Broadcast Communication

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

With thanks to Tim Harris and Martin Kleppmann,
Lecture notes on Concurrent and Distributed Systems

Overview

e What is broadcast communication?
e Broadcast models

* Broadcast algorithms

What is broadcast communication?

* Broadcast (multicast) is group communication:

Terminology: one node broadcasts message,
all nodes in group deliver message to application

Set of group members may be fixed (static) or
dynamic (nodes may join or leave the group)

If one node is faulty, remaining group members carry on

Assume point-to-point messages between nodes

Broadcast system model

e Links: best-effort (messages may be lost or duplicated) or
reliable (correct nodes deliver message to all nodes)

 Nodes: may have crash-stop failures

 Timing: asynchronous or partially synchronous,
i.e., no upper bound on message latency

Broadcast architecture

A node sends a message to nodes in the group (including
itself) by calling a broadcast algorithm

e Algorithm uses point-to-point send/recv messages,
delivers message to application (possibly with delay)

Node A Node B
Application Application
Broadcast ; Deliver t
Broadcast algorithm Broadcast algorithm

Send l, Recv t Send ‘ Recv t

Network

Broadcast Models

Broadcast models

* All the models below provide reliable broadcast,
differ in delivery order of messages to nodes

* FIFO broadcast:

 |f m1and m2 are broadcast by the same node,
and broadcast(m1) - broadcast(m?2),
then m1 must be delivered before m2

e (Causal broadcast:

* If broadcast(m1) - broadcast(m?2),
then m1 must be delivered before m2

e Total order broadcast:

 If mlis delivered before m2 on one node,
then m1 must be delivered before m2 on all nodes

FIFO broadcast example

* N1 sends messages m1 then m3

* N2 sends message m2

 |sthis a FIFO broadcast?

Physical time l

N1 N2 N3
(% m3
)
m2 m?2
m3) /77]
m3

Is this a causal broadcast?

e How can we make it a causal broadcast?
* If m2 received before m1, delay delivery of m2 after m1

 Can we delay delivery of m2 after m3 on N3?

N1 N2 N3
(% m1
)
m2 m?2
recv
m3) /77] .
deliver
m3

Is this a causal broadcast?

N1

N2

Y
%

m2

m3

Mmi

N3

m2

/

m3

10

Is this a total-order broadcast?

e How can we make it a total-order broadcast?

 We can delay delivery of m3 at N1

N1 N2 N3
D()&
)
M3
m2 m2
broadcast m3, L
deliver \“$
! m3

Is this a total-order broadcast?

e How can we make it a total-order broadcast?

 We can delay delivery of m2 at N2

N1

ol

N2 N3

DO&

broadcast

3

deliver

m\A<
)

m3

12

Relationship between broadcast models

‘ Causal-Total order

- /\

correct Causal FIFO-Total order
FIFO Total order

messages __— Reliable

delivered to ‘= stronger than
all nodes

Best-effort

13

Broadcast Algorithms

14

Broadcast algorithms

/\ 4A. Single leader

3. Causal FIFO-Total order <

2. FIFO

c

1. Reliable

| |

15

1. Reliable broadcast - first try

Broadcasting node sends message directly to each node

Make best-effort broadcast reliable by retransmitting

dropped messages and deduplicating messages

 Any problem?

* Broadcasting node may crash before all messages are delivered

N1

Physical time l D&)

\/

N2

N3

m
\J*x

\J

\/

16

1. Reliable broadcast

* For reliable broadcast, we need help from other nodes

* Eager reliable broadcast

* When a node receives a message for the first time,
it forwards message to all other nodes

* Pros: ensures that even if some nodes crash,
the rest of the correct nodes will receive the message

* Cons: inefficient, per broadcast, O(n?) forwarded messages

* Gossip protocol

* Broadcast node sends to a fixed number of random nodes,
when a node receives a message for the first time,
it forwards message to a fixed number of random nodes

