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Models of Distributed Systems



Overview

• System models

• Failures and failure detectors
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System models

• A machine (computer, phone, car, etc.) is called a node

• A model of a distributed system specifies assumptions 
about faults that may occur

• Network behavior (e.g. message loss)

• Node behavior (e.g. crashes)

• Timing behavior (e.g. delays)
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System model: network behavior

• Assume bidirectional, point-to-point communication 
between two nodes, with one of:

• Reliable links

• A message is received if and only if it is sent

• Messages may be reordered

• Best-effort links

• Messages may be lost, duplicated, or reordered

• If you keep retrying, a message eventually gets through

• Insecure links

• A malicious adversary may interfere with messages, 
e.g., eavesdrop, modify, drop, spoof, replay

• Network partition: some links drop/delay all messages for 
extended periods of time
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System model: node behavior

• When executing an algorithm, assume node may have:

• Crash-stop (fail-stop) failure

• A node may crash at any time, e.g., due to power failure

• After crashing, it stops executing forever

• Crash-recovery (fail-recovery) failure

• A node may crash at any time, losing its in-memory state

• It may resume executing sometime later

• Data on non-volatile storage (e.g., disk, SSD) survives crash

• Byzantine (fail-arbitrary) failure

• A node is faulty if it deviates from the algorithm

• Faulty nodes may execute incorrectly, including being malicious

• A node that is not faulty is called correct
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System model: timing behavior

• Assume one of the following for network and nodes:

• Synchronous

• Message latency no greater than a known upper bound

• Nodes execute algorithm at a known speed

• Algorithms easier to design, but unrealistic assumptions

• Asynchronous

• Messages can be delayed arbitrarily

• Nodes can pause execution arbitrarily

• No timing guarantees at all

• Algorithms more robust, but hard to design, sometimes impossible …
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Two Generals problem

• A thought experiment that shows the challenge with 
coordinating actions over asynchronous links

• Used to motivate the atomic commit problem (discussed later)

• Problem: 

• Two generals need to agree to attack to win (or else they lose)

• Only communicate by sending messages (that may not arrive)
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Two Generals dilemma

• For G1, Situations 1 and 2 are indistinguishable

• Should generals attack before or after receiving reply?

• If before, then general may lose

• If after, then generals wait forever … why?
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System model: timing behavior

• Let’s look at a third timing model:

• Synchronous

• Message latency no greater than a known upper bound

• Nodes execute algorithm at a known speed

• Algorithms easier to design, but unrealistic assumptions

• Asynchronous

• Messages can be delayed arbitrarily

• Nodes can pause execution arbitrarily

• No timing guarantees at all

• Algorithms more robust, but hard to design/make guarantees

• Partially synchronous

• The system is asynchronous for some finite (but unknown) periods of 
time, synchronous otherwise

• Practical algorithms designed for realistic environments
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Why partially synchronous?

• Networks usually have predictable latency, 
but latency may increase due to:

• Message loss requiring retry

• Congestion/contention causing queueing

• Network/route reconfiguration

• Nodes usually execute code at a predictable speed, 
but occasional slowdown may occur due to:

• IO accesses

• Operating system scheduling

• Stop-the-world garbage collection pauses

• Page faults, swapping, thrashing
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Summary of system models

• For each of the three, pick one:

• Network: reliable, best-effort, or insecure

• Nodes: crash-stop, crash-recovery, or byzantine

• Timing: synchronous, asynchronous, or partially synchronous

• These models are the basis for any distributed system!

• If your fault assumptions are wrong, all bets are off!



Failures and Failure Detectors
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Availability

• Online store wants to sell stuff 24/7!

• Service unavailability = downtime = financial loss

• Availability: fraction of time service functions correctly

• Two nines    = 99% up        = down 3.7 days/year

• Three nines = 99.9% up     = down 8.8 hours/year

• Four nines   = 99.99% up   = down 53 minutes/year

• Five nines    = 99.999% up = down 5.3 minutes/year

• Service-Level Objective (SLO): availability expectation

• e.g., 99.9% of requests in a day get a response in 200 ms

• Service-Level Agreement (SLA): contract specifying an SLO, 
with penalties for violation 13



Achieving high availability

• Failure: system stops working, causes unavailability

• Fault: part of system fails, may also cause unavailability 

• Node fault: crashes, malicious behavior

• Network fault: packet drops, delays, network partitions

• Improve availability by

• Reducing frequency of faults

• E.g., use higher quality and redundant hardware

• Software fault tolerance

• Ensure that system continues working, despite some faults

• E.g., avoid single point of failure, a single node/link fault leads to failure

• As a first step, requires detecting failures
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Failure (Fault) detectors

• Failure detector: algorithm that detects whether another 
node is faulty (typically, crashed)

• Perfect failure detector: labels a node as faulty if and only 
if it has crashed

• Typical implementation for crash-stop/crash-recovery

• Send message, await response, 
label node as crashed if no reply within some timeout

• Problem: cannot reliably tell the difference between 
crashed/delayed node, lost/delayed message
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Failure detection in partially 
synchronous systems
• Perfect timeout-based failure detector only possible in  

synchronous crash-stop system with reliable links

• But real systems are partially synchronous or asynchronous!

• Eventually perfect failure detector possible in partially 
synchronous systems

• May temporarily mislabel a correct node as crashed

• May temporarily mislabel a crashed node as correct

• But eventually, labels a node as crashed iff it has crashed

• Reflects the reality that detection is not instantaneous, so 
spurious timeouts may occur



Conclusions

• The system model specifies assumptions about 1) faults in 
networks, 2) faults in nodes, and 3) timing behavior

• Correct design of distributed algorithms and systems 
depends on these assumptions

• Distributed systems strive to provide high availability

• With large systems, h/w failures become more common

• Need to detect and tolerate faults in software

• Cannot assume accurate failure detection in real systems
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