Threads and Concurrency

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419



Overview

* Go programming language
 Threads and synchronization

e Web crawlerin Go



Why Go for labs?

* Designed for building distributed infrastructure services

 E.g., Kubernetes, a container deployment system

e Good support for threads, RPC

* Other reasons
* Built-in strings, hash maps, dynamic arrays (easier to program)
e Statically compiled (relatively fast)
* Type-safe, memory-safe (less bugs)
e Garbage-collected (no use-after-free problems)

* Good libraries, deployment toolchain



Hello world in Go

[

package main

w

import (
n fmt n
"net/http"

W

wm

6 )

¢ func main() {

9 http.ListenAndServe ("localhost:8080",
10 http.HandlerFunc (hello))
a }

12
13 func hello(w http.ResponseWriter, req *http.Request) ({
14 fmt.Fprintf(w, "hello, world\n")

15 }



Go resources

* Short paper describing motivation for and design of Go

 https://cacm.acm.org/research/the-go-programming-language-
and-environment/

e Getting familiar with Go

e Start with the tour of Go: http://tour.golang.org/

o After that: https://golang.org/doc/effective go.html



https://cacm.acm.org/research/the-go-programming-language-and-environment/
https://cacm.acm.org/research/the-go-programming-language-and-environment/
http://tour.golang.org/
https://golang.org/doc/effective_go.html

Threads and Synchronization



What are threads?

* Programs use threads to do multiple things at once

* e.g., avideo player needs to download and display video,
it can use two threads, one for each operation

* A thread executes a stream of instructions serially,
like a non-threaded program

 Threads share memory, e.g., variables

 Each thread has some per-thread state:
program counter, registers, stack



A simple threaded program

* Program has three threads: main, T1 and T2

Threads communicate by
accessing shared data Ny User Address Space
vi = 1 Ctack | VbV
main() { ) | v
go T1() O N
g0 TZ() T2 main() {
for { vl := fext go T1<>>¢
} v2 = 2 g0 120
} } dats shared
heap




Concurrency vs. parallelism

* Concurrent execution:

 Threads execute in
overlapping time intervals

* Allows a program to use
CPU and 10 devices in parallel

 Parallel execution

* Threads execute at the same time

 Allows a program to use
multiple CPUs in parallel

T3

12
T1

T3

T2
T1

Concurrent execution

Time, uniprocessor

Parallel execution

Time, dual processor



Why use threads?

 Enable both IO concurrency and CPU parallelism

* |/O concurrency

Clients send requests to a server in parallel, wait for replies
Server processes many simultaneous client requests

Server uses a thread per request

A thread waits while reading data from slow disk for client X

Another thread continues processing a request from client Y

 CPU parallelism

Two threads execute a computation in parallel on two cores

10



Threading challenges

e Race conditions

Certain thread interleavings cause incorrect behavior

E.g., two threads update same shared variable, n = n+1,
update can be lost since it is not atomic

Solution: use locks to perform update in a critical section

* Synchronization

Some operations need to be performed in a particular order

Tl() { T2() {
= Synchronize = W
m /’ -
}
initialize read

Solution: use condition vars, semaphores, bounded buffer

11



Webcrawler in Go

12



Webcrawler

 Webcrawler fetches web pages
* Starts at a page
e Parses links (URLs) in page and follows those links recursively

* Page contents and their URLs can be sent to an indexer

pagel

13



Webcrawler challenges

* Fetch each page once
* Minimize network bandwidth
* Avoids getting stuck in cycles

— Need to remember URLs visited

* Fetch pages efficiently

 Network latency is more
limiting than bandwidth

 Fetch pages in parallel

=> Use threads for concurrency

pagel

14



Webcrawler implementation in Go

 Let’s look at three implementations

e Serial

* Concurrent, synchronization using shared data and locks

e Concurrent, synchronization using bounded buffer (channels)

15



Shared data or channels

* Most problems can be solved in either style

* For synchronization (waiting/notification) use channels,
sync.Cond, Sleep, etc.

* For state that cannot be easily moved between threads
(e.g., large data structures), use shared state and locks

16



Conclusions

 Threads allow a program to utilize resources efficiently

 Allow CPU and 10 devices to run concurrently

* Allow using multiple CPUs in parallel

* Threaded programs must handle

 Races when threads access shared data concurrently

e Solution: use mutual exclusion

* Synchronization when ordering needed across threads

* Solution: use condition variables, channels

17



	Slide 1: Threads and Concurrency
	Slide 2: Overview
	Slide 3: Why Go for labs?
	Slide 4: Hello world in Go
	Slide 5: Go resources 
	Slide 6: Threads and Synchronization
	Slide 7: What are threads?
	Slide 8: A simple threaded program
	Slide 9: Concurrency vs. parallelism
	Slide 10: Why use threads?
	Slide 11: Threading challenges
	Slide 12: Webcrawler in Go
	Slide 13: Webcrawler
	Slide 14: Webcrawler challenges
	Slide 15: Webcrawler implementation in Go
	Slide 16: Shared data or channels
	Slide 17: Conclusions

