Replication

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

With thanks to Tim Harris and Martin Kleppmann,
Lecture notes on Concurrent and Distributed Systems

Overview

* Introduction to replication
 What s replication?
Why replicate data?

* Why is replication challenging?

* Replicated storage API

* Replication schemes

What is replication?

* Storage service keeps multiple copies of data on
* Different nodes
» Different datacenters

* Different countries/continents

A node that has a copy of the data is called a replica

* Replication is commonly used in file systems, databases,
key-value stores

 E.g., all common cloud storage providers replicate data

Replicated storage model

* Recall, clients use read/write API to access storage system

Storage system

API Data API
Clientl [« 8 <— Client2

* Clients use the same API for a replicated storage system

Replicated storage system

API R1 R2 API
Clientl j=— 8 8 <— Client2

Why replicate data?

e Scalability

* Availability

Replication for scalability

* Improves throughput

* Clients access different replicas, spreads load across replicas

 Lowers latency

* Clients can access close-by replica

Clientl 8 8 Client2
<\
)

Physical time l

Replication for scalability

e (Cachingis an example of replication

* Creates copies of data

e Web browser cache

 Browser caches web server content locally for faster access

Client Web server

4 RPC _ i*}:ﬁ
F

ocal browser cache
store for later use)

—

Replication for scalability

e (Cachingis an example of replication

* Creates copies of data

 Geo-replicated caches

e Storage services replicate data on different continents to reduce
latency, improve throughput for geo-distributed clients

= —_

| - I ‘ ’ | /./ ffi{ gi':g/\ \ 2
{ A0 R > |
LR)

Replication for availability

* When replica fails, clients can access another replica, i.e.,
replication helps tolerate faults (fault tolerance)

* Application avoids downtime in case of server failure,
i.e., replication helps improve service availability

* Application avoids losing data in case of storage failure

R1 R2
Clientl - - Client2
<)\(
)
Physical time l)

Replica availability

 Areplica may be unavailable due to

* Network partition (e.g., node cannot be reached), or

* Node fault (e.g. crash, hardware issue, planned maintenance)

 Assume a replica has probability p of being unavailable at
any one time, and assume faults are independent

Assume there are N replicas in the system

Probability of all N replicas being faulty: p"

Probability of all N replicas being correct: (1 — p)"

Probability of at least one replica being faulty: 1 - (1 - p)" = pN

10

Replication and availability

 Example with p=0.01, assuming independent failures

replicas n P(>= 1 faulty) P(all n faulty) P(>= (n+1)/2 fault)
At least 1 faulty All faulty Majority faulty
1 0.01 0.01 0.01
3 0.03 106 3.10%
5 0.05 1010 1.10°
=
If replication requires all If replication can tolerate some
replicas to be available, replicas being unavailable,
then availability decreases then availability increases

with more replicas! with more replicas!

Replication goals

* Ideally, ensure that clients are unaware of replication,
observe the same behavior as a single machine that

* Provides scalability - high-throughput, low-latency

* Provides availability - appears to never fail

Clientl 8 8 Client2

<’\:/o

12

Data consistency

* What is “observe same behavior as single machine”?

* Replicated system ensures linearizability

 All clients observe the same order of writes

e Clients read latest data (immaterial of replica accessed)

R1 R2

Clientl 8 8 Client2

<\:/o

Why is replication challenging?

e Suppose all accesses are read accesses,
e.g., accesses to statically replicated web pages

* Easy to meet replication goals

e Reads access latest content

* Reads from different clients can be sent to different replicas,
have high throughput, low latency

* Onreplica failure, reads can be switched to another replica,
ensuring fault tolerance

* Writes complicate replication

* Failures complicate replication

14

Writes complicate replication - 1

Client 1 issues a put(k, v1), Client 2 issues a

Now the replicas are inconsistent!

Need to order concurrent put() operations

Clientl

put(k, vl) ¢

R1

vO

R2

vO

vl

Client2

15

Writes complicate replication - 2

* C(Client 1issues a put(k, v1), Client 2 issues a get(k)

* get(k) may return vO and v1, which value is correct?

 Need to order concurrent put() and get() operations

Clientl

put(k, vl) ¢

R1

vO

R2

vO

Client2

) get(k)

Failures complicate replication - 1

Client 1 issues a put(k, vO)

Request to R1 fails, now the replicas are inconsistent!

Replicas can’t tell whether client only added key on R2,

or only removed key from R1!

Need replicas to distinguish between these cases,
handle inconsistency between replicas

Clientl

put(k, vO) <N

R1

-

R2

-

Client2

I

vO

17

Failures complicate replication - 2

* C(Client 1issues a put(k, vl) and then get(k)

 Client 1 reads a stale value, seems like put() is lost!

 Whatif put(k, v1) and get(k) wait for both replicas?

* Then, a single replica failure delays put()/get() indefinitely!

