to determine the

successor of an arbitrary key � . For example, node 3 in Figure 2 does not know the successor of 1, as
�
’s successor (node

1) does not appear in node � ’s finger table.

What happens when a node � does not know the successor of a key � ? To resolve this, node � asks another node in the

network to try and find � ’s successor. Node � aims to find a node closer to � than � , as that node will have more “local

information” about the nodes on the circle near � . To accomplish this task, node � searches its finger table for the closest

finger preceding � , and forwards the query to that node. As a result the query moves quickly to the target identifier.

To make this search process more precise, we introduce some notations. Consider the
�

such that ��)*� � � � � � � � 	 � � � �
�%� 	 � . We call this the

� ��� finger interval of node � , and denote it by ���+� � ��� � ��� � ��� � � � � �,� ��� (see Table 2). By definition, the� ��� finger of � is the first node in � ’s
� ��� finger interval, if such a node exists. Otherwise, it is the first node following the

interval.

The pseudocode that implements the search process is shown in Figure 3. In the pseudocode the notation � .foo is used

to introduce the function definition for foo being executed on node � . To differentiate between remote and local node

operations, remote procedure calls and variable references are preceded by the remote node, while local variable references

and procedure calls omit the local node. Thus, n.foo denotes a remote procedure call on node � , while foo denotes a local

7

0
1

2

3

4

5

6

7

finger[1].interval =
[finger[1].start,

finger[2].start)

finger[2].interval = [finger[2].start, finger[3].start)

finger[3].interval = [finger[3].start, 1)

finger[1].start = 2

finger[2].start = 3
finger[3].start = 5

(a)

0

1 [1,2) 1
2 [2,4) 3
4 [4,0) 0

start int. succ.
finger table keys

6

1

2

3

4

5

6

7 2 [2,3) 3
3 [3,5) 3
5 [5,1) 0

start int. succ.
finger table keys

1

4 [4,5) 0
5 [5,7) 0
7 [7,3) 0

start int. succ.
finger table keys

2

(b)

Figure 2: (a) Intervals associated to node ��� �
, where ��� �

(see Table 2). (a) The key and finger tables associated to each node in a

network consisting of nodes 0, 1 and 3, respectively, which stores three keys 1, 2, and 6, respectively.

call.

As can been seen in the pseudocode, find successor is implemented by homing in on the immediate predecessor node of

the identifier. That node can report that its immediate successor node is also the immediate successor node of the identifier.

We implement find predecessor explicitly, because it is used later to implement the join operation (see Section 4.4.1).

The find predecessor function first tests for the case when � is the only node in the network, and therefore its predecessor

is the node itself. In this case we simply return node � (in a network with two nodes each node is the predecessor of the

other node). The loop terminates when
���

falls between node ��� and its successor, in which case ��� is returned as being the���
’s predecessor. Otherwise,

���
follows the successor of ��� , which means that there is at least one finger of ��� that precedes���

. As a result, closest preceding finger is called to return the closest finger of � � that precedes
���

. This value is closer to
���

than � . Thus, the algorithm always makes progress toward termination at the correct value.

We remark on the correctness of the code. Once we know the predecessor ��� of
� �

, the successor of
���

is simply the

successor of ��� . This is because we are guaranteed that there is no other node between ��� and
���

; otherwise, that node, and

not ��� , would be the predecessor of
���

.

A simple optimization for find successor allows it to return early. If we determine that node � is between finger � � ��� start

and finger � � ��� node, we can immediately deduce that finger � � ��� node is the immediate successor for
���

and return that value.

In Section 6, we analyze this algorithm and show the following:

Theorem 2 With high probability, the number of nodes that must be contacted to resolve a successor query in an � -node

network is � ������� � 	
.

The intuition behind this claim is that each recursive call to find successor halves the distance to the target identifier.

Consider again the example in Figure 2. Suppose node � wants to find the successor of identifier
�
. Since

�
belongs to

the circular interval �
	 � � 	 , it belongs to � � finger � � ��� � � � � ��� ��� ; node � therefore checks the second entry in its finger table,

which is � . Because � precedes
�
, node � will ask node � to find the successor of

�
. In turn, node � will infer from its finger

table that
�
’s successor is the node

�
itself, and return node 1 to node 3.

8

// ask node � to find ��� ’s successor

��� ���	�
��	
�
���
�
������������
��� ����� ��� �"!#��!�$%!"&#&�' �(������� ;
return ���)� &�*�$+$�!,&#&�' � ;

// return closest finger preceding ���
���
�-.�/
���
�0 1	�#�(
"�(�324�35 ���35����(�������

for � � � downto
�

if � finger 6 ��7�� ��',��!98:� ��;<�����<�
return finger 6 ��7�� ��',��! ;

return � ;

// ask node � to find ��� ’s predecessor

��� ���	� 13�,���3��
���
�
������������
if � � � �=&�*�$+$�!,&#&�' ���

return � ; // n is the only node in network

�>� � � ;

while �����@?8:� ���); ����� &�*�$+$�!,&#&�' �#7.�
� � � � � � $%A.'�&#!,&%B �"!�$�!��C� ��D ��� �/D�! �(������� ;

return � � ;

Figure 3: The pseudocode to find the successor node of an identifier
���

. Remote procedure calls are preceded by the remote

node.

0

1 [1,2) 1
2 [2,4) 3
4 [4,0) 6

start int. succ.
finger table keys

1

2

3

4

5

6

7 2 [2,3) 3
3 [3,5) 3
5 [5,1) 6

start int. succ.
finger table keys

1

4 [4,5) 6
5 [5,7) 6
7 [7,3) 0

start int. succ.
finger table keys

2

7 [7,0) 0
0 [0,2) 0
2 [2,6) 3

start int. succ.
finger table keys

6

(a)

0

1 [1,2) 0
2 [2,4) 3
4 [4,0) 6

start int. succ.
finger table keys

1

2

3

4

5

6

7

4 [4,5) 6
5 [5,7) 6
7 [7,3) 0

start int. succ.
finger table keys

1

7 [7,0) 0
0 [0,2) 0
2 [2,6) 3

start int. succ.
finger table keys

6

2

(b)

Figure 4: (a) The key and the finger tables associated to each node after node 6 joins the network. (b) The key and the finger tables

associated to each node after node 3 leaves the network. The changes in the finger tables and of the keys stored by each node as a result

of a node joining/leaving are shown in black; the unchanged entries are shown in gray.

