
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Strong Data Consistency

2

Course Topics

• Introduction

• Programming distributed systems

• Highly consistent, replicated systems

• Strong data consistency

• Replication

• Consensus

• Case study 1: Consensus in Raft

• Case study 2: Coordination with ZooKeeper

• Highly available and scalable systems

• Transactional systems

• Byzantine systems

Overview

• Storage system and data consistency

• Linearizability

• Implementing linearizability

• Sequential consistency

3

4

Storage system

• Assume that networked clients access a storage system

• Storage system API provides read/write operations

• Block store: read/write fixed-size blocks

• File system: read/write byte range within variable-sized files

• Key-value store: get/put key-value pairs

• Databases: read/update rows of tables

Client1 Client2
Data

Storage system

API API

5

Clients of storage system

• Clients can be either end-users or other services

• Users directly accessing cloud storage

• Video delivery service storing data at a separate storage service

• Sometimes clients may be co-located with the storage
system on the same physical servers

• May allow optimizations, e.g., data placement

Client1 Client2
Data

Storage system

API API

Expected behavior of storage system

• Say Client1 issues put(k, v1) and receives ack

• Then, Client 2 issues get(k)

• What can the client expect get(k) to return?

Client1 Client2
Data

Physical time

put(k, v1)

get(k)

v0

v1

6

Ideal behavior of storage system

• Clients should read value written by most recent write

• Regular, single-threaded programs expect this behavior when
reading and writing from memory

• get(k) should return v1 (e.g., not v0)

Client1 Client2
Data

put(k, v1)

get(k) = v1

v0

v1

get(k)

7

What should be expected behavior?

• Concurrent get()/put() operations (overlap in real time)

• Should get() return v0 or v1?

Client1 Client2
Data

put(k, v1)
v0

v1

get(k) = v0 or v1

get(k)

8

What should be expected behavior?

• Best-effort links lose, duplicate or reorder messages

• Should get() return v0 or v1?

Client1 Client2
Data

put(k, v1)
v0

v1

put(k, v1)
v1

get(k) = v0 or v1

get(k)

9

What should be expected behavior?

• Nodes crash and lose data on recovery

• v1 is cached in memory, node crashes before it is stored on disk

• Should get() return v0 or v1?

Client1 Client2
Data

put(k, v1)
v0

v1

cached in
memory

get(k) = v0 or v1

get(k)

10

What should be expected behavior?

• Data is replicated at multiple locations

• Should get() return v0 or v1?

Client1 Client2
Data

put(k, v1)
v0

v1

Data

v0

get(k) = v0 or v1

get(k)

11

12

Data consistency model

• A data consistency model is a specification (i.e., guarantee)
that a storage system provides about expected behavior
when clients access data

• When clients issue get()/put(), what values can get() read?

13

Why data consistency model?

• Consider this simple coordination problem:

• For applications: what is correct behavior w/o any
guarantees from storage system?

• For storage system: how to implement without a model?

• Implementation involves complex interplay between concurrency,
network model, node failure model, and replication…

Coordinator:

put(config, “new config”)
put(config_done, TRUE)

Clients:

while get(config_done) != TRUE:
 wait
get(config) // is it “new config”?

14

Understanding data consistency

• Recall, get() expects value written by most recent put()

• get(k) should return v1 (e.g., not v0)

• But what does most recent mean?

Client1 Client2
Data

put(k, v1)

get(k) = v1

v0

v1

get(k)

15

Understanding data consistency

• But what does most recent mean?

• Intuitively, get()/put() operations can be totally ordered

• On a single node, with a global clock, they are executed serially

Data

put(k, v1)

get(k) = v2

v0

put(k, v2)

16

Concurrent operations

• But what does most recent mean?

• Intuitively, get()/put() operations can be totally ordered

• But get()/put() operations can be issued concurrently

• Need to reason about concurrency to formalize consistency

Client1 Client2
Data

put(k, v1)
v0

v1

get(k) = v0 or v1

get(k)

Linearizability

17

18

What is Linearizability?

