
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

With thanks to Tim Harris and Martin Kleppmann,
Lecture notes on Concurrent and Distributed Systems

Broadcast Communication



Overview

• What is broadcast communication?

• Broadcast models

• Broadcast algorithms

2



What is broadcast communication?

• Broadcast (multicast) is group communication:

• Terminology: one node broadcasts message, 
all nodes in group deliver message to application

• Set of group members may be fixed (static) or 
dynamic (nodes may join or leave the group)

• If one node is faulty, remaining group members carry on

• Assume point-to-point messages between nodes

3



Broadcast system model

• Links: best-effort (messages may be lost or duplicated) or 
reliable (correct nodes deliver message to all nodes)

• Nodes: may have crash-stop failures

• Timing: asynchronous or partially synchronous, 
i.e., no upper bound on message latency

4



Broadcast architecture

• A node sends a message to nodes in the group (including 
itself) by calling a broadcast algorithm

• Algorithm uses point-to-point send/recv messages,
delivers message to application (possibly with delay)

Application

Send Recv

Broadcast algorithm

Node A Node B

Broadcast

Network

Application

Send Recv

Broadcast algorithm

Deliver

5



Broadcast Models

6



Broadcast models

• All the models below provide reliable broadcast, 
differ in delivery order of messages to nodes

• FIFO broadcast:

• If m1 and m2 are broadcast by the same node, 
and broadcast(m1) → broadcast(m2), 
then m1 must be delivered before m2

• Causal broadcast:

• If broadcast(m1) → broadcast(m2), 
then m1 must be delivered before m2

• Total order broadcast:

• If m1 is delivered before m2 on one node, 
then m1 must be delivered before m2 on all nodes

7



FIFO broadcast example

• N1 sends messages m1 then m3

• N2 sends message m2

• Is this a FIFO broadcast?

N1 N2 N3

8

Physical time



9

Is this a causal broadcast?

• How can we make it a causal broadcast?

• If m2 received before m1, delay delivery of m2 after m1

• Can we delay delivery of m2 after m3 on N3?

N1 N2 N3

recv

deliver



Is this a causal broadcast?

10

N1 N2 N3



Is this a total-order broadcast?

• How can we make it a total-order broadcast?

• We can delay delivery of m3 at N1

N1 N2 N3

broadcast

deliver

11



Is this a total-order broadcast?

• How can we make it a total-order broadcast?

• We can delay delivery of m2 at N2

N1 N2 N3

broadcast

deliver

12



Relationship between broadcast models

13

= stronger than

Causal-Total order

Best-effort

Reliable

FIFO

Causal FIFO-Total order

Total order

Ensures 
messages 

delivered to 
all nodes

Ensure 
correct 

ordering



Broadcast Algorithms

14



Broadcast algorithms

15

= stronger than

Causal-Total order

Best-effort

1. Reliable

2. FIFO

3. Causal FIFO-Total order

Total order

Ensure 
message 

delivered to 
all nodes

Ensure 
correct 

ordering

4A. Single leader

4B. Logical clocks



16

1. Reliable broadcast - first try

• Broadcasting node sends message directly to each node

• Make best-effort broadcast reliable by retransmitting 
dropped messages and deduplicating messages

• Any problem?

• Broadcasting node may crash before all messages are delivered

N1 N2 N3

Physical time



1. Reliable broadcast

• For reliable broadcast, we need help from other nodes

• Eager reliable broadcast

• When a node receives a message for the first time, 
it forwards message to all other nodes

• Pros: ensures that even if some nodes crash, 
the rest of the correct nodes will receive the message

• Cons: inefficient, per broadcast, O(n2) forwarded messages

• Gossip protocol

• Broadcast node sends to a fixed number of random nodes, 
when a node receives a message for the first time, 
it forwards message to a fixed number of random nodes

• Pros: efficient, resilient to loss, crashes

• Cons: only guarantees reliable delivery with high probability
17



18

2. Why FIFO Broadcast?

• With FIFO broadcast, messages from a node are delivered 
in order (reliably) to other nodes

