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Overview

• Course administration

• What is a distributed system?

• Examples of distributed systems

• Distributed systems infrastructure

• Why study distributed systems?

• Distributed systems goals, challenges and methods

• Example: distributed key-value cache
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Course instructor

• Ashvin Goel

• Email: ashvin@eecg.toronto.edu

• Homepage: http://www.eecg.toronto.edu/~ashvin

• Office: Sandford Fleming 2001B

• Office hour: Thu 1-2 pm

• Research Interests: operating systems, cloud-scale systems
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Course TAs

• Teaching assistants

• Michail Bachras

• Yunhao Mao

• Shiquan Zhang

• David Chu

• Ding Guozhen

• ChenXing Yang

• Yuqin Yan

• Victor Pineda Gonzalez

• Available during lab sessions or on Piazza
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Recommended textbooks

• No required textbook

• All relevant content will be covered in the lectures

• We will post lecture slides and relevant resources

• Suggested resources and books

• Distributed Systems Notes
Tim Harris

• Distributed Systems, 3rd Edition
Maarten van Steen and Andrew S. Tanenbaum

• Designing Data-Intensive Applications: 
The Big Ideas Behind Reliable, Scalable, 
and Maintainable Systems
Martin Kleppmann

https://www.cl.cam.ac.uk/teaching/2223/ConcDisSys/dist-sys-notes.pdf
https://www.distributed-systems.net/index.php/books/ds3
https://www.amazon.ca/Designing-Data-Intensive-Applications-Reliable-Maintainable/dp/1449373321
https://www.amazon.ca/Designing-Data-Intensive-Applications-Reliable-Maintainable/dp/1449373321
https://www.amazon.ca/Designing-Data-Intensive-Applications-Reliable-Maintainable/dp/1449373321
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Communication

• Quercus 

• For announcements, grades, course evaluations

• Piazza

• Used for Q/A, discussion with peers, course staff

• Please send message on Piazza before emailing course staff

• Course website

• http://www.eecg.toronto.edu/~ashvin/teaching/ece419/current

• Provides lecture slides, schedule, grading policy, lab info, etc.
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Grading

• Exams (60%)

• Mid-term (20% total), Mar 5, Wed 7-8:30pm (EX100)

• Final (40%), date and time to be decided

• Lab assignments (40%)

• 5 labs (varying % each - see course website)

• Grading policies available on course website
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Labs

• All labs involve programming in Go language

• You need to work on all labs individually

• Expect to spend significant time on lab assignments

• Lab sessions provide help

• One or two TAs will be present

• Attendance is not mandatory

• Lab submission

• Electronic submission

• Follow the submission procedure as specified in lab handouts

• Please don’t make lab code publicly available
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Cheating

• Cheating is a serious offence, will be punished harshly

• For first offense, 0 marks for assignment

• What is cheating?

• Using someone else’s solution to finish your assignment

• Making your code available (even after course ends)

• What is NOT cheating?

• Helping others use systems or tools

• Helping others with high-level design issues

• We do use cheater-beaters

• Automatically compares your solutions with others
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How not to pass ECE419

• Do not come to lecture

• It’s nice outside, slides are online

• Reality: It is much more efficient to learn through class discussion

• Do not ask questions during the lecture or piazza

• It’s scary, I don’t want to embarrass myself

• Reality: Asking questions is the best way to clarify lecture material

• Wait until the last couple of days to start a lab

• Some of the lab assignments cannot be done in the last few days

• Copy other people’s lab projects

• That is cheating! How can you answer exam questions?
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Term-work petitions

• Due to circumstances beyond your control, if you are 
unable to submit labs or do the mid-term exam

• Please submit a term-work petition through the Engineering portal

• We will provide accommodations

• More details on course website
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Before we start

• Your background

• Any questions?
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What is a Distributed System?
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What is a distributed system?

• A set of computers (nodes) connected by a network

• Nodes do not share memory or clock

• Nodes work together as a single system

• Provide common set of services to users

• Enable scalable and reliable services
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Why distributed systems?

• Or, why not one computer to rule them all?