• Linearizability is a data consistency model that closely
matches programmer’s expectations of storage behavior

• Sometimes it is called “strong consistency” (loaded term)

• Definition of linearizability

• Takes concurrent operations into account

• Independent of network, node and timing model, replication

• To understand linearizability, we need to think in terms of
concurrent operations

19

History of operations

• A history is a trace of possibly concurrent operations

• Think of each operation as an RPC with:

• Invocation (with arguments), and

• Response (with result values)

• Each operation accesses one data item

Client1 Client2

put(k, v1)

ret done

Physical time

ret v1

get(k)

20

History of operations

• A history is a timeline of operations

• Each operation has a duration in physical time

• Terminology

• Wx1: write value 1 to record x, or put(x, 1)

• Rx1: read record x returned 1, or get(x) = 1

Client1 Client2

Wx1
Rx1

Physical time

21

History of operations

• History is shown from the perspective of clients

• We use it to reason about correctness of storage system

• Note, we do not show storage system (think of it as a black box)

Client1 Client2

Storage system

API API

Wx1
Rx1

22

Linearizability definition

• A history is linearizable if every operation in the history
takes effect (appears to execute) at some point of time
(instantaneously) between its invocation and response

• Put another way:

• You can find a point in time for each operation (called its
linearization point) between its invocation and response, and

• The result of every operation is the same as serial execution of the
operations at their linearization points

23

Understanding linearizability

Linearizability imposes two conditions:

1. Operations appear to execute in a total order

2. Total order maintains real-time order between operations

• If Operation A completes before Operation B begins in real-time,
then A must be ordered before B

• If neither A nor B completes before the other begins,
then there is no real-time order, but there must be some total order

• What do the two conditions mean:

1. Clients see same order of writes

2. Clients read latest data

• After a write completes, a later read (in real-time order) returns the
value of the write (or later write)

• Once a read returns a value, all later reads return that value (or the
value of a later write)

24

Why call it linearizable?

• The linearization points turn concurrent operations into a
sequence of serial or linear operations on a timeline

Client1 Client2

Wx1

Physical time

Wx1
Rx1 Rx1

25

Concurrent operations

• In this example, get() reads the value written by put()

Client1 Client2

Wx1

Physical time

Wx1
Rx1Rx1

26

Concurrent operations

• But since get() and put() are concurrent, linearizability also
allows get() to return value written before put()

• Linearizability allows different results for concurrent operations

• We can’t tell in advance which result will be returned!

Client1 Client2

Physical time

Rx0 Rx0
Wx1 Wx1

27

1: Is this history linearizable?

• Try assigning linearization points for each operation

• The order “Wx1 Rx1 Wx2 Rx2” satisfy linearizability

C1

Rx2 Rx1

C2 C3

Wx1

Wx2

28

2: Is this history linearizable?

• Order must be “Wx1 Wx2 Rx2 Rx1”

• Wx1 before Wx2 due to C1 timeline

• Wx2 before Rx2 due to value returned

• Rx2 before Rx1 due to real time

• But “Wx2 Rx1” not possible by linearizability

• Even though Wx2 and Rx1 are concurrent!

C1

Rx2

Rx1

C2 C3

Wx1

Wx2

29

3: Is this history linearizable?

• This history seems non-linearizable since Rx3 would
appear to force C3’s second get() to also read 3

• Order “Wx1 Wx3 Rx3 Wx2 Rx2” satisfies linearizability

• Wx3 and Wx2 are concurrent, either order of writes is okay

C1

Wx1

Wx3

C2 C3

Rx3

Wx2
Rx2

30

4: Is this history linearizable?

• Wx3 and Wx2 are concurrent, either order is okay

• C3 needs the order “Wx3 Rx3 Wx2 Rx2” due to value returned,
C4 needs the order “Wx2 Rx2 Wx3 Rx3” due to value returned

• Not linearizable

• All clients must see same order of writes,
potentially an issue for caching and replication

Wx1

C2C1

Rx2

C4

Rx3

C3

Wx2
Rx3Rx2

Wx3

31

5: Is this history linearizable?