* Pros: efficient, resilient to loss, crashes

e Cons: only guarantees reliable delivery with high probability
17

2. Why FIFO Broadcast?

* With FIFO broadcast, messages from a node are delivered
in order (reliably) to other nodes

* Nodel

e M1:1am going to Pub on College Street
e M2: Meet me there

* Node?2

* If the node received M2 before M1, it is confused

18

2. FIFO broadcast - setup

Assuming N nodes, each node maintains three variables:

* seq: sequence number (count) of messages broadcast
by this node

* D: vector of size N, containing count of messages
from each node delivered at this node

* buffer: buffer for received messages

sequence number and D vector at a node help track next
message from a sender that can be delivered to the node

buffer will buffer the messages received out-of-order

19

2. FIFO broadcast - algorithm

seq := 0; # count of messages broadcast by node
D :=[0, 6, . . . , O]; # count of messages delivered
buffer := {} # buffer for received messages

when Node 1 broadcasts a message m:
send msg = (i, seq, m) via reliable broadcast

seq = seq + 1

check whether msg from j
is the next one in FIFO

order
when Node 1 receives a message msg:

append(buffer, msg)

foreach (msg = (j, seq, m) in buffer) and (seq == D[7j]):
deliver m to application
remove(buffer, msg)

D[j] = D[J] + 1 .
\ increase count of

messages delivered from j

20

3. Why Causal Broadcast?

FIFO broadcast assumes messages broadcast from
different nodes are independent

With causal broadcast,
if broadcast of M1 happens before broadcast of M2,
then M1 is delivered (reliably) before M2

* Nodel
e M1:1am going to Pub on College Street
* Node?2

M1 delivered
e M2: Let’'s meet at 8 pm (M2 causally depends on M1)

e Node3
* If M2 delivered before M1, it is confused

21

3. Causal broadcast - setup

e Each node maintains the same three variables as FIFO:

* seq: sequence number (count) of messages broadcast
by this node

* D: vector of size N, containing count of messages
from each node delivered at this node

* buffer: buffer for received messages

* Besides sending sequence number, also send D vector

Why send this vector?

* This vector has some similarities to a vector clock (since both
ensure causality) but it is updated differently

3. Causal broadcast - algorithm

seq := 0; # count of messages broadcast by node
D :=[0, 6, . . . , O]; # count of messages delivered
buffer := {} # buffer for received messages

when Node 1 broadcasts a message m:
= D; [i] = seq;
send msg = (i, , m) via reliable broadcast

seq = seq + 1 check whether dependencies in msg

from j have been delivered by this node

when Node 1 receives a message msg:
append(buffer, msg)
foreach (msg = (3, , m) in buffer) and (<= D):
deliver m to application
remove(buffer, msg)

D[j] = D[J] + 1 .
\ increase count of

messages delivered from j
23

3. Causal broadcast - example

e Vectors shown at nodes are the D (delivered) vector

* Vectors shown with messages are

N1 N2

[000]

Physical time l /

[110](

[000]

)[100]

vector

N3

[000]

recv: [100] £ [000]

[100]

deliver
[110]

24

4. Why Total Order Broadcast?

e (Causal broadcast delivers message in causal (partial) order,
but messages may be delivered by nodes in different order

* E.g., independent M1 and M2 broadcast by Nodes A and B
can be delivered to A and B in different order

* With total order broadcast, messages are delivered in
same order on all nodes

* By default, may not be FIFO or causal order

game score = 10

Replica 1 Replica 2
M1: Add 1 to score M?2: Double score
M2: Double score M1: Add 1 to score

game score is inconsistent

25

4A. Total order broadcast: single leader

 One node is designated as leader (sequencer)
 To broadcast message, node sends it to the leader

 Leader broadcasts it via FIFO broadcast

 Ensures FIFO-total order broadcast

 Assumption: leader does not crash

 Leader crashes = no more messages delivered

* Changing the leader safely is difficult

* Who detects a leader failure?

* What if a leader can communicate with some (but not all) clients?