• Limited computation, memory, storage, GPUs, …

• Single point of failures

• One physical location
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Examples of Distributed Systems
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Social Network 18



Blockchain 19



Cars 20



Airplanes and Air Traffic Control 21



Traffic Light Controllers 22
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Distributed Systems Infrastructure



Google, 1997
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Google, 2012
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Google
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Microsoft
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Facebook
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Facebook

30



100,000s of physical servers
10s MW energy consumption

Facebook Prineville: 
3.2 million sq ft (½ km x ½ km)

$2B total investment

31
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Why Study Distributed Systems?
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Distributed systems are challenging 
(and fun)
• Many “moving parts”

• Execute software on many nodes concurrently

• Unreliable communication over the network

• No single global view of the system

• Sometimes, no single entity is in charge of the system

• New kinds of problems

• Partial failures

• No global time

• Correctness and consistency
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How to learn distributed systems?

• Distributed systems have strong theoretical underpinnings

• But you really learn by doing

• Building systems

• Debugging, modifying, dissecting existing systems

• Testing for correctness

• Evaluating performance, fault tolerance

35
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What will you learn in this course?

• Foundational material in distributed systems

• Principles, algorithms, architectures …

• Focus on infrastructure for distributed applications

• Essential for understanding modern computing

• Difficult and interesting problems

• Active research area

• Several case studies of heavily used, real-world systems

• Describes experience with practical deployments

• Lab experience with building distributed systems

• Helps develop deep technical skills in building large-scale systems
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Learning objectives

• Understand the design of distributed systems

• Reason about concurrency, timing

• Reason about failures

• Reason about consistency

• Reason about scalability

• Understand performance trade-offs

• Develop skills for building distributed systems
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Course Topics

• Introduction

• Programming distributed systems

• Distributed storage systems

• Replicated storage systems

• Scalable storage systems

• Transactional storage systems

• Byzantine failures
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Distributed Systems:
Goals, Challenges, Methods



40

Goals of a distributed system

• Abstraction: provide high-level interfaces for services

• E.g., distributed file systems, key-value stores, databases

• E.g., distributed computing frameworks

• Scalability: higher performance+capacity with more nodes

• Users are not aware of the number of users of the system

• Fault tolerance: provide reliable service despite failures

• Users are not aware when some nodes fail

• Consistency: behave like a single node, centralized system

• Users are not aware of the difference

• Security: behave like a single, trusted system



• Abstraction: provide high-level interfaces for services

• E.g., distributed file systems, key-value stores, databases

• E.g., distributed compute engines

• Scalability: more performance+capacity with more nodes

• Users are not aware of the number of users of the system

• Fault tolerance: provide reliable service despite failures

• Users are not aware when some nodes fail

• Consistency: behave like a single node, centralized system

• Users are not aware of the difference

• Security: behave like a single, trusted system

Applications focus on program logic,
System does the heavy lifting

41

Goals of a distributed system
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Scalability

• Computation, data storage needs grow with more users

• Goal: higher performance and capacity with more nodes

• Ideally, double the nodes ⇒ performance, storage capacity doubles

• Weak scaling:  double the job size, job takes same time to complete

• Strong scaling: same job takes half the time to complete

• Challenges

• How should data be partitioned across nodes?

• Partition equally based on data size? data accesses?

• How should a job be split and run in parallel across nodes?

• When job is run in parallel, slowest node determines performance

• Certain jobs cannot be easily parallelized, recall Amdahl’s law

• How to reduce network communication?



43

Scalability metrics and methods

• Metrics

• Throughput: jobs per second, higher is better

• Latency: time to complete a job, lower is better

• Tail latency also matters, i.e., how long does it take in the worst case

• Cost: resource usage, lower is better

• Methods

• Place data accessed together on same node/rack, better locality

• Place job’s tasks on nodes that store their data, better locality

• Co-locate tasks that communicate heavily, better locality

• Spread data and tasks across nodes, better load balance



Fault tolerance
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A distributed system is one in which the failure 
of a computer you didn't even know existed 

can render your own computer unusable

Leslie Lamport
Turing Award Winner, 2003
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Fault tolerance

