
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Time, Clocks and Ordering of Events

2

Overview

• Clock synchronization

• Logical clocks

• Vector clocks

3

Time on a single node

• Programs often need to determine or compare time

• E.g., log timestamped events, set a timeout, profile programs

• Programs running on a node depend on a single physical
clock to determine time

• But what about programs running across nodes?

4

Need for clock synchronization

• Each node has a separate physical clock

• Different clocks may have skew and drift

• Skew: instantaneous time difference between two clocks

• Drift: rate at which clock skew increases between two clocks

• Programs running on multiple nodes expect clocks to be
synchronized, i.e., no skew (or drift)

• E.g., order timestamped events in the log,
handle crashed clients using timeouts, etc.

• To synchronize clocks, we need to first understand
characteristics of physical clocks

5

Physical clocks

• Let’s look at three types of physical clocks

• Computer clocks

• Atomic clocks

• UTC radio/satellite receivers

6

Computer clocks

• Typical computers have a battery-backed clock that uses a
quartz crystal that oscillates at a defined frequency

• Oscillator is cheap (<$1) but sensitive to temperature, age,
vibration, radiation

• May drift by as much as a second per day!

7

Atomic clocks

• Caesium atomic clocks provide high accuracy

• Best accuracy is roughly 1 sec per 100 million years!

• Compact chip-scale atomic clock (CSAC) available
commercially, roughly 4cm x 4cm x 1cm

• Expensive, currently available for $5000

8

UTC radio/satellite receivers

• Universal Coordinated Time (UTC) is a time standard that
uses the weighted average of hundreds of atomic clocks
installed worldwide

• UTC is broadcast from radio stations, GPS satellites

• A radio/satellite receiver can acquire UTC

• GPS receivers can provide accuracy to ~1 microsecond

• But high-end receivers are expensive and don’t work indoors

9

Physical clocks: recap

• Let’s look at three types of physical clocks

• Computer clocks: cheap but high drift

• Atomic clocks: very accurate, but expensive

• UTC radio/satellite receivers: accurate, but still expensive

10

Key idea for synchronizing clocks

• Use a small number of time servers

• Fitted with atomic clock or UTC receiver hardware

• Use a distributed protocol to synchronize the clock on a
node with the time servers

11

Strawman for clock synchronization

• Client issues RPC to get current time from time server

• Sets computer clock to time received from time server

• Problem: receiving a messages has (varying) delay,
response has outdated time

Client Time Server

Time Time

get_time()

12

Cristian's algorithm: RPC message

1. Client sends request packet,
timestamped with its clock time T1

2. Server timestamps its receipt of
request with its clock time T2

3. Server sends response packet
with its clock times T3 and T2

4. Client timestamps its receipt of
response with its clock time T4

Then client uses the [T1,T2,T3,T4] tuple to synchronize its clock
with time server

Client Time Server

Time Time

T2

T3

T1

T4

13

Cristian's algorithm: clock sync

• Client should set its clock to T3+Dresp

• Round trip delay D = Dreq+Dresp

 = (T4-T1)-(T3-T2)

• Client samples round trip delay

• Client doesn't know Dreq

• Approximates Dreq ≈ Dresp
so Dresp = D/2

• Client sets local clock to T3+D/2

Client Time Server

Time Time

T3

T4

T1

T2

Dreq

Dresp

Adjusting clock time

• Client needs to ensure that its clock time increases
monotonically, i.e., it doesn’t go backward when it
synchronizes with a time server

• Otherwise, programs may not work correctly, e.g., make

• OS periodically reads hardware clock time: H(t)

• Calculates clock time: C(t) = a*H(t) + b
where a (slope) and b (offset) are constants

• Monotonicity requirement: t’ > t ⇒ C(t’) > C(t)

• Can achieve monotonicity by adjusting a and b

14

Clock adjustment in practice

real time

cl
o

ck
 t

im
e

sync point

clock
too slow

clock
too fast

sync point

15

C(t) = a1*H(t) + b1

C(t) = a2*H(t) + b2

Clock synchronization: takeaways

• Today, Network Time Protocol (NTP) is used for
synchronizing clocks to UTC

• Uses some of the methods we have discussed

• Maintains time to within 10s of milliseconds on the Internet

• Maintains time to within 1 millisecond in LAN

• However, clocks are never exactly synchronized

• Thus, challenging to reason about precise ordering of events

16

Special Relativity Lecture Notes, Tatsu Takeuchi 17

18

Logical Clocks

19

Ordering events

• There are 3 processes: P1, P2 and P3

• P1 posts message m1 to P2 and P3

• P2 sends reply r2 of message m1 to P1 and P3

• P3 receives reply r2 before message m1

P1 P2 P3

How can we fix the ordering problem?

Physical time

20

Ordering events

• Can we timestamp the message m1 and reply r2 and
deliver the messages in timestamp order on P3?

