
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Threads and Concurrency

Overview

• Go programming language

• Threads and synchronization

• Web crawler in Go

2

3

Why Go for labs?

• Designed for building distributed infrastructure services

• E.g., Kubernetes, a container deployment system

• Good support for threads, RPC

• Other reasons

• Built-in strings, hash maps, dynamic arrays (easier to program)

• Statically compiled (relatively fast)

• Type-safe, memory-safe (less bugs)

• Garbage-collected (no use-after-free problems)

• Good libraries, deployment toolchain

4

Hello world in Go

Go resources

• Short paper describing motivation for and design of Go

• https://cacm.acm.org/research/the-go-programming-language-
and-environment/

• Getting familiar with Go

• Start with the tour of Go: http://tour.golang.org/

• After that: https://golang.org/doc/effective_go.html

5

https://cacm.acm.org/research/the-go-programming-language-and-environment/
https://cacm.acm.org/research/the-go-programming-language-and-environment/
http://tour.golang.org/
https://golang.org/doc/effective_go.html

Threads and Synchronization

6

What are threads?

• Programs use threads to do multiple things at once

• e.g., a video player needs to download and display video,
it can use two threads, one for each operation

• A thread executes a stream of instructions serially,
like a non-threaded program

• Threads share memory, e.g., variables

• Each thread has some per-thread state:
program counter, registers, stack

7

A simple threaded program

• Program has three threads: main, T1 and T2

T1() {
 v1 := 1
 shared = v1
}

T2() {
 v1 := shared
 v2 := 2
}

var shared int

main() {
 go T1()
 go T2()
 for {
 }
}

shared

main() {
 go T1())
 go T2()
 …

v1

v1, v2

Threads communicate by
accessing shared data

8

Concurrency vs. parallelism

• Concurrent execution:

• Threads execute in
overlapping time intervals

• Allows a program to use
CPU and IO devices in parallel

• Parallel execution

• Threads execute at the same time

• Allows a program to use
multiple CPUs in parallel

T1

T2

T3

Time, uniprocessor

Concurrent execution

Parallel execution

Time, dual processor

T1

T2

T3

9

Why use threads?

• Enable both IO concurrency and CPU parallelism

• I/O concurrency

• Clients send requests to a server in parallel, wait for replies

• Server processes many simultaneous client requests

• Server uses a thread per request

• A thread waits while reading data from slow disk for client X

• Another thread continues processing a request from client Y

• CPU parallelism

• Two threads execute a computation in parallel on two cores

10

Threading challenges

• Race conditions

• Certain thread interleavings cause incorrect behavior

• E.g., two threads update same shared variable, n = n+1,
update can be lost since it is not atomic

• Solution: use locks to perform update in a critical section

• Synchronization

• Some operations need to be performed in a particular order

• Solution: use condition vars, semaphores, bounded buffer

T1() {
 v1 := 1
 shared = v1
}

T2() {
 v1 := shared
 v2 := 2
}

Synchronize

initialize read

11

Webcrawler in Go

12

13

Webcrawler

• Webcrawler fetches web pages

• Starts at a page

• Parses links (URLs) in page and follows those links recursively

• Page contents and their URLs can be sent to an indexer

page0
.html

page1
.html

start
page

page3
.html

page2
.html

Webcrawler challenges

• Fetch each page once

• Minimize network bandwidth

• Avoids getting stuck in cycles

 Need to remember URLs visited

• Fetch pages efficiently

• Network latency is more
limiting than bandwidth

• Fetch pages in parallel

=> Use threads for concurrency

page0
.html

page1
.html

start
page

page3
.html

page2
.html

14

Webcrawler implementation in Go

• Let’s look at three implementations

• Serial

• Concurrent, synchronization using shared data and locks

• Concurrent, synchronization using bounded buffer (channels)

15

Shared data or channels

• Most problems can be solved in either style

• For synchronization (waiting/notification) use channels,
sync.Cond, Sleep, etc.

• For state that cannot be easily moved between threads
(e.g., large data structures), use shared state and locks

16

Conclusions

• Threads allow a program to utilize resources efficiently

• Allow CPU and IO devices to run concurrently

• Allow using multiple CPUs in parallel

• Threaded programs must handle

• Races when threads access shared data concurrently

• Solution: use mutual exclusion

• Synchronization when ordering needed across threads

• Solution: use condition variables, channels

17

	Slide 1: Threads and Concurrency
	Slide 2: Overview
	Slide 3: Why Go for labs?
	Slide 4: Hello world in Go
	Slide 5: Go resources
	Slide 6: Threads and Synchronization
	Slide 7: What are threads?
	Slide 8: A simple threaded program
	Slide 9: Concurrency vs. parallelism
	Slide 10: Why use threads?
	Slide 11: Threading challenges
	Slide 12: Webcrawler in Go
	Slide 13: Webcrawler
	Slide 14: Webcrawler challenges
	Slide 15: Webcrawler implementation in Go
	Slide 16: Shared data or channels
	Slide 17: Conclusions