9

4.4 Node joins and departures

In a dynamic network, nodes can join and leave at any time. The main challenge of implementing these operations is

preserving the ability to locate every key in the network. To achieve this goal, we need to preserve two invariants:

1. Each node’s finger table is correctly filled.

2. Each key � is stored at node �
	 �
� ����� � �
� � 	 .

It is easy to see that these two invariants will guarantee that � � � � � 	��
�
����� � � will be able to successfully locate any key—if

a node is not the immediate predecessor of the key, then its finger table will hold a node closer to the key to which the query

will be forwarded, until the key’s successor node is reached. In the remainder of this section, we assume that these two

invariants hold before a node joins or leave the network. We defer the discussion of multiple nodes leaving or/and joining

simultaneously to Section 5. Before explaining how joining and leaving are implemented, we summarize the performance

of the schemes we are about to define:

Theorem 3 With high probability, any node joining or leaving an � -node Chord network will use � ������� � � 	
messages to

re-establish the Chord routing invariants.

To simplify the join and leave mechanisms, each node in Chord maintains a predecessor pointer. A node’s predecessor

pointer points at the immediate predecessor of that node, and can be used to walk counterclockwise through nodes on

the identifier circle. For clarity, we also introduce a successor pointer. The successor pointer points to the same node as

� � ��� � ��� � ��� � � � � (see Table 2).

The rest of this section describes how Chord handles nodes joining and with minimal disruption. (We won’t present the

implementation of leave, because it is analogous to join.)

4.4.1 Join operation

To preserve the two invariants discussed above, when a node � joins the network, we have to perform three operations:

1. Initialize the predecessor and fingers of node � .

2. Update the fingers and predecessors of existing nodes to reflect the change in the network topology caused by the

addition of � .

3. Copy all keys for which node � has became their successor to � .

We assume that the bootstrapping for a new node is handled offline, perhaps by someone configuring the newly joining

node � with the identifier of at least one other node ��� already in the Chord network. Once this is done, node � uses ��� to

initialize its state. It performs the above three tasks as follows.

Initializing fingers and predecessor: A straightforward way to learn the predecessor and fingers of node � is to simply ask

node ��� for them. Figure 5 shows the pseudocode of the init finger table function that initializes the finger table of node �
using this idea. Initializing the predecessor is similar. As an optimization, note that once we learn the

� ��� finger, we check

whether this node is also the
� � � � 	 ��� finger of node � . This happens when finger � � ��� � � � � ��� ��� does not contain any node,

and thus finger � � ��� � � � ��� � � ��� � ��� � ��� ��� ����� � � .
As an example, consider the scenario in Figure 4(a), where node 6 joins the network. Assume node 6 knows a node 1,

already in the network. Then, node 6 will ask node 1 for the successors of
� ��� ��" 	 mod �%$ � 	 ,

� ��� � � 	
mod �%$&� � , and� � � � � 	 mod �%$&� � , respectively. In turn, node 1 will return node 0 as being the successor of identifiers 7 and 0, and node

3 as being the successor of 3.

10

// node � joins the network;

// ��� is an arbitrary node in the network

��� �%�/24� � � � �
if (� �)

init finger table(� �);
notify();

& ��&�*�$%$%!"&#&�' � ; // get successor

&�� � '���! �(!��(&�� �3� ;
else // no other node in the network to � itself

for � � � to �
finger 6 ��7�� �>',��! � � ;

predecessor � &�*�$%$�!,&#&�' � � � ;

// initialize finger table of local node;

// � � is an arbitrary node already in the network

��� 2.�	2.0 ���35���� 0��	��-.��� � � �
finger 6 � 7�� �>',��! � � � � ��� �>� &�*�$%$%!"&#&�' �(����� �/D�! �(6 � 7�� &%B�
 �#B � ;
successor � ��� �/D�! �(6 � 7�� ��',��! ;
for � � � to �
� �

if � finger 6 ��� � 7�� &%B�
 �#B 8 6 ��;+��� �/D�! �(6 ��7�� �>',��!,�<�
finger 6 ��� � 7�� ��'"��! � finger 6 ��7�� ��'"��!��

else

finger 6 ��� � 7�� ��'"��! �
� � � find successor � finger 6 ��� � 7�� &%B�
 �#B � ;

// update finger tables of all nodes for

// which local node, � , has became their finger

��� �3��0�2���� ���
for � � � to �

// find closest node whose ����� finger can be n

 ����� ��� �"!���!#$%!,&,&�' �(� ����� ��!
� � ;

 3� *� ��"
�B ! ��� �/D�! � B�
$#%A4!C� ��;<�)� ;

// if & is � ��� finger of � , update � ’s finger table with &
��� �31 �%�(0�� ��� 5���� 0��&�	-.����&�; � �

if ��& 8:6 ��;+��� �/D�! �(6 ��7�� �>',��!,�<�
finger 6 ��7�� �>',��! ��& ;
 � �"!���!#$%!,&,&�' � ; // get first node preceding �

 3� *� ��"
�B ! ��� �/D�! � B�
$#%A4!C��&�; �)� ;

// if is new successor of local stored

// key � , move � (and its value) to
��� ' �$(/�)��$�
"� /� ;

for each key � stored locally

if (8 6 ��; � �)
move � to ;

Figure 5: The pseudocode of the node joining operation.

11

Update fingers and predecessors of existing nodes: When a new node, � , joins the network, � may become the finger

and/or successor of other nodes in the network. For example, in Figure 4(a), node 6 becomes the third finger of nodes 0 and

1, and the first and the second finger of node 3. To account for this change, we need to update the fingers and successors of

the existing nodes, as well. For simplicity, we again limit our discussion to the finger table only.