• Order must be “Wx1 Wx2 Rx1”

• Wx1 before Wx2 due to real time,
Wx2 before Rx1 due to real time

• But “Wx2 Rx1” not possible by linearizability

• Clients read latest (not stale) data,
potentially an issue for caching and replication

C1

Rx1

C2 C3

Wx1

Wx2

32

Implementing Linearizability

33

Basic implementation

• Let’s assume we have a storage server that

• Queues arriving requests

• Queues concurrent requests in arbitrary order, e.g., by arrival time

• Executes each request serially and returns results

• Does the server guarantee linearizability?

Server

Rx2 Wx2 Rx3 Wx3 Wx1

queue

ret 3

x=1

x=3

x=2

ret 2

Wx1

C2C1

Rx3

C3

Wx2
Rx2

Wx3

34

Exactly-once semantics

• Need to ensure exactly-once semantics for linearizability

• How to ensure exactly-once semantics?

• Perform duplication detection

• Store state updates durably and atomically

• Optionally, use a fault-tolerant service

Server

Rx2 Wx2 Rx3 Wx3 Wx1

queue

ret 3

x=1

x=3

x=2

ret 2

Wx1

C2C1

Rx3

C3

Wx2
Rx2

Wx3

35

Duplication detection

• Server needs to deduplicate requests

• What problem can occur otherwise?

Server

Rx2 Wx2 Rx3 Wx3 Wx1

queue

ret 3

x=1

x=3

x=2

ret 2

Wx1

C2C1

Rx3

C3

Wx2
Rx2

Wx3

36

Durable and atomic state updates

• All updated state must be stored durably on disk

• What problem can occur otherwise after a server failure?

• All updated state must be stored atomically

• What problem an occur otherwise after a server failure?

Server

Rx2 Wx2 Rx3 Wx3 Wx1

queue

ret 3

x=1

x=3

x=2

ret 2

Wx1

C2C1

Rx3

C3

Wx2
Rx2

Wx3

37

Fault-tolerant service

• A single server can crash

• While server recovers, no service, i.e., no availability

• Let’s store copies of data (replicas) on multiple servers

• Then we can provide availability even when some servers fail

• Such a service is called a fault-tolerant service

37

Server

Rx2 Wx2 Rx3 Wx3 Wx1

queue

ret 3

x=1

x=3

x=2

ret 2

Wx1

C2C1

Rx3

C3

Wx2
Rx2

Wx3

38

Implementing exactly-once

• Need to ensure exactly-once semantics for linearizability

• How to ensure exactly-once semantics?

• Perform duplication detection

• Store state updates durably and atomically

• Optionally, use a fault-tolerant service

• We have discussed duplication detection

• We will look at the design of Raft, a fault-tolerant
replicated service that ensures linearizability

• Later in the course, we will look at how to store state
updates durably and atomically

39

Benefits of linearizability

• Provides strong real-time data consistency guarantees

• For application programmers, the model is intuitive

• Same as single machine processing one request at a time

• All clients see data changes in same order

• Reads see latest or fresh data

• Hides complexity inherent in distributed systems

• Independent of network, node and timing model, replication

• Model is general, can be applied to more than read/write

• Delete, append, increment, CAS for locking, etc.

40

Issues with linearizability

• Low performance since it serializes operations

• Limits availability under network partitions

• Say a set of geographically distributed web servers cache
data from a backend database server

• Each data item may have copies (replicas) at the web servers

• Ensuring that a response returns the latest copy requires expensive
synchronization between all the caches and the database

• Instead, a web server could directly return its cached item

• This may occasionally return stale data, but it is faster, and it allows
availability even when the database is unavailable or highly loaded

• Takeaway: need weaker consistency models for higher
performance and availability

41

Sequential Consistency

42

Sequential consistency

• Sequential consistency weakens linearizability by not
providing any real-time guarantees

• Sequential consistency: all processes execute operations in
some total order, while preserving real-time ordering

• Operations appear to occur instantaneously, consistent with
program order, at some point in between invocation & response

• Provides better performance than linearizability because
operations across processes can be reordered
(provided there is some total order)

