Data Consistency and Linearizability

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Overview

e Storage system and data consistency
* Linearizability

 Implementing linearizability

Storage system

 Assume that networked clients access a storage system

» Storage system API provides read/write operations
* Block store: read/write fixed-size blocks
* File system: read/write byte range within variable-sized files
* Key-value store: get/put key-value pairs

» Databases: read/update rows of tables

Storage system

API Data API
Clientl [« 8 <— Client2

Clients of storage system

 C(Clients can be either end-users or other services

e Users directly accessing cloud storage

* Video delivery service storing data at a separate storage service

 Sometimes clients may be co-located with the storage
system on the same physical servers

 May allow optimizations, e.g., data placement

Storage system

API Data API
Clientl [« 8 <— Client2

Expected behavior of storage system

e Say Clientl issues put(k, v1) and receives ack

 Then, Client 2 issues get(k)

What can the client expect get(k) to return?

Data
Client1 8 Client2
vO
O—
put(k, v1))
vl

Q

/) get(k)
(

Physical time l ! ' ‘t

Expected behavior of storage system

* Clients should read value written by most recent write

* Regular, single-threaded programs expect this behavior when

reading and writing from memory

* get(k) should return v1 (e.g., not vO)

Clientl

put(k, vl) o—

Data

-

vO

Q

—0)

vl

Client2

/) get(k)
(

i)get(k) =vl

What causes unexpected behavior?

* Concurrent get()/put() operations

Should get() return vO or v1?

Clientl

put(k, vl) Qo—

Data

vO

Q

vl

Client2

) get(k)

7\

)y get(k) =v0 or vl

What causes unexpected behavior?

* Best-effort links lose, duplicate or reorder messages

Should get() return vO or v1?

Clientl

put(k, vl) Qo—

Data

vO

Q
put(k, vl) Q—

vl

|

vl

Client2

) get(k)

7\

)y get(k) =v0 or vl

What causes unexpected behavior?

* Nodes crash and lose data on recovery

 vliscached in memory, node crashes before it is stored on disk

* Should get() return vO or v1?

Clientl

Data

-

put(k, vl) O—

Q

‘>O

vl
/%

cached in
memory

vO

Client2

) get(k)

i)get(k) =v0orvl

What causes unexpected behavior?

* Datais replicated at multiple locations

Should get() return vO or v1?

Clientl

put(k, v1) I\"\’vl

) get(k)
\/ get(k) =vOor vl
y

Data

B

vO

Data

vO

Client2

10

Data consistency model

A data consistency model is a specification (i.e., guarantee)
that a storage system provides about expected behavior
when clients access data

* When clients issue get()/put(), what values can get() read?

11

Why data consistency model?

For applications: what is correct behavior w/o storage
guarantees?

Coordinator: Clients:
put(config, “new config”) while get(config done) != TRUE:
put(config done, TRUE) wait

get(config) // is it “new config”?

For storage system: how to implement without a model?

* |Implementation involves complex interplay between concurrency,
network model, node failure model, and replication...

12

Understanding data consistency

* Recall, get() expects value written by most recent put()

get(k) should return v1 (e.g., not vO)

e But what does most recent mean?

Data
Clientl 8 Client2
vO
put(k, vl) Q 4
vl
o)
/) get(k)
| (k) = v
et(k)=v
e .

Understanding data consistency

But what does most recent mean?

Intuitively, get()/put() operations can be totally ordered

On a single node, with a global clock, they are executed serially

Data

vO

A

put(k, v1)¢

7™\

o get(k) =

14

Concurrent operations

e But what does most recent mean?

* Intuitively, get()/put() operations can be totally ordered

e But get()/put() operations can be issued concurrently

* Need to reason about concurrency to formalize consistency

Data
Clientl 8 Client2
vO
O—
put(k, Vl) 4 ")get(k)

Q C

7\

)y get(k) =v0 or vl

Linearizability

16

What is Linearizability?