Figure 5 shows the pseudocode of the 	�� � ��� � � � ��� � � ����� � ��� function that updates finger tables of the existing nodes.

Assume that after � joins the network, � will become the
� ��� finger of a node � . This will happen if and only if (1) �

precedes � by at least �
� � �

, and (2) the
� ��� finger of node � succeeds � . The first node, � , that can meet these two conditions

is the immediate predecessor of ��� ��� � �

. Thus, for a given � , the algorithm starts with the
� ��� finger of node � , and then

continues to walk in the counter-clock-wise direction on the identifier circle until it encounters a node whose
� ��� finger

precedes � .

Although it might appear that the number of nodes that have their finger tables updated is quite large, this is fortunately

not the case. We show in Section 6 that the number of nodes that need to be updated when a node joins the network is only

� ������� � 	
on the average, and with a very high probability is at most � ������� � � 	

, where � is the total number of nodes in

the network.

Transferring keys: The last operation that has to be performed when a node � joins the network is to move all the keys

for which node � has become the successor to � . The pseudocode for this operation, move keys, is shown in Figure 5. The

algorithm is based on the observation that node � can become the successor only for keys stored by the node immediately

following � . For example, in Figure 4(a), node 6 needs to inspect only the keys stored by node 0. As a result, key 6 is

moved to node 6, as node 6 is now the new key’s successor.

5 Handling concurrent operations and failures

In practice the Chord system needs to deal with nodes joining the system concurrently and with nodes that fail or leave

voluntarily. This section describes modifications to the basic Chord algorithm described in Section 4 to support these

situations.

Motivating this section is the observation that a substantially weaker invariant will guarantee the correctness of the

routing protocol, although time bounds may be sacrificed. As long as every node knows its immediate predecessor and

successor, no lookup will stall anywhere except at the node responsible for a key. Any other node will know of at least one

node (its successor) that is closer to the key than itself, and will forward the query to that closer node.

5.1 Concurrent joins

The join code in Figure 5 assumes the invariants mentioned in Section 4.4. The invariants may not be true if nodes join the

system concurrently. A slightly different version of the code, shown in Figure 6, is required to support concurrent joins.

This code focuses on maintaining the correctness of immediate predecessors and successors, since in the worst case more

distant relationships can be resolved (though slowly) by nearest-neighbor traversals of the identifier circle.

When node � first starts, it calls ��� � � � � � ��� 	 , where � � is any known Chord node. The � � � � function finds the immediate

predecessor and successor of � , notifies those two nodes that they have a new immediate neighbor, and then calls boot strap

to fill in � ’s finger table and initialize � ’s predecessor.

If multiple nodes with similar identifiers join at the same time, they may all try to notify the same existing predecessor

that they are its immediate successor. notify ensures that only the newcomer with the lowest identifier will succeed. The

others will gradually learn their true immediate neighbors by periodic calls to stabilize. stabilize periodically checks whether

new nodes have inserted themselves between a node and its immediate neighbors. A similar periodic function (not shown in

12

// n joins the network

��� ���/2.� � � � �
& � ����� ��� ��� ��!���!�$�!,&#&�' ��� � � ;
do

 ��& ;
& � 3� &�*�$%$%!,&,&�' � ;

until � 8:� 3; &%7
&�*�$%$%!"&#&�' � ��& ;
 �"!#��!�$%!"&#&�' � � ;

 3� notify � � � ; // tell p to update its state

&�� notify � � � ; // tell s to update its state

#%',',B &�B �
# 	��&#� ;

��� �3��0�2���� � � � �
if � ���38 � ��;+&�*�$+$�!,&#&�' ���<�
��� �/D�! ��6 � 7�� ��',��! ��&�*�$%$%!,&,&�' � � ��� ;
#%',',B &%B �
# 	� ��� � ;

if � ���38 � ��!���!�$�!,&#&�' �,; � �<�
 ��!���!�$�!,&#&�' � � � � ;
#%',',B &%B �
# 	� � � � ;

// let node n send queries to fill in its own tables

� .boot strap(� �)
for � � � to �
 � � � � ��� ��� &�*�$+$�!,&#&�' ������� �/D�! ��6 ��7�� &%B�
 �,B<� ;
do

& � ;

 � 3� �"!#��!�$%!"&#&�' � ;

until � �� ��� ��D�! ��6 ��7�� &%B�
 �#B �
��� �/D�! �(6 ��7�� &%B�
 �#B���& ;

// verify n’s immediate pred/succ

// called periodically

� .stabilize()
� � �"!���!�$�!,&#&�' � ;
� � � � &�*�$+$�!,&#&�' � ;

if � � 8:� ��!���!�$�!,&#&�' �,; � �
predecessor � � ;

� ��&�*�$+$�!,&#&�' � ;
� � � � �"!���!�$�!,&#&�' � ;

if � � 8:� ��;+&�*�$+$�!,&#&�' ���<�
��� �/D�! �(6 � 7�� ��'"��! ��&�*�$%$�!,&#&�' � � � ;

Figure 6: Pseudocode for concurrent join. Predecessor functions that parallel their successor equivalents are omitted.

Figure 6) updates the rest of each node’s finger table, so that all tables gradually converge on correct values after any joins.

Obtaining the successor by simply calling find successor may not work correctly during the time in which all nodes

tables are reacting to a new node. In particular, a node may think that � � ��� � ��� � ��� � � � � is the first node in an interval, when

in fact a new node has joined earlier in that interval. For this reason, we ask the putative successor node whether it does not

know a better successor, i.e., whether the predecessor of the putative successor node succeeds � � ��� � ��� � ��� � � � � . This process

is repeated until it reaches a successor whose immediate predecessor precedes the key.

Whenever a node notices that it has a new immediate predecessor, it moves appropriate key/value pairs to that prede-

cessor. There are cases in which multiple joins may cause keys to become temporarily inaccessible until sufficient calls to����� � � � ��� � have been made. This can be solved by serializing the order in which a node accepts new immediate predecessors,

which itself is easily achieved by a simple locking protocol between a new node and its immediate successor.