• Node 1

• M1: I am going to Pub on College Street

• M2: Meet me there

• Node 2

• If the node received M2 before M1, it is confused



19

2. FIFO broadcast - setup

• Assuming N nodes, each node maintains three variables:

• seq:      sequence number (count) of messages broadcast 
             by this node

• D:         vector of size N, containing count of messages 
             from each node delivered at this node

• buffer: buffer for received messages

• sequence number and D vector at a node help track next 
message from a sender that can be delivered to the node

• buffer will buffer the messages received out-of-order 



2. FIFO broadcast - algorithm

seq := 0;               # count of messages broadcast by node
D := [0, 0, . . . , 0]; # count of messages delivered
buffer := {}            # buffer for received messages

when Node i broadcasts a message m:
    send msg = (i, seq, m) via reliable broadcast
    seq = seq + 1

when Node i receives a message msg:
    append(buffer, msg)
    foreach (msg = (j, seq, m) in buffer) and (seq == D[j]):
        deliver m to application
        remove(buffer, msg)
        D[j] = D[j] + 1

increase count of 
messages delivered from j

check whether msg from j 
is the next one in FIFO 

order

20



21

3. Why Causal Broadcast?

• FIFO broadcast assumes messages broadcast from 
different nodes are independent

• With causal broadcast, 
if broadcast of M1 happens before broadcast of M2, 
then M1 is delivered (reliably) before M2

• Node 1

• M1: I am going to Pub on College Street

• Node 2

• M1 delivered

• M2: Let’s meet at 8 pm (M2 causally depends on M1)

• Node 3

• If M2 delivered before M1, it is confused



3. Causal broadcast - setup

• Each node maintains the same three variables as FIFO:

• seq:      sequence number (count) of messages broadcast 
             by this node

• D:         vector of size N, containing count of messages 
             from each node delivered at this node

• buffer: buffer for received messages

• Besides sending sequence number, also send D vector

• Why send this vector?

• This vector has some similarities to a vector clock (since both 
ensure causality) but it is updated differently

22



3. Causal broadcast - algorithm

23

seq := 0;               # count of messages broadcast by node
D := [0, 0, . . . , 0]; # count of messages delivered
buffer := {}            # buffer for received messages

when Node i broadcasts a message m:
deps = D; deps[i] = seq;

    send msg = (i, deps, m) via reliable broadcast
    seq = seq + 1

when Node i receives a message msg:
    append(buffer, msg)
    foreach (msg = (j, deps, m) in buffer) and (deps <= D):
        deliver m to application
        remove(buffer, msg)
        D[j] = D[j] + 1

check whether dependencies in msg 
from j have been delivered by this node

increase count of 
messages delivered from j



24

3. Causal broadcast - example

• Vectors shown at nodes are the D (delivered) vector

• Vectors shown with messages are deps vector

N1 N2 N3

recv: [1 0 0] ≰ [0 0 0]

deliver

[0 0 0]

[1 0 0] [1 0 0]

[1 1 0][1 1 0]

[0 0 0] [0 0 0]

[1 0 0]

[1 1 0]

Physical time



25

4. Why Total Order Broadcast?

• Causal broadcast delivers message in causal (partial) order, 
but messages may be delivered by nodes in different order 

• E.g., independent M1 and M2 broadcast by Nodes A and B 
can be delivered to A and B in different order

• With total order broadcast, messages are delivered in 
same order on all nodes

• By default, may not be FIFO or causal order

game score = 10

Replica 1 Replica 2

M1: Add 1 to score
M2: Double score

M2: Double score
M1: Add 1 to score

game score is inconsistent



26

4A. Total order broadcast: single leader 

• One node is designated as leader (sequencer)

• To broadcast message, node sends it to the leader

• Leader broadcasts it via FIFO broadcast

• Ensures FIFO-total order broadcast

• Assumption: leader does not crash

• Leader crashes ⇒ no more messages delivered

• Changing the leader safely is difficult

• Who detects a leader failure?

• What if a leader can communicate with some (but not all) clients?