* Linearizability is a data consistency model that closely
matches programmer’s expectations of storage behavior

 Sometimes it is called “strong consistency” (loaded term)

e Definition of linearizability

e Takes concurrent operations into account

* |Independent of network, node and timing model, replication

 To understand linearizability, we need to think in terms of
concurrent operations

17

History of operations

 Ahistory is a trace of possibly concurrent operations

* Think of each operation as an RPC with:

* Invocation (with arguments), and

 Response (with result values)

 Each operation accesses one data item

Clientl Client2
put(k, v1) ¢ o get(k)
ret done Q
oretvl
Physical time l

\/ \/

18

History of operations

* A history is a timeline of operations

 Each operation has a duration in physical time

e Terminology

 Wox1: write value 1 to record x, or put(x, 1)

* Rx1: read record x returned 1, or get(x) =1

Clientl

o)
leI
o)

Physical time l !

Client2

Q

Q

{Rxl

19

History of operations

* History is shown from the perspective of clients

* We use it to reason about correctness of storage system

* Note, we do not show storage system (think of it as a black box)

Clientl

leI

¢

¢

Storage system

API

API

Client2

Q

Q

{Rxl

20

Linearizability definition

* A history is linearizable if every operation in the history
takes effect (appears to execute) at some point of time
(instantaneously) between its invocation and response

 Put another way:

* You can find a point in time for each operation (called its
linearization point) between its invocation and response, and

 The result of every operation is the same as serial execution of the
operations at their linearization points

21

Understanding linearizability

Linearizability imposes two conditions:

1. Operations appear to execute in a total order

2. Total order maintains real-time order between operations

* |f Operation A completes before Operation B begins in real-time,
then A must be ordered before B

* If neither A nor B completes before the other begins,
then there is no real-time order, but there must be some total order

e What do the two conditions mean:

1. Clients see same order of writes

2. Clients read latest data
* After a write completes, a later read (in real-time order) returns the
value of the write (or later write)

* Once a read returns a value, all later reads return that value (or the
value of a later write)

22

Why call it linearizable?

* The linearization points turn concurrent operations into a
sequence of serial or linear operations on a timeline

Clientl Client2

Q
Q
Wx1 Wx1
" L; " I {Rxl {Rxl

~
A od

Physical time l

Concurrent operations

In this example, get() reads the value written by put()

Clientl

o)
leI 1
o)

\/

Wx1
XI {Rxl

Physical time l

Client2

o)
{Rxl
o)

24

Concurrent operations

* Butsince get() and put() are concurrent, linearizability also
allows get() to return value written before put()

* Linearizability allows different results for concurrent operations

e We can’t tell in advance which result will be returned

Clientl Client2

Q
)
Wx1 Wx1 -
" L; " I {RXO {RXO
Q

I/~

! Physical time l

1: Is this history linearizable?

* Try assigning linearization points for each operation

* The order “Wx1 Wx2 Rx2” satisfy linearizability

C1 C2 C3

s
Wx1| 4 S —
o Rx2 I

wx2 | |

2: Is this history linearizable?

Order must be “Wx1 Wx2 Rx2 o

* Wx1 before Wx2 due to C1 timeline
 \Wx2 before Rx2 due to value returned

* Rx2 before due to real time

But “Wx2 ” not possible by linearizability

* Even though Wx2 and Rx1 are concurrent!

C1 C2 C3
)
Wx1 e
7 8 {sz
Wx2 1t o)
o)]:

27

3: Is this history linearizable?

* This history seems non-linearizable since would
appear to force C3’s second to also read

e Order “Wx1 Wx3 Wx2 ” satisfies linearizability

* Wx3 and Wx2 are concurrent, either order of writes is okay

C1 C2 C3

Wx1

-9 | 1
wx2 | + WXJ | %

28

4: Is this history linearizable?

* Wx3 and Wx2 are concurrent, either order is okay

e (C3 needsthe order “Wx3
C4 needs the order “Wx2

e Not linearizable

Wx2
Wx3

” due to value returned,
due to value returned

e All clients must see same order of writes,
potentially an issue for caching and replication

Wx1

Wx2

C1

C2

C3

C4

29

5: Is this history linearizable?

e Order must be “Wx1 Wx2

)

* Wx1 before Wx2 due to real time,

Wx2 before

e But “Wx2

due to real time

” not possible by linearizability

* C(Clients read latest (not stale) data,
potentially an issue for caching and replication

Wx1

C1

- Q

- O

C2

C3

30

Implementing Linearizability

31

Basic implementation

* Let’s assume we have a storage server that

* Queues arriving requests
* Picks an arbitrary order for concurrent requests

* Executes each request serially and returns results

e Are we done?

