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Overview

* Go programming language
 Threads and synchronization

e Web crawlerin Go



Why Go for labs?

* Designed for building distributed infrastructure services

 E.g., Kubernetes, a container deployment system

e Good support for threads, RPC

* Other reasons
* Built-in strings, hash maps, dynamic arrays (easier to program)
e Statically compiled (relatively fast)
* Type-safe, memory-safe (less bugs)
e Garbage-collected (no use-after-free problems)

* Good libraries, deployment toolchain



Hello world in Go

[

package main

w

import (
n fmt n
"net/http"

W

wm

6 )

¢ func main() {

9 http.ListenAndServe ("localhost:8080",
10 http.HandlerFunc (hello))
a }

12
13 func hello(w http.ResponseWriter, req *http.Request) ({
14 fmt.Fprintf(w, "hello, world\n")

15 }



Go resources

* Short paper describing motivation for and design of Go

 https://cacm.acm.org/research/the-go-programming-language-
and-environment/

e Getting familiar with Go

e Start with the tour of Go: http://tour.golang.org/

o After that: https://golang.org/doc/effective go.html



https://cacm.acm.org/research/the-go-programming-language-and-environment/
https://cacm.acm.org/research/the-go-programming-language-and-environment/
http://tour.golang.org/
https://golang.org/doc/effective_go.html

Threads and Synchronization



What are threads?

* Programs use threads to do multiple things at once

* e.g., avideo player needs to download and display video,
it can use two threads, one for each operation

* A thread executes a stream of instructions serially,
like a non-threaded program

 Threads share memory, e.g., variables

 Each thread has some per-thread state:
program counter, registers, stack



A simple threaded program

* Program has three threads: main, T1 and T2

Threads communicate by
accessing shared data Ny User Address Space
vi = 1 Ctack | VbV
main() { ) | v
go T1() O N
g0 TZ() T2 main() {
for { vl := fext go T1<>>¢
} v2 = 2 g0 120
} } dats shared
heap




Concurrency vs. parallelism

* Concurrent execution:

 Threads execute in
overlapping time intervals

* Allows a program to use
CPU and 10 devices in parallel

 Parallel execution

* Threads execute at the same time

 Allows a program to use
multiple CPUs in parallel
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Concurrent execution

Time, uniprocessor

Parallel execution

Time, dual processor



Why use threads?

 Enable both IO concurrency and CPU parallelism

* |/O concurrency

Clients send requests to a server in parallel, wait for replies
Server processes many simultaneous client requests

Server uses a thread per request

A thread waits while reading data from slow disk for client X

Another thread continues processing a request from client Y

 CPU parallelism

Two threads execute a computation in parallel on two cores
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Threading challenges

e Race conditions

Certain thread interleavings cause incorrect behavior

E.g., two threads update same shared variable, n = n+1,
update can be lost since it is not atomic

Solution: use locks to perform update in a critical section

* Synchronization

Some operations need to be performed in a particular order

Tl() { T2() {
= Synchronize = W
m /’ -
}
initialize read

Solution: use condition vars, semaphores, bounded buffer
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Webcrawler in Go
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Webcrawler

 Webcrawler fetches web pages
* Starts at a page
e Parses links (URLs) in page and follows those links recursively

* Page contents and their URLs can be sent to an indexer

pagel
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Webcrawler challenges

* Fetch each page once
* Minimize network bandwidth
* Avoids getting stuck in cycles

— Need to remember URLs visited

* Fetch pages efficiently

 Network latency is more
limiting than bandwidth

 Fetch pages in parallel

=> Use threads for concurrency

pagel
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Webcrawler implementation in Go

 Let’s look at three implementations

e Serial

* Concurrent, synchronization using shared data and locks

e Concurrent, synchronization using bounded buffer (channels)
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Shared data or channels

* Most problems can be solved in either style

* For synchronization (waiting/notification) use channels,
sync.Cond, Sleep, etc.

* For state that cannot be easily moved between threads
(e.g., large data structures), use shared state and locks
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Conclusions

 Threads allow a program to utilize resources efficiently

 Allow CPU and 10 devices to run concurrently

* Allow using multiple CPUs in parallel

* Threaded programs must handle

 Races when threads access shared data concurrently

e Solution: use mutual exclusion

* Synchronization when ordering needed across threads

* Solution: use condition variables, channels
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