As an optimization, a newly joined node � can ask an immediate neighbor for a copy of its complete finger table and

its predecessor. � can use the contents of these tables as hints to help it find the correct values for its own tables, since � ’s

tables will be similar to its neighbors’. Specifically, � ’s �
���,� ��� � � � routine can start the query for each table entry at the

node referred to by the corresponding entry in its neighbor’s table.

5.2 Failures and replication

When a node � fails, nodes whose tables include � must find � ’s successor (or predecessor), and then � ’s successor must

ensure that it has a copy of the key/value pairs stored in � . In addition, the failure of � must not be allowed to disrupt queries

that are in progress as the system is re-stabilizing.

If a node fails, the ����� � � � ��� � procedures of its immediate neighbors will see that it is not responding. The recovery

13

procedure for a node � that notices that its immediate successor has died is as follows. � looks through its finger table

for the first live node � � . � then calls ��� � � � � � 	��
�
����� � �
� � � � � 	 (i.e., sends a query to � �), and uses the result as its new

immediate successor. A similar strategy works when other table entries are found to be unresponsive.

Fault-tolerant storage of key/value pairs requires replication. To help achieve this, each Chord node maintains a list

of its � nearest successors with a simple extension to the code in Figure 6 (in this case, the successor scalar variable is

replaced by a table). When a node receives an insert, it propagates a copy of the key/value pair to those � successors; it also

propagates when it notices that its immediate successor changes during stabilization. After a node fails, queries for its keys

automatically end up at its successor, which will have copies of those keys.

After a node failure, but before stabilization has completed, other nodes may attempt to send requests to the failed node

as part of a � � � � �
	 � �
��� � � � lookup. The problem can be detected by timing out the requests, but ideally the lookups would

be able to proceed immediately by another path despite the failure. In most cases this is possible: any node with identifier

close to the failed node’s identifier will have similar routing table entries, and can be used to route requests at a slight extra

cost in route length. All that is needed is a list of alternate nodes, easily found in the finger table entries preceding that of

the failed node. If the failed node had a very low finger table index, the � successors mentioned above are also available as

alternates. Theorem 5 in Section 6 discusses this procedure in more detail.
�

6 Theoretical analysis

As is discussed in the work on consistent hashing [11], with the proper choice of hash function the identifiers for nodes and

keys are effectively random: all analyses can be carried out as if the nodes ended up at � random points on the identifier

circle. The same holds true for our analyses, so we will make that assumption.

Theorem 4 With high probability, the number of nodes that must be contacted to resolve a successor query in an � -node

network is � ������� � 	
.

Proof: Suppose that node � wishes to resolve a query for the successor of � . Let � be the node that immediately precedes

the query identifier � . Recall that the query for � eventually reaches � , which returns its immediate successor as the answer

to the successor query. We analyze the number of query steps to reach � .

Recall that if � �� � , then � forwards its query to the closest predecessor of � in its finger table. Suppose that node � is

in the
� ��� finger interval of node � . Then since this interval is not empty, node � will finger some node � in this interval.

The distance (number of identifiers) between � and � is at least ��� � �

. But � and � are both in � ’s
� ��� finger interval, which

means the distance between them is at most ��� � �

. This means � is closer to � than to � , or equivalently, that the distance

from � to � is at most half the distance from � to � .

If the distance between the node handling the query and the predecessor � halves in each step, and is at most � � initially,

we see that withing � steps the distance will be one, meaning we have arrived at � . In fact, the number of forwardings

necessary will be � ������� � 	
with high probability. After

����� � forwardings, the distance between the current query node

and the key � will be reduced to � � � � . The expected number of node identifiers landing in a range of this size is 1, and it

is � ������� � 	
with high probability. Thus, even if the remaining steps advance by only one node at a time, they will cross the

entire remaining interval and reach key � within another � ������� � 	
steps.

The following lemma is the basis of Theorem 3 in Section 4.4, which claims that a node joining the network only needs

to send � ������� � � 	
messages to update other nodes’ tables.

Lemma 1 With high probability, every node is a finger (of a given order) of � ������� � � 	
nodes.

�
The current implementation takes a slightly different approach to handling failures.

14

Proof: We begin with an easy expectation argument. Every node has � ������� � 	
distinct fingers (the easy argument is �

fingers, but the � ������� � 	
bound follows as it did in the previous theorem). Thus the total number of node-successor pairs

in the network is � � � ����� � 	
. It follows that on average any given node is a finger of � ������� � 	

nodes.

For a high probability argument, we note that a node � is a finger for � � if ��� � � � is in the range between � and the

predecessor � of � . This happens with probability
� ��� � 	 � � � . It is straightforward that with high probability

� � � � 	 �
� � � � ������� � 	 � � 	

. So for a particular
�

the probability that a node fingers � is � ��������� � 	 � � 	
, which implies that with high

probability � ������� � 	
nodes finger � at level

�
. Since there are � ������� � 	

levels, the total number of nodes fingering � is

� ������� � � 	
with high probability.

We now discuss modifications of the Chord protocol to support fault tolerance. Our focus is not on the loss of data

(which can be dealt with by simple replication) but on the loss of routing information. If some of a node’s fingers fail, what

alternative mechanism does it use to foward successor queries to the appropriate location? To deal with this problem, we

modify the Chord protocol to replicate certain routing information. In addition to maintaining its � finger entries, each

node also maintains pointers to the first
�

of its immediate successors on the identifier circle. As will later become clear,
�

should be large enough that
����� � 	�� is very small. Maintaining this information requires only a small constant factor more

space on each node. It also involves straightforward modifications to the protocols for joining, leaving, and stabilizing the

network which we do not discuss here. We do remark on the change to the routing protocol. If the node to which we want

to forward the query (say our
� ��� finger) is down, forward the query instead to the best earlier finger (the

� � � ��	
� � , or if that

is down the
� � � � 	���� , and so on). This sequence should include the

�
immediate successors.