 What if a leader fails temporarily, another node is chosen as the new
leader, and then the old leader starts responding again?

26

4B. Total order broadcast: logical clocks

* When node broadcasts message:

e Attach logical clock timestamp to the message

* Send message via reliable broadcast

* When node receives message:

 Buffer message in total order of timestamps

* Suppose the earliest message in the buffer has timestamp T

* When can we safely deliver it?

* When we have seen all messages with timestamp < T

27

4B. Total order broadcast: logical clocks

* When node broadcasts message:

e Attach logical clock timestamp to the message

* Send message via reliable broadcast

* When node receives message:

 Buffer message in total order of timestamps
* Ensure that messages are received in FIFO order

* Deliver earliest message in the buffer with timestamp T when
messages with timestamp > T are received from every node

 Ensures FIFO-total order broadcast

* Assumption: nodes do not crash, why?

28

4B. Total order broadcast: example

 An arrow shows msg sent and received (not delivered)

 A|[...] buffer shows logical timestamps in sorted order

e Canml=1.1 be delivered by any node now?

Physical time l

[1.12.12.2]

[1.1]

[1.12.1]

N1 N2
[2, 2, 0] [2, 2, 0]

0

-

[1.12.12.2]
\J

Mi=7 4
)\) (1.1]

L 3=2.1)

vector of last

timestamp
N3 / received from
2.2 O‘]" each node
) [1.1]
[1.12.1]
[1.12.12.2]

29

4B. Total order broadcast: example

* |Ifa node doesn’t send messages, others can’t proceed

N1 N2 N3
2,2, 2] [2, 2, 2] (2,2, 7]

(Pp~T114
[1.1] > [1.1]
mjp

[1.1]

[1.12.1]
[1.12.12.2]

[1-1 2.1 2.2] [1.12.1]

[1.12.12.2]

N1, N2 and N3 can deliver m1=1.1

30

Conclusions

* Broadcast (multicast) communication is used by a node to
send messages to a group of nodes

e Itis useful for many distributed algorithms, e.g., replication
 Broadcast models include best-effort, reliable, FIFO, causal
and total order

e Other than best-effort, others offer reliable delivery
* FIFO, causal and total order prescribe delivery order

 With total order broadcast, when a node broadcasts a message, it
needs to wait to deliver the message to itself

* Inthese slides, algorithms for all models, except total
order broadcast, handle node failures

e Later, we will look at fault-tolerant total order broadcast

31

	Slide 1: Broadcast Communication
	Slide 2: Overview
	Slide 3: What is broadcast communication?
	Slide 4: Broadcast system model
	Slide 5: Broadcast architecture
	Slide 6: Broadcast Models
	Slide 7: Broadcast models
	Slide 8: FIFO broadcast example
	Slide 9: Is this a causal broadcast?
	Slide 10: Is this a causal broadcast?
	Slide 11: Is this a total-order broadcast?
	Slide 12: Is this a total-order broadcast?
	Slide 13: Relationship between broadcast models
	Slide 14: Broadcast Algorithms
	Slide 15: Broadcast algorithms
	Slide 16: 1. Reliable broadcast - first try
	Slide 17: 1. Reliable broadcast
	Slide 18: 2. Why FIFO Broadcast?
	Slide 19: 2. FIFO broadcast - setup
	Slide 20: 2. FIFO broadcast - algorithm
	Slide 21: 3. Why Causal Broadcast?
	Slide 22: 3. Causal broadcast - setup
	Slide 23: 3. Causal broadcast - algorithm
	Slide 24: 3. Causal broadcast - example
	Slide 25: 4. Why Total Order Broadcast?
	Slide 26: 4A. Total order broadcast: single leader
	Slide 27: 4B. Total order broadcast: logical clocks
	Slide 28: 4B. Total order broadcast: logical clocks
	Slide 29: 4B. Total order broadcast: example
	Slide 30: 4B. Total order broadcast: example
	Slide 31: Conclusions