C1 C2 C3 Server
gueue

Wx2 Wx3|Wx1
Wx1 | + T x=1

-9 ! I |
wx2 | | WXJ | %% | -

32

Exactly-once semantics

* Need to ensure exactly-once semantics for linearizability

e How to ensure exactly-once semantics?
* Perform duplication detection
 Handle server crashes, or

e Use a fault-tolerant service

C1 C2 C3 Server

queue

Wx2 Wx3|Wx1
Wx1 | + T x=1

=9 (I |
wx2 | | WxJ - $£

T X=2
Q

R \ T '

N\

33

Duplication detection

* Server needs to deduplicate requests

 What problem can occur otherwise?

Cl C2 C3 Server
T queue
T Wx2 Wx3|Wx1
WX]. T - =1
1 8 (o)
T Q :|: T X=3
wx2 | | Wx3{ $ |
Q :[
R \ T v

Server crashes

* Server needs to store all updated data durably on disk

 What problem can occur otherwise?

* All updated data must be stored atomically so it can be
recovered correctly on crash failure

 What problem can occur otherwise?

C1 C2 C3 Server
gueue

Wx2 Wx3|Wx1
Wx1 | + T x=1

-9 ! I |
wx2 | | WXJ | %% .

= X=2

35

Fault-tolerant service

* Asingle server can crash

 While server recovers, no service, i.e., no availability

e Let’s store copies of data (replicas) on multiple servers

 Then we can provide availability even when some servers fail

* Such a service is called a fault-tolerant service

Cl C2 C3 Server
T queue
T Wx2 Wx3 | Wx1
Wx1 | + T x=1
1 8 (@]
T Q :|: T X=3
wx2 | | Wx3 $:[|

36

Implementing exactly-once

 We have discussed duplication detection
 Next, we will look at how to handle server crashes

e Later, we will look at how to build a fault-tolerant
replicated service that ensures linearizability

37

Pros/Cons of linearizability

e Pros:

* For application programmers, the model is intuitive

* Same as single machine processing one request at a time
* All clients see data changes in same order

e Reads see latest or fresh data

* Hides complexity inherent in distributed systems

* Independent of network, node and timing model, replication
* Modelis general, can be applied to more than read/write

* Delete, append, increment, CAS for locking, etc.

e (Cons:

* Serializes operations, so limits parallelism

 With replication, many messages needed to ensure ordering of
operations, can limit availability under network partitions

38

Conclusions

Linearizability is a strong consistency model

* Provides an intuitive programming model, but

* Limits performance and availability

There are many consistency models that allow trading

« Consistency (improves ease-of-programming)

 Performance (allows optimizations)

* Availability (improves robustness to failures)

Later, we will discuss several models that are particularly
relevant to distributed systems

e sequential consistency, causal consistency, eventual consistency,
serializability, ...

39

	Slide 1: Data Consistency and Linearizability
	Slide 2: Overview
	Slide 3: Storage system
	Slide 4: Clients of storage system
	Slide 5: Expected behavior of storage system
	Slide 6: Expected behavior of storage system
	Slide 7: What causes unexpected behavior?
	Slide 8: What causes unexpected behavior?
	Slide 9: What causes unexpected behavior?
	Slide 10: What causes unexpected behavior?
	Slide 11: Data consistency model
	Slide 12: Why data consistency model?
	Slide 13: Understanding data consistency
	Slide 14: Understanding data consistency
	Slide 15: Concurrent operations
	Slide 16: Linearizability
	Slide 17: What is Linearizability?
	Slide 18: History of operations
	Slide 19: History of operations
	Slide 20: History of operations
	Slide 21: Linearizability definition
	Slide 22: Understanding linearizability
	Slide 23: Why call it linearizable?
	Slide 24: Concurrent operations
	Slide 25: Concurrent operations
	Slide 26: 1: Is this history linearizable?
	Slide 27: 2: Is this history linearizable?
	Slide 28: 3: Is this history linearizable?
	Slide 29: 4: Is this history linearizable?
	Slide 30: 5: Is this history linearizable?
	Slide 31: Implementing Linearizability
	Slide 32: Basic implementation
	Slide 33: Exactly-once semantics
	Slide 34: Duplication detection
	Slide 35: Server crashes
	Slide 36: Fault-tolerant service
	Slide 37: Implementing exactly-once
	Slide 38: Pros/Cons of linearizability
	Slide 39: Conclusions