• Thousands of nodes, so some failed nodes are the norm

• Goal: provide reliable service despite failures

• Durability: service doesn’t lose data

• Availability: service continues to make progress

• Challenges

• Nodes may fail temporarily or forever at any time

• Network links may delay messages for a long time or drop them

• Hard to know whether node has failed, or network is down

• Nodes may lose data or return corrupt data after a crash

• Networks may corrupt messages
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Fault tolerance metrics and methods

• Metrics

• MTBF: mean time between failures, higher is more reliable

• Availability: fraction of time service functions correctly

• Methods

• Retry operations on failure

• Store data on persistent storage for durability

• Replicate data for high availability

• Run redundant computations for high availability
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Data consistency

• Data is replicated (or cached) and accessed concurrently

• Replicas may see reads and updates in different orders

• Goal: behave like a single node, centralized system

• Reads return the value from the most recent write

• Challenges

• How to order updates across replicas?

• How to ensure updates occur exactly once?

• How to ensure latest data is read?

• How to ensure correctness under concurrent accesses?

• How to ensure correctness under failures?
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Security and trust

• Multiple nodes and network, so larger attack surface

• Goal: behave like a single, trusted system

• Challenges

• Nodes may be compromised, behave maliciously

• Nodes may alter, insert, drop messages

• Nodes may send different messages to different nodes

• …



Distributed systems make trade-offs
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Performance, 
Scalability

Data 
consistency

Fault
tolerance

Security,
Trust
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Typical trade-offs

• Performance over fault tolerance

• Avoid replicating data, replicas increase overhead

• Performance over consistency

• Avoid ordering updates

• Read potentially stale data

• Fault tolerance over consistency

• Update one replica synchronously, others asynchronously

• Read from any replica

• Security over performance

• Encrypt and authenticate data

• Communicate with many replicas to build trust
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Case studies

• Scalability

• Scalable coordination with Memcache

• Optimistic replication with Dynamo

• Fault tolerance

• State machine replication with RAFT

• Coordination with ZooKeeper

• Security and fault tolerance

• Bitcoin blockchain protocol

• We will discuss their different consistency guarantees
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Example: Distributed Key-Value Cache
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Why caching?

• Consider a web service with growing number of users

• Website adds more webservers for scaling service

• Database becomes bottleneck

Webserver

Database

Webserver
Webserver

Webserver
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Add a key-value cache service

• Let’s use a cache node to reduce load on the database

• Basic key-value cache abstraction is same as hash table

Webserver

Database

Webserver
Webserver

Webserver

Cache

put(key, value)  // write (key, value)
value ← get(key) // read value associated with key

put(key, value)
value ← get(key)

Cache stores [key, value] tuples in a hash table 
in DRAM (and optionally on storage as well)
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Cache operation

• Reads use get(k) to read data from cache

Webserver

Database
[k, A]

Webserver
Webserver

Webserver

Cache

A ← get(k)
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Cache operation

• Reads use get(k) to read data from cache

• If data is not cached, read from database, 
use put(k, value) to cache data

• Reduces load on database on future reads

Webserver

Database
[k, A]

Webserver
Webserver

Webserver

Cache
[k, A]

put(k, A)
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What about writes?

• Now we have two copies of data

• Either invalidate cache or ensure both copies are consistent

• Concurrency and failures cause complications

• We will look at this consistency problem later

Webserver

Database
[k, B]

Webserver
Webserver

Webserver

Cache
[k, A]



58

What if cache becomes the bottleneck?

• Add more cache nodes for scalability

• What data to store in each cache node?

Webserver

Database

Webserver
Webserver

Webserver

Cache Cache Cache Cache
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Option 1: replicated caches

• Each cache node can cache any data

• Each webserver can access any cache node

• Pros: hot data cached on multiple nodes, balances load on caches

• Cons: data cached multiple times, caches are not used efficiently

Webserver

Database

Webserver
Webserver

Webserver

Cache
a, b, t

Cache
b, c, p

Cache
b, c, r

Cache
b, x
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Option 2: partitioned (sharded) caches

• Each cache node stores a partition of the data

• Each webserver accesses cache node storing the partition

• Pros: data cached once, caches are used efficiently

• Cons: hot data cached on one node, node can become bottleneck

Webserver

Database

Webserver
Webserver

Webserver

Cache
a, b, c

Cache Cache
p

Cache
t, x

a-f g-m t-zn-s

Let’s focus on sharded caches,
what data should be in each partition?
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Range partitioning

Webserver
Webserver

Webserver
Webserver

Cache Cache Cache Cache

put(t, …)… ← get(b)

• Each cache stores a contiguous range of keys

• How to decide partition range for each node?