This replication and routing modification suffices to route around failures. We consider the following model: begin

with a network of � nodes with all routing information correct, and suppose that each node fails with probability
� � � .

Eventually the stabilization procedure described in Section 5 will correct the routing information, but in the meantime many

of the remaining nodes’ tables will refer to failed nodes. The following lemma shows that correct routing still takes place.

Theorem 5 In a stable network, if every node fails with probability 1/2, then with high probability any successor query

returns the closest living successor to the query key.

Proof: Before the failures, each node was aware of its
�

immediate successors. The probability that all of these successors

fail is
� ��� � 	�� , so with high probability every node is aware of its immediate living successor. As was argued in the previous

section, if the invariant holds that every node is aware of its immediate successor, then all queries are routed properly, since

every node except the immediate predecessor of the query has at least one better node to which it will forward the query.

In fact, even the efficiency of our routing scheme is preserved in the face of failures.

Theorem 6 In a stable network, if every node fails with probability 1/2, then the expected time to resolve a query in the

failed network is � ������� � 	

Proof: We consider the expected time for a query to move from a node that has the key in its
� ��� finger interval to a node

that has the key in its
� � � � 	 � � finger interval. We show that this expectation is � ��� 	

. Summing these expectations over all�
, we find that the time to drop from the � ��� finger interval to the

�
� � ����� � 	 ��� finger interval is � ������� � 	

. At this point,

as was argued before, only � ������� � 	
nodes stand between the query node and the true successor, so � ������� � 	

additional

forwarding steps arrive at the successor node.

To see that the expectation is � ������� � 	
consider the current node � that has the key in its

� ��� finger interval. If � ’s
� ���

finger � is up, then in one forwarding step we accomplish our goal: the key is in the
� � � � 	 � � finger interval of node � . If� is down then, as argued in the previous theorem, � is still able to forward (at least) to some node. More precisely, � was

aware of
�

immediate successors; assume
� � � ����� � . If we consider the

������� � 	 ��� through
� � ����� � 	 � � successors, the

probability that they all fail is
��� � . So with high probability, node � can forward the query past at least

����� � successors.

As was implied by Lemma 1, it is unlikely that all
����� � of these skipped nodes had the same

� ��� finger. In other words, the

15

node to which � forwards the query has a different
� ��� finger than � did. Thus, independent of the fact that � ’s

� ��� finger

failed, there is a probablity
��� � that the next node’s

� ��� finger is up.

Thus, the query passes through a series of nodes, where each node has a distinct
� ��� finger (before the failures) each of

which is up independently with probability
� � � after the failures. Thus, the expected number of times we need to forward

the query before finding an
� ��� finger that is up is therefore 2. This proves the claim.

In fact, our claims hold even if an adversary maliciously chooses an arbitrary set of � � � nodes to fail. So long as the

adversary is unaware of the specific hash function used to map nodes to the identifier circle, his choice results in the failure

of � � � “random” points on the circle, which is precisely what we analyzed above.

7 Simulation Results

In this section, we evaluate the Chord protocol by simulation. We have implemented a packet level simulator that fully

provides the functionality of the algorithm described in Sections 4 and 5.

7.1 Protocol implementation and simulator

The Chord protocol can be implemented in a iterative or recursive style, like the DNS protocol. In the iterative style, a

node that is resolving a lookup, initiates all communication: it iteratively queries intermediate nodes for information until it

reaches the destination node. In the recursive style, an intermediate node recursively calls the lookup procedure to resolve

the query.

The main advantage of the iterative style is two fold: it is simple to implement (the intermediate nodes just respond to

requests, but never initiate communication recursively) and it puts the initiator in control (e.g., it can monitor easily whether

a node is responding or not). However, as we discuss in Section 8, there are some disadvantages to the iterative style. The

iterative scheme will send queries over long distances repeatedly under certain circumstances. Recursive scheme does a

better job of taking short hops when possible. The simulator implements the protocols in an iterative style.

Unless other specified, packet delays are exponentially distributed with the mean of 50 ms. Each node periodically

invokes the stabilization protocol at an average rate of 0.5 invocations per minute. The time interval between two consecutive

invocations by a node is uniformly distributed between � � ' and
� � ' of the mean value. As shown in [8] in the context of route

updates, this choice is likely to eliminate protocol self-synchronization, i.e., all nodes invoking the stabilization protocol

at the same time. For key and node identifiers, we use a 24 bit representation. Our implementation assumes that we can

transfer any number of keys between two neighbor nodes with only one message. However, we do not expect that this

assumption to impact the general behavior of the algorithm as illustrated by the following experiments.

7.2 Load balancing

In this section, we consider the ability of Chord to achieve load balancing. Ideally, given a network with � nodes, and �
keys, we would like each node to store � � � keys.

We consider a network consisting of
� ��� nodes, and vary the total number of keys from

� � � to
� � � in increments of� � � . For each value, we repeat the experiment 20 times. Figure 7(a) plots the mean value, the 1st and the 99th percentile of

the number of keys per node. The number of keys per node exhibits large variations that increase linearly with the number

of keys. For example, in all cases there are nodes that do not store any keys. For a better intuition, Figure 7(b) plots the

probability density function (PDF) of the number of keys per node when there are '�� � � � keys stored in the network.

The maximum number of nodes stored by any node in this case is 457, or
� � � � the mean value. For comparison, the 99th

percentile is � � � � the mean value.

16

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

N
um

be
r

of
 k

ey
s

pe
r

no
de

Total number of keys (x 10,000)

1st and 99th percentiles

(a)

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300 350 400 450 500

P
D

F

Number of keys per node

(b)

Figure 7: (a) The mean value, the 1st and the 99th percentiles of the number of keys stored by a node in a
� � � node network.

(b) The probability density function (PDF) of the number of keys per node. The total number of keys is ' � � � � .

0

50

100

150

200

250

300

350

400

450

500

1 10

N
um

be
r

of
 k

ey
s

pe
r

no
de

Number of virtual nodes

1st and 99th percentiles

Figure 8: The 1st and the 99th percentiles of the number of keys per node as a function of virtual nodes mapped to a real

node. The network has
� � � real nodes and stores

� � � keys.