43

Implementing sequential consistency

• A sequencer repeatedly

• Chooses an operation from some client (in program order)

• Runs the operation serially

Server

Op4

Op1

Op3

Op2

Op5

Op1

C2C1

Op4

C3

Op2
Op5

Op3

Op2

sequencer

Op5 Op1 Op4 Op3

44

Sequential consistency - Example 1

• Sequentially consistent

• Writes may appear to be delayed

C1 C2

Rx1
Physical time

Total order

x is 0

Rx0

Wx1

45

Sequential consistency - Example 2

• Sequentially consistent

• Reads may return stale data

C1 C2

Rx0

Total order

x is 0

Rx1

Wx1

46

Sequential consistency - Example 3

• Not sequentially consistent

• There is no possible total ordering of operations

C3C1 C2 C4

Wx1

Wx2

Rx1 Rx2

Rx2 Rx1

47

Understanding sequential consistency

• There is a total ordering of operations, but

• A write may be ordered much after its response (delayed write)

• A read may return arbitrarily stale data (stale read)

• However, sequential consistency is still a strong model

• Still ensures total order of operations

• Once A observes data from B, A cannot observe B’s prior state

• We will look at the design of Zookeeper, a highly-available
coordination service that ensures sequential consistency

• Improves performance, availability compared to linearizability,
particularly for read-heavy workloads

48

Coordination problem redux

• Consider this simple coordination problem:

• Is get(config) guaranteed to return “new config” with:

• Linearizability?

• Serializability?

Coordinator:

put(config, “new config”)
put(config_done, TRUE)

Clients:

while get(config_done) != TRUE:
 wait
get(config) // is it “new config”?

49

Conclusions

• Linearizability is a strong real-time consistency model

• Provides an intuitive programming model, but

• Limits performance and availability

• Sequential consistency provides better performance and
availability, but has weaker consistency

• Writes may appear delayed, reads may read stale data

• But still usable for many applications

• Later, we will discuss weaker consistency models that trade
consistency for even better performance and availability

• Causal consistency, eventual consistency, …

	Slide 1: Strong Data Consistency
	Slide 2: Course Topics
	Slide 3: Overview
	Slide 4: Storage system
	Slide 5: Clients of storage system
	Slide 6: Expected behavior of storage system
	Slide 7: Ideal behavior of storage system
	Slide 8: What should be expected behavior?
	Slide 9: What should be expected behavior?
	Slide 10: What should be expected behavior?
	Slide 11: What should be expected behavior?
	Slide 12: Data consistency model
	Slide 13: Why data consistency model?
	Slide 14: Understanding data consistency
	Slide 15: Understanding data consistency
	Slide 16: Concurrent operations
	Slide 17: Linearizability
	Slide 18: What is Linearizability?
	Slide 19: History of operations
	Slide 20: History of operations
	Slide 21: History of operations
	Slide 22: Linearizability definition
	Slide 23: Understanding linearizability
	Slide 24: Why call it linearizable?
	Slide 25: Concurrent operations
	Slide 26: Concurrent operations
	Slide 27: 1: Is this history linearizable?
	Slide 28: 2: Is this history linearizable?
	Slide 29: 3: Is this history linearizable?
	Slide 30: 4: Is this history linearizable?
	Slide 31: 5: Is this history linearizable?
	Slide 32: Implementing Linearizability
	Slide 33: Basic implementation
	Slide 34: Exactly-once semantics
	Slide 35: Duplication detection
	Slide 36: Durable and atomic state updates
	Slide 37: Fault-tolerant service
	Slide 38: Implementing exactly-once
	Slide 39: Benefits of linearizability
	Slide 40: Issues with linearizability
	Slide 41: Sequential Consistency
	Slide 42: Sequential consistency
	Slide 43: Implementing sequential consistency
	Slide 44: Sequential consistency - Example 1
	Slide 45: Sequential consistency - Example 2
	Slide 46: Sequential consistency - Example 3
	Slide 47: Understanding sequential consistency
	Slide 48: Coordination problem redux
	Slide 49: Conclusions