• Balance partition based on data size, number of accesses

• Place data accessed together in same cache for locality

a-f g-m t-zn-s
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Hash partitioning

• Assume N cache nodes, key K stored on node hash(K) % N

• Simpler to implement than range partitioning

• But no control over placement

• Adding or removing cache nodes is expensive

Webserver
Webserver

Webserver
Webserver

id: 0 id: 1 id: 2 id: 3

3 ← hash(b) % 4; put(b, …)0 ← hash(a) % 4; … ← get(a)
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What about node failures?

• If a node fails, webservers can access database directly

• When node restarts, it can start caching data again

• But a cold cache puts too much load on the database

Webserver
Webserver

Webserver
Webserver

Database id: 0 id: 1 id: 2 id: 3



id: 0 id: 1 id: 2 id: 3id: 0 id: 1 id: 2 id: 3
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Replicate the sharded caches

• We can replicate each cached node for fault tolerance

• If a node fails, replicas of the node can still serve data

• How to ensure consistency of all data copies?

• We will look at this replication problem later

Webserver
Webserver

Webserver
Webserver

Database id: 0 id: 1 id: 2 id: 3
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What if load increases?

• Add a cache node automatically for elastic scaling

• Option 1: drop cache data

• Drop cache data at all nodes, restart caching with N+1 nodes

• Cold caches put too much load on database

• Option 2: repartition cache data

• Repartition (shuffle) the cache data from N nodes to N+1 nodes

• Cache remains warm but repartitioning adds load on the system

id: 0 id: 1 id: 2 id: 3id: 0 id: 1 id: 2 id: 3id: 0 id: 1 id: 2 id: 3

id: 0id: 0id: 0
id: 1id: 1id: 1

id: 2id: 2id: 2
id: 3id: 3id: 3

id: 3id: 3id: 4
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What if load decreases?

• Remove a cache node automatically

• Same drop and repartition cache options

• For repartitioning from N to N-1 nodes, 
evict least recently used cache data

• Removed cache node can be used for other purposes, 
reduces cost of caching

id: 0 id: 1 id: 2 id: 3id: 0 id: 1 id: 2 id: 3id: 0 id: 1 id: 2 id: 3

id: 0id: 0id: 0
id: 1id: 1id: 1

id: 2id: 2id: 2
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Where is the cache, cached data?

• Webservers (clients) needs to know 

• Membership: location of all the cache nodes, e.g., IP addresses

• Membership changes as cache nodes are added or removed

• Mapping: location of cache node that holds data for a given key

• Mapping changes with repartitioning

• Typically, this information is kept at a coordination service

• Webservers may periodically check for changed information, or

• Service can inform webservers when information changes

• Coordination service must itself by scalable and reliable

• We will look at this coordination problem later
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What about data consistency?

• Many reasons for inconsistent data accesses

• Cache and database are accessed concurrently

• Cache node fails, restarts, recovers data from disk, has stale data

• Some clients bypass cache and access database directly

• Caches are replicated and inconsistent with each other

• Data consistency

• Reads return the value from most recent write

• Makes it easier to write applications

• No stale reads, no conflicting updates



69

Do we always need data consistency?

• While sharding helps scaling the cache, 
data consistency can limit scalability and availability

• Need to know whether cache is up-to-date

• Need to wait for cache to be up-to-date

• What if network between cache, database has temporarily failed?

• Often, applications can handle stale data

• Users don’t care about the exact value of “likes” on a webpage

• Compute based on stale data, incorporate new data as it arrives

• Sell an item, if eventually not available, issue refund

• We will look at various consistency models later
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Conclusions

• This course teaches you about distributed systems

• A distributed system consists of

• Multiple nodes connected by a network

• Nodes work together to provide services

• Goals

• Provide scalable, fault tolerant, consistent, secure services

• Applications use these services, focus on program logic

When you hear large-scale, web, cloud, data center services or apps … 

Think distributed systems

They are everywhere!
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