One reason for these variations is that node identifiers do not cover uniformly the entire identifier space. If we divide the

identifier space in � equal-sized bins, where � is the number of nodes, the probability that a particular bin does not contain

any node is significant. In particular, this probability is
� � � � � � 	 �

, which for large values of � approaches � � � � � � � ��� .

One possibility to address this problem is to allocate a set of virtual nodes and then map them to real nodes. Intuitively,

this will provide a more uniform coverage of the identifier space. For example, if we allocate
����� � identifiers to each node,

with a high probability each of the � bins contains � ������� � 	
nodes [17].

To verify this hypothesis, we perform an experiment in which we allocate � virtual nodes to each real node. In this case

keys are associated to virtual nodes instead of real nodes. We consider again a network with
� � � real nodes and

� � � keys.

Figure 8(b) shows the 1st and 99th percentiles for � � ��� � � ' � � � , and 20, respectively. As expected, the 99th percentile

decreases, while the 1st percentile increases with the number of virtual nodes, � . In particular, the 99th percentile decreases

from � � � � to
� � � � the mean value, while the 1st percentile increases from 0 to �#�+' � the mean value. Thus, adding virtual

nodes as an indirection layer can significantly improve load balancing. The tradeoff is that the space usage will increase

as each actual node now needs � times as much space to store the information for its virtual nodes. However, we believe

that this increase can be easily accommodated in practice. For example, assuming a network with � � � � � nodes, and

17

0

2

4

6

8

10

12

1 10 100 1000 10000 100000

P
at

h
le

ng
th

Number of nodes

1st and 99th percentiles

(a)

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12

P
D

F

Path length

(b)

Figure 9: (a) The path length as a function of network size. (b) The PDF of the path length in the case of a � � �
node network.

assuming � � ����� � , each node has to maintain a table with
����� � ��� � � � entries.

7.3 Path length

One of the main performance parameters of any routing protocol is the length of the path (route) between two arbitrary

nodes in the network. Here, we define the path length as the number of nodes traversed by a lookup operation. Recall

that the path length is �
� �

in the worst case, where � represents the number of bits in the binary representation of the

identifiers, and � ������� � 	
in the average case, where � is the number of nodes. For simplicity, here we assume that there

are no virtual nodes.

We consider a network with ��	 nodes that stores
� � � � �
	 keys. Figure 9(a) plots the mean value, the 1st and the 99th

percentiles of the path length, as a function of the network size. As expected, the mean path length increases logarithmically

with the number of nodes. The same is also true for the 1st and the 99th percentiles. Figure 9(b) plots the PDF of the path

length for a network with � � �
nodes. Remarkably, the maximum path length for this case has never exceeded 12 nodes in

our simulation. In all the other cases we have obtained similar results. These results suggest that Chord’s routing algorithm

is fully scalable, and it will achieve good results in practice.

7.4 Simultaneous node failures

In this experiment, we consider the ability of the overlay network constructed by Chord to survive in the case of simultaneous

node failures. This scenario can happen in practice when a LAN is temporary disconnected from the Internet, or a major

network partition occurs. In particular, this experiment shows that the overlay network remains connected even when a large

percentage of nodes fail simultaneously.

We consider again a
� � � node network that stores

� � � keys, and randomly select a percentage of � nodes that fail.

Since there is no correlation between the node identifiers and the network topology, selecting a random number of nodes

is equivalent to selecting all nodes from the same location or network partition. After the failures occurs, we wait for the

network to reach steady state, and then measure the miss rate, i.e., the probability to successfully retrieve a key.

Figure 10(a) plots the mean miss rate and the 95% confidence interval as a function of the percentage of node failures,
� . The miss rate increases linearly with � . Since this is exactly the miss rate due to the lost keys caused by node failures, we

conclude that there is no significant partition in the overlay network. Indeed, if it were a half-to-half partition for example,

we would expect that half of the requests to fail simply because in half of the cases the request initiator and the queried key

18

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20

M
ea

n
m

is
s

ra
te

Percentage of node failures

95%confidence interval

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.02 0.04 0.06 0.08 0.1

M
ea

n
m

is
s

ra
te

Node failure rate

95% confidence interval

(b)

Figure 10: (a) The key miss rate as a function of the percentage of node failures. (b) The key miss rate as a function of the

rate at which nodes fails. This miss rate reflects only the query failures due to state inconsistency; it does not include query

failures due to lost keys.

will be in different partitions. The fact that our results do not reflect this behavior, suggests that our algorithm is robust in

the presence of simultaneous node failures.

7.5 Dynamic scenario

In a dynamic scenario, there are two reasons for which a query can fail. The first is because the node which stores the key

has failed. The second is because nodes’ finger tables and predecessors store inconsistent state due to concurrent joins,

leaves and node failures. An interesting question is what is the impact of the concurrent operations and node failures on the

miss rate. We try to answer this question with the next experiment.

To isolate between the two types of misses, when a node fails, we move its keys to its successor. In this way we factor out

the misses due to lost keys. Any query failure in such a system will be then the result of table inconsistencies; nodes learn

about the failed nodes only when they invoke the stabilization protocol. Also note that the simulator does not implement

query retries. If a node forwards a query to a node and this node is down, the query simple fails. Thus, the results given in

this section can be viewed as the worst case scenario for the query failures induced by state inconsistency.

Because the primary source of inconsistencies is node joinning and leaving, and because the main mechanism to resolve

these inconsistencies in the described implementation is to invoke the stabilization protocol, Chord’s performances will be

sensitive to the frequency of node operations versus the frequency of invoking the stabilization protocol.

To illustrate this interdependence, we consider an experiment in which nodes join and fail randomly. During this time

other nodes insert and search for random keys. Key insertions and lookups are generated according to a Poisson process at

a rate of
��� ' insertions per second, and one lookup per second, respectively. Similarly, joins and failures are modeled by a

Poisson process with the mean arrival rate of
�

. We start with a network of 500 nodes storing 100 keys.