• P1 timestamps m1 with 10

• P2 timestamps m2 with 11

T1=10

T1=10

T1=10
T2=11

T2=11

P1 P2 P3

21

Ordering events

• But what if P2’s clock is running slower than P1’s clock?

• P3 may still deliver reply r2 before message m1

T1=10

T1=10

T1=10
T2=9

P1 P2 P3

T2=9

22

Logical clocks

• Key challenge: need to order events,
but physical clocks are hard to synchronize

• Landmark 1978 paper by Leslie Lamport

• Insight: processes do not need to agree on precise clock time,
what matters is the order in which events occur

• Idea: capture happens before relationship between every pair of
events to define logical clock time

• Physical clock counts number of elapsed seconds

• Logical clock will count the number of events

23

Defining happens-before

• Event a happens before event b is denoted as a → b

• Captures notion of causality: a may have influenced b

• Consider three processes: P1, P2, and P3

P1 P2 P3

Physical time

24

Defining happens-before

• We can observe event order within a process

• If a occurs before b within a process, then a → b

P1 P2 P3

a

b

25

Defining happens-before

• We can observe event order when processes communicate

• If b is a send, c is a receive, then b → c

P1 P2 P3

a

b

c

P1 P2 P3

26

Defining happens-before

• We can observe event order transitively

• If a → b, and b → c, then a → c

a

b

c

P1 P2 P3

27

Concurrent events

• Not all events are related by →

• a, d not related by →, so concurrent, written as a ∥ d

• a, d could be ordered in either order, it wouldn’t matter

a

b

c

d

28

Logical clock time

• We will assign a logical clock C(a) for every event a,
so that events can be ordered correctly

• Clock condition:
If a → b, then we will ensure that C(a) < C(b)

• Each process P maintains a logical clock C

P1
C1=0

P2
C2=0

P3
C3=0

Logical clock algorithm

a

b

c

29

Physical time

• Before P1 executes an event a:

• C1 = C1 + 1 // increment C1 at P1

• C(a) = C1 = 1 // set C(a) to current clock

P1
C1=1

P2
C2=0

P3
C3=0

Logical clock algorithm

a

b

c

C(a)=1

30

• When P1 sends message m to P2 at event b:

• C1 = C1 + 1 // increment C1 at P1

• C(b) = C1 = 2 // set C(b) to current clock

• Send C1 in message m, so C(m) = 2

P1
C1=2

P2
C2=0

P3
C3=0

Logical clock algorithm

a

b

c

C(a)=1

C(b)=2

31

• When P2 receives message m at event c:

• C2 = 1+max{C2, C(m)}
 = 1 + max{0, 2} = 3 // update C2 at P2

• C(c) = C2 = 3 // set C(c) to current clock

P1
C1=2

P2
C2=3

P3
C3=0

Logical clock algorithm

a

b

c

C(a)=1

C(b)=2

C(c)=3

32

• Before P3 executes an event d:

• C3 = C3 + 1 = 1

• C(d) = C3 = 1

P1
C1=2

P2
C2=3

P3
C3=1

Logical clock algorithm

a

b

c

C(a)=1

C(b)=2

C(c)=3

C(d)=1d

33

Ordering of events

• The logical clock algorithm, until now, can have ties

• e.g., C(a) in P1 is the same as C(d) in P3

P1
C1=2

P2
C2=3

P3
C3=1

a

b

c

C(a)=1

C(b)=2

C(c)=3

C(d)=1d

34

Total order of events

• The logical clock algorithm, until now, can have ties

• e.g., C(a) in P1 is the same as C(d) in P3

• Use unique process number to break ties

• Let Process Pi timestamp event a as tuple C(a).i

• Let Process Pj timestamp event b as tuple C(b).j

• Define order relation ⇒ between a and b events:

• a ⇒ b iff (C(a) < C(b)) or [(C(a) = C(b)) and (i < j)]

• The ⇒ relation is a total order,
since for any two events a and b, either a ⇒ b or b ⇒ a

35

Total ordering of events

• a ⇒ d ⇒ b ⇒ c

P1
C1=2

P2
C2=3

P3
C3=1

a

b

c

1.1

2.1

3.2

1.3d

Tuple 1.3 is the timestamp of
event d at Process 3

36

37

Implications of logical clocks

• Logical clocks allow assigning a total order to events

• Total order respects causality

• Ordering does not require physically synchronized clocks!

• Causality assumes all messages are visible to the system

• P1 issues a job opening request on a job site

• P1 calls P2 by phone to say that this job is available

• When P2 looks for the job opening, it is not there! Why?