• What if a leader fails temporarily, another node is chosen as the new 
leader, and then the old leader starts responding again?



27

4B. Total order broadcast: logical clocks

• When node broadcasts message:

• Attach logical clock timestamp to the message

• Send message via reliable broadcast

• When node receives message:

• Buffer message in total order of timestamps

• Suppose the earliest message in the buffer has timestamp T

• When can we safely deliver it?

• When we have seen all messages with timestamp < T



4B. Total order broadcast: logical clocks

• When node broadcasts message:

• Attach logical clock timestamp to the message

• Send message via reliable broadcast

• When node receives message:

• Buffer message in total order of timestamps

• Ensure that messages are received in FIFO order

• Deliver earliest message in the buffer with timestamp T when 
messages with timestamp ≥ T are received from every node

• Ensures FIFO-total order broadcast

• Assumption: nodes do not crash, why?

28



4B. Total order broadcast: example

• An arrow shows msg sent and received (not delivered)

• A […] buffer shows logical timestamps in sorted order

• Can m1=1.1 be delivered by any node now?

N1
[2, 2, 0]

N2
[2, 2, 0]

N3
[2, 2, 0]

[1.1]

[1.1]

[1.1]

[1.1 2.2]

[1.1 2.1 2.2]
[1.1 2.1]

[1.1 2.1]
[1.1 2.1 2.2]

[1.1 2.1 2.2]

29

Physical time

vector of last 
timestamp 

received from 
each node



4B. Total order broadcast: example

• If a node doesn’t send messages, others can’t proceed

• Receiver should send ack messages when 
its last timestamp < received message timestamp

N1
[2, 2, 0]

N2
[2, 2, 0]

N3
[2, 2, 0]

[1.1]

[1.1]

[1.1]

[1.1 2.2]

[1.1 2.1]
[1.1 2.1 2.2] [1.1 2.1]

[1.1 2.1 2.2]

N1, N2 and N3 can deliver m1=1.1 30

[1.1 2.1 2.2]

2 2 2



31

Conclusions

• Broadcast (multicast) communication is used by a node to 
send messages to a group of nodes

• It is useful for many distributed algorithms, e.g., replication

• Broadcast models include best-effort, reliable, FIFO, causal 
and total order

• Other than best-effort, others offer reliable delivery

• FIFO, causal and total order prescribe delivery order

• With total order broadcast, when a node broadcasts a  message, it 
needs to wait to deliver the message to itself

• In these slides, algorithms for all models, except total 
order broadcast, handle node failures

• Later, we will look at fault-tolerant total order broadcast


	Slide 1: Broadcast Communication
	Slide 2: Overview
	Slide 3: What is broadcast communication?
	Slide 4: Broadcast system model
	Slide 5: Broadcast architecture
	Slide 6: Broadcast Models
	Slide 7: Broadcast models
	Slide 8: FIFO broadcast example
	Slide 9: Is this a causal broadcast?
	Slide 10: Is this a causal broadcast?
	Slide 11: Is this a total-order broadcast?
	Slide 12: Is this a total-order broadcast?
	Slide 13: Relationship between broadcast models
	Slide 14: Broadcast Algorithms
	Slide 15: Broadcast algorithms
	Slide 16: 1. Reliable broadcast - first try
	Slide 17: 1. Reliable broadcast
	Slide 18: 2. Why FIFO Broadcast?
	Slide 19: 2. FIFO broadcast - setup
	Slide 20: 2. FIFO broadcast - algorithm
	Slide 21: 3. Why Causal Broadcast?
	Slide 22: 3. Causal broadcast - setup
	Slide 23: 3. Causal broadcast - algorithm
	Slide 24: 3. Causal broadcast - example
	Slide 25: 4. Why Total Order Broadcast?
	Slide 26: 4A. Total order broadcast: single leader 
	Slide 27: 4B. Total order broadcast: logical clocks
	Slide 28: 4B. Total order broadcast: logical clocks
	Slide 29: 4B. Total order broadcast: example
	Slide 30: 4B. Total order broadcast: example
	Slide 31: Conclusions