Figure 10(b) plots the average miss rates and the confidence intervals when the rate of node joining and leaving the

network,
�

, is �#� � ��� �#� � � � �#� �
' , and �#� � , respectively. Note that � � � � corresponds to one node joining and leaving every 100

seconds on average, while �#� � corresponds to one node joining and leaving each second. For comparison, recall that each

node invokes the stabilization protocol once every 30 sec on the average. The results presented in Figure 10(b) are averaged

over approximately two hours of simulated time. The confidence intervals are computed over 10 independent runs. There

are two points worth noting. First, as expected, the miss rate due to state inconsistency is much lower than the miss rate due

to node failures (compare Figures 10(a) and (b), and consider the fact that during each simulation at least 14% of nodes fail

19

on average). Second, the miss rate due to state inconsistency increases fast with failure frequency. This fully justifies the

optimization described in Section 8 to reduce the time after which nodes hear about the node failures.

8 Chord system implementation

The Chord protocol simulated and analyzed in the previous sections has been implemented in an operational system.

8.1 Location table

Instead of limiting Chord’s routing to just the information in the finger table, the Chord system also maintains a location

table, which contains nodes that Chord has discovered recently while running the protocol. The location table is a cache

that maps node identifiers to their locations (IP address and port). Node identifiers that are in the Chord finger table are

pinned in the location table. Other nodes are replaced based on their network proximity. When replacing a node, the Chord

server replaces a node that is far away in the network over a node that is close by in the network.

The location table is used to optimize lookup performance. Instead of choosing the node from the finger table that is the

closest predecessor of the key (which might on the other side of the network), the Chord server chooses the node from the

location table that is a close predecessor and that is close in the network (as measured by the round-trip time). Because of

the location table’s cache-replacement policy, which replaces far-away nodes over close-by nodes, a Chord server will learn

over time about more and more nodes that are close by in the network and will use those nodes to resolve lookup queries.

When the Chord server learns about a new node, it inserts it in the location table. A Chord server learns about the

location of a nodes as part of running the Chord protocol. A node identifier in a protocol message comes always along with

its location. In addition to the location, the server records the source from which it learned about the new node. This server

alerts the source when the server discovers that the node has failed.

The Chord server also records for each node in the location table the measured average round-trip time. Each time the

server performs an RPC to a node, it measures the response time of the RPC and updates the average round-trip time to

that node. Since all Chord RPCs are simple operations with small argument and result types (e.g., they don’t recursively

initiate new RPCs on the remote node), the round-trip time is dominated by network latency. (If the remote server happens

to be overloaded because one particular key is popular, then we want to avoid the node anyway; either way the end-to-end

measurement is helpful.)

Because the current implementation uses an iterative lookup procedure, a lookup request might still travel large distances

over the network. Consider a server in Australia resolving a query that is destined to a server in the USA. The query might

travel for a while close to Australia but once it makes the hop to the USA, it might take multiple hops back and forth

between the Australia and the USA, because in our current implementation the node in Australia initiates all RPCs. We are

considering switching from an iterative lookup to a recursive lookup procedure so that queries always travel in the direction

of the their final destination. In that case, the protocol would return all the nodes that were visited to resolve a query to

allow the initiator to build up a location table.

The location table is also used to recover quickly from failed nodes; as our simulation results have shown, this is an

important optimization. When an RPC fails, the lookup procedure choses another node from the location table that is a

close predecessor and routes queries through that node. Since over time, the server is likely to learn about quite a number

of nodes, it is likely that it might be able to hop over failed nodes. When an RPC fails because of a node failure, the Chord

server also deletes the node from its location table, and, if the node is also in its finger table, the server rebuilds the finger

table.

To allow other servers also to learn quickly about failed nodes, the server alerts the node from which it learned about

the failed node. A node that receives an alert RPC first checks whether it also observes that the node is down. (There might

20

3.5

4

4.5

5

5.5

6

6.5

7

10 100

A
vg

. R
P

C
s

pe
r

op
er

at
io

n

Number of nodes

Figure 11: Average number of RPCs for a lookup in network scaling from 10 to 250 nodes.

be a network a problem that makes it impossible for a node A to talk to B, but node C might still be able to reach node B.)

If the receiver of the alert message cannot contact the failed node either, it deletes the failed node from its location table,

rebuilds its finger table (if necessary), and recursively alerts its sources.

8.2 Details

The Chord system consists of two programs: the client and and the server. The client program is a library that provides two

key functions to the file sharing application: (1) it inserts values under a key and (2) it looks up values for a given key. It

essentially implements the interface described in Section 3. To implement the inserts and lookups, the client calls its local

Chord server.

The Chord server implements two interfaces: one to accept request from a local client and to communicate with other

servers. Both interfaces are implemented as remote procedure calls. The exact message formats are described in the XDR

protocol description language [20].

The file-sharing application uses the Chord system to store the mappings from file names to IP addresses of servers that

store the file. The Chord system maps the file names into key identifiers with a cryptographic hash function (SHA-1). The

value is an array of bytes, containing a list of IP addresses.

The Chord server internally represents key identifiers as multiple-precision integers to allow for keys that are larger

than 64 bits. We use the GNU Multiple Precision Arithmetic Library to compute with large keys. Node identifiers are

also represented as multiple-precision integers. The table that stores key-value pairs is implemented as a simple hash table,

indexed by key.

The client and the server are user-level programs written in C++. The programs communicate with Sun RPC over a

TCP connection. The Chord server sets up a TCP connection once with a remote server and sends many RPC over that

connection. To handle many connections and RPCs simultaneously, the programs use SFS’s asynchronous RPC library [15].

8.3 Experiment results

This implementation provides Chord with high-performance for its operations. For example, on a PIII 733, the Chord server

can process 10,300 lookup RPCs per second.