• We will look at applications of logical clocks later

38

Vector Clocks

39

Motivation for vector clocks

• Let’s look at logical clocks again

• The clock condition says: a → b implies C(a) < C(b)

• However, C(a) < C(b) does not imply a→ b

• E.g., C(d) < C(c) below, but d ∥ c

P1
C1=2

P2
C2=3

P3
C3=1

a

b

c

C(a)=1

C(b)=2

C(c)=3

We cannot determine whether two events a and b
with logical times C(a), C(b) are causally related

C(d)=1d

Physical time

40

Vector clocks: idea

• One integer can’t order events in multiple processes

• Idea: label each event with a vector clock (VC)

• A vector clock is a vector of integers,
with one entry for each process

• For event e, VC(e) = [c1, c2, …, cn]

• n is number of processes

• Each entry ci is a count of events in Process i that happen before
event e

41

Vector clocks: algorithm

• Each process maintains a vector clock

• Initially, all vector clocks are VC = [0, 0, …, 0]

• Three rules:

1. For each local event in Process i:

• VC[i] = VC[i] + 1 // increment count for self

2. When Process i sends a message m to any process:

• VC[i] = VC[i] + 1

• send(VC, m) // send local vector with message m

3. When Process i receives message with vector clock VCm:

• VC[j] = max{VC[j], VCm[j]}, for each j in {1, …, n}

• VC[i] = VC[i] + 1

• Rules like logical clock rules, but use vector clocks

42

Vector clocks: example

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying send rule

• Piggyback local vector clock
on inter-process message

• Applying receive rule

P1
VC1

P2
VC2

P3
VC3

Physical time

a

b

c

[1, 0, 0]

[2, 0, 0]

[2, 1, 0]

e

d

f

43

Vector clocks: example

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying send rule

• Piggyback local vector clock
on inter-process message

• Applying receive rule

P1
VC1

P2
VC2

P3
VC3

a

b

c

[1, 0, 0]

[2, 0, 0]

[2, 1, 0]

e[2, 2, 0]

[0, 0, 1]d

[2, 2, 2]f

44

Comparing vector clocks

• For events a and b,
the rules for comparing vector clocks are:

• V(a) = V(b) when ak = bk for all k

• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• V(a) ∥ V(b) when ai < bi and aj > bj, for some i and j

Vector clocks and causality

• Vector clocks capture causality:

• V(a) < V(b) ⇔ a → b

• V(a) = V(b):
a and b are the same event

• V(a) ∥ V(b):
a and b are concurrent

• We will look at applications
of vector clocks later

45

P1
VC1

P2
VC2

P3
VC3

a

b

c

[1, 0, 0]

[2, 0, 0]

[2, 1, 0]

e[2, 2, 0]

[0, 0, 1]d

[2, 2, 2]f

Conclusions: physical clocks

• Each node runs its own physical clock

• Distributed applications running on different nodes need
to order events, expect clocks to be synchronized

• Clock synchronization protocols allow synchronizing a
physical clock to a reference clock

• But exact synchronization is not possible

46

Conclusions: logical, vector clocks

• Happens-before → relationship allows tracking potential
causality between events

• Logical clocks use → to provide a total order of events:

• a → b ⇒ C(a) < C(b), without requiring physical clocks

• Use a single counter per event, but cannot track causality

• Vector clocks capture causal order between events:

• a → b⇔ V(a) < V(b)

• Require a vector counter per event

47

	Slide 1: Time, Clocks and Ordering of Events
	Slide 2: Overview
	Slide 3: Time on a single node
	Slide 4: Need for clock synchronization
	Slide 5: Physical clocks
	Slide 6: Computer clocks
	Slide 7: Atomic clocks
	Slide 8: UTC radio/satellite receivers
	Slide 9: Physical clocks: recap
	Slide 10: Key idea for synchronizing clocks
	Slide 11: Strawman for clock synchronization
	Slide 12: Cristian's algorithm: RPC message
	Slide 13: Cristian's algorithm: clock sync
	Slide 14: Adjusting clock time
	Slide 15: Clock adjustment in practice
	Slide 16: Clock synchronization: takeaways
	Slide 17
	Slide 18: Logical Clocks
	Slide 19: Ordering events
	Slide 20: Ordering events
	Slide 21: Ordering events
	Slide 22: Logical clocks
	Slide 23: Defining happens-before
	Slide 24: Defining happens-before
	Slide 25: Defining happens-before
	Slide 26: Defining happens-before
	Slide 27: Concurrent events
	Slide 28: Logical clock time
	Slide 29: Logical clock algorithm
	Slide 30: Logical clock algorithm
	Slide 31: Logical clock algorithm
	Slide 32: Logical clock algorithm
	Slide 33: Logical clock algorithm
	Slide 34: Ordering of events
	Slide 35: Total order of events
	Slide 36: Total ordering of events
	Slide 37: Implications of logical clocks
	Slide 38: Vector Clocks
	Slide 39: Motivation for vector clocks
	Slide 40: Vector clocks: idea
	Slide 41: Vector clocks: algorithm
	Slide 42: Vector clocks: example
	Slide 43: Vector clocks: example
	Slide 44: Comparing vector clocks
	Slide 45: Vector clocks and causality
	Slide 46: Conclusions: physical clocks
	Slide 47: Conclusions: logical, vector clocks