We haven’t deployed our servers in enough locations across the Internet yet to be able to collect meaningful data from

a field experiment $. Instead, we validate the simulation results with the operational Chord service. Figure 11 shows the
�

By the final version of this paper we hope to have results from a small-scale Internet deployment that confirms our proximity claims

21

number of RPCs per lookup with varying number of Chord nodes. As one can see the path lengths scale in the same manner

as in our simulation results.

9 Conclusion

Many distributed applications need to determine the node that stores a data item. The Chord protocol solves this challenging

problem in decentralized manner. It offers a powerful primitive: given a key, it will determine the node responsible for

storing the key’s value. The Chord protocol provides this primitive in an efficient way: in the steady state, in an � -

node network, each node maintains routing information for only about � ������� � 	
other nodes, and resolves all lookups

via � ������� � 	
messages to other nodes. Updates to the routing information for nodes leaving and joining require only

� ������� � � 	
messages.

We also present extensions to the Chord protocol that make it practical in actual systems. These extensions include

support for concurrent joins, nodes leaving voluntarily and involuntarily, a high degree of fault tolerance, and minimizing

the network distance that a query travels.

The Chord protocol and its extensions have been implemented in the Chord system. The Chord system uses the Chord

primitive to provide a peer-to-peer lookup service that allows applications to insert and update key/value pairs and lookup

values for a given key. The implementation is efficient (a single Chord node can process over 10,000 lookups per second)

and scales well with the number of nodes (a lookup in a network of 250 nodes travels on average 7 hops).

Based on our experience using the Chord system for a peer-to-peer file sharing application and our results from theoret-

ical analysis, simulation studies with up to 10,000 nodes, and experiments, we believe that the Chord protocol and system

is a valuable component for many decentralized, large-scale distributed applications.

References

[1] ADJIE-WINOTO, W., SCHWARTZ, E. AND BALAKRISHNAN, H. AND LILLEY, J. The design and implementation of an intentional

naming system. In Proc. ACM Symposium on Operating Systems Principles (Kiawah Island, SC, Dec. 1999), pp. 186–201.

[2] AUTHORS ELIDED FOR ANONYMITY. Building peer-to-peer systems with chord, a distributed location service. In Submitted to 8th

HotOS (June 2001). This position paper is available on request.

[3] BAKKER, A., AMADE, E., BALLINTIJN, G., KUZ, I., VERKAIK, P., VAN DER WIJK, I., VAN STEEN, M., AND TANENBAUM.,

A. The globe distribution network. In Proc. 2000 USENIX Annual Conf. (FREENIX Track) (San Diego, June 2000), pp. 141–152.

[4] CHEN, Y., EDLER, J., GOLDBERG, A., GOTTLIEB, A., SOBTI, S., AND YIANILOS, P. A prototype implementation of archival

intermemory. In Proceedings of the fourth ACM Conference on Digital libraries (DL ’99) (1999).

[5] CLARKE, I. A distributed decentralised information storage and retrieval system. Master’s thesis, University of Edinburgh, 1999.

[6] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W. Freenet: A distributed anonymous information storage and retrieval

system. In Proceedings of the Workshop on Design Issues in Anonymity and Unobservability (Berkeley, California, June 2000).

http://freenet.sourceforge.net.

[7] C.PLAXTON, RAJARAMAN, R., AND RICHA, A. Accessing nearby copies of replicated objects in a distributed environment. In

Proceedings of the ACM SPAA (Newport, Rhode Island, June 1997), pp. 311–320.

[8] FLOYD, S., AND JACOBSON, V. The synchronization of periodic routing messages. In Proceedings of ACM SIGCOMM’93 (San

Francisco, CA, Sept. 1993), pp. 33–44.

[9] Gnutella website. http://gnutella.wego.com.

[10] Jini (TM). http://java.sun.com/products/jini/, 2000.

22

[11] KARGER, D., LEHMAN, E., LEIGHTON, F., LEVINE, M., LEWIN, D., AND PANIGRAHY, R. Consistent hashing and random trees:

Distributed caching protocols for relieving hot spots on the world wide web. In Proceedings of the 29th Annual ACM Symposium

on Theory of Computing (May 1997), pp. 654–663.

[12] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATH-

ERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO., B. Oceanstore: An architecture for global-scale persistent storage. In

Proceeedings of the Ninth international Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS 2000) (Boston, MA, November 2000).

[13] LEWIN, D. Consistent hashing and random trees: Algorithms for caching in distributed networks. Master’s thesis, MIT, 1998.

Available at the MIT Library, http://thesis.mit.edu.

[14] LI, J., JANNOTTI, J., COUTO, D. S. J. D., KARGER, D. R., AND MORRIS, R. A scalable location service for geographic ad hoc

routing. In Proceedings of the 6th ACM International Conference on Mobile Computing and Networking (MobiCom ’00) (Boston,

Massachusetts, August 2000), pp. 120–130.

[15] MAZIÈRES, D., KAMINSKY, M., KAASHOEK, M. F., AND WITCHEL, E. Separating key management from file system security. In

Proceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP ’99) (Kiawah Island, South Carolina, December

1999). http://www.fs.net.

[16] MOCKAPETRIS, P., AND DUNLAP, K. J. Development of the Domain Name System. In Proc. ACM SIGCOMM (Stanford, CA,

1988).

[17] MOTWANI, R., AND RAGHAVAN, P. Randomized Algorithms. Cambridge University Press, New York, NY, 1995.

[18] Napster. http://www.napster.com.

[19] Ohaha. http://www.ohaha.com/design.html.

[20] SRINIVASAN, R. XDR: External data representation standard. RFC 1832, Network Working Group, August 1995.

[21] Universal Plug and Play: Background. http://www.upnp.com/resources/UPnPbkgnd.htm, 2000.

[22] VAN STEEN, M., HAUCK, F., BALLINTIJN, G., AND TANENBAUM, A. Algorithmic design of the globe wide-area location service.

The Computer Journal 41, 5 (1998), 297–310.

[23] VEIZADES, J., GUTTMAN, E., PERKINS, C., AND KAPLAN, S. Service Location Protocol, June 1997. RFC 2165

(http://www.ietf.org/rfc/rfc2165.txt).

23