* Cannot wait for all replicas, or else poor availability

Clientl

v0 ¢ get(k) ¢

R1

-

vO

R2

-

\/

put(k, v1) <N

vO

Client2

18

Replicated Storage API

Storage API

Assume storage system provides following operations:

* put(key, value, T) // create or update key with value, timestamp
* (value, T) = get(key) // return the value and timestamp of key

e del(key, T) // delete key

Client generates unique timestamp T for put(), del()

* Tisclient’s logical or vector clock timestamp
(other options are possible)

]] key | value | timestamp | visible

Each replica stores kv-pair records: 0 | vo 0 ue
» timestamp can be a scalar or vector k1| v1 1 true
k2 v2 T2 false

* visible flag indicates record existence
key-value records

* Typically, records accessed using an index,
and stored on disk in hierarchical format (e.g., B-tree)

20

Purpose of timestamp

 Timestamps allow ignoring duplicate requests

e Recall at-most once RPC semantics

R1 R2
Client1 8 8
vO, TO vO, TO

put(k, v1, T1) ¢
ovl, T1

put(k, v1, T1) <)§\“
duplicate \<‘
\J y

Client2

21

Ordering writes — logical timestamp

* Timestamps also allow ordering concurrent writes,
using two common approaches:

1. Use total order timestamp, e.g., logical timestamp

 v2replacesvl,ifT2>T1;

e Last writer wins, can lose data

R1 R2
Clientl 8 8 Client2
vO, TO vO, TO

put(k, vl, T1) ¢

Ordering writes — vector timestamp

* Timestamps also allow ordering concurrent writes,
using two common approaches:

2. Use partial order timestamp, e.g., vector timestamp

 v2replacesvl, if T2 > T1; preserve both {v1, v2}if T1 || T2;

* Complicated scheme, vector timestamps can become large

R1 R2
Clientl 8 8 Client2
vO, TO vO, TO
put(k, v1, T1) ¢
o}

Purpose of visible flag

When put() creates a record, replica sets visible to true

When del() deletes a record, replica will not delete it,
instead, it will set visible to false for the record

Now replicas can tell whether put() or del() didn’t succeed

R1 R2
Clientl 8 8 Client2
put(k, vO) <)v
x \()VO, TO
Y y \J \J

put() not successful on R1

R1 R2
Clientl 0 0 Client2
vO, TO vO, TO
o)
Q x
\J y \J \J
24

del() not successful on R2

Reconciling replicas

Replicated systems need to detect differences between
replicas and reconcile them

 E.g., whenreplicas are added, when replicas crash and recover

This reconciliation process (also called anti-entropy) helps
ensure that replicas eventually hold same data
During reconciliation, say

* Replica R1 has record with visible flag set to false, and

* Replica R2 has the same record with visible flag set to true

What should be done?

* Record timestamps also allow ordering requests during
reconciliation

25

Replication Schemes

Replication schemes

Quorum-based replication

Broadcast-based replication
* Primary-backup replication

e State machine replication

Optimistic replication (discussed later)

27

Replication conundrum

* For data consistency

* Needto order put() operations across replicas
* Need to ensure get() operations read latest data
* For high availability

* Replicas may fail, can’t wait for all replicas to respond,
or else availability decreases with more replicas

e Butthen, how do we know that reads return latest data”?

28

Quorum-based replication

 Assume there are N replicas

« get() and put() use best-effort broadcast,
i.e., requests may be lost, duplicated or reordered
 With quorum-based replication, assume:

* A put() returns successfully when W replicas respond successfully

e A get() returns successfully when R replicas respond successfully

29

Use quorums for correct ordering

e Choose:R+W >N

e Typically, a majority quorum is used: R =W = (n+1)/2
e N=3,R=2,W=2
* N=5R=3,W=3

* Since a put() is acknowledged by W replicas,
and a get() is subsequently reads from R replicas,
a get() will overlap with last put() at at-least one replica

R1 R2 R3 R4 R5
B - B B B
write quorum read quorum

* So, get() will read latest data from at least one replica,
even when (n-1)/2 replicas are unavailable!

30

Quorum replication and availability

* Majority quorum allows 1 replica failure with 3 replicas

* put(k, vl, T1) succeeds on R1 and R2

* get(k) succeeds on R1 and R3
* R1returns (vl, T1), R3 returns (vO, TO): choose v1 (later one)

Client1 8

vO T0 vO T0 vO, TO
put(k, v1, T1) vi, T1
>v1 T1

get(k) \x

returns (v1, T1) =0
returns (vO, TO) %

Quorum and replica synchronization

* put() is not immediately delivered to all replicas =
get() may read stale values from some replicas (e.g., vO)

 We can use reconciliation to synchronize the replicas

Clientl

puﬂk,vl,Tl)

get(k)

vO T0 vO TO
vl T1
>v1 T1

returns (v1, T1)
returns (vO, TO) %

T«

\J

Y 32

Quorum and read repair

* put() is not immediately delivered to all replicas =
get() may read stale values from some replicas (e.g., vO)

 Another option is to perform read repair

e After get() returns, it issues a put() with the latest value to all
replicas that responded with stale value or did not respond

R1 R2 R3

Clientl - - -

vl T1 vl T1 vO, TO
get(k)
returns (v1, T1) I —=0)
returns (vO, TO)

put(k, vl, T1) Q==

Quorum and linearizability

e If get() returns before read repair is done, it is possible to
show that another get() can read stale value

* But, if get() returns only after read repair has finished,
then quorum replication can ensure linearizability

 For more details, look for the ABD algorithm

Clientl

J\ vl, T1
get(k)
\

R2

-

vl T1

returns (v1, T1) I
returns (vO, TO)

put(k, vl, T1) | Q==

1’\/1, T1 ”

https://web.mit.edu/6.033/2005/wwwdocs/quorum_note.html

Broadcast-based replication

e Two schemes based on FIFO-total order broadcast,
both can ensure linearizability

* Primary-backup replication

* Onereplica is primary, others backup
* Primary receives and executes operations

* Replicates updated state to backup (passive replication)

e Traditionally, fault tolerance based on timeout
e State machine replication (SMR)

* Symmetric replicas
* Any replica receives and replicates operations

* All replicas execute operations (active replication)

e Fault tolerance based on consensus algorithm

e Various hybrid solutions that combine approaches

35

Replicated KV store

* PBreplicates updated records

* SMR replicates KV store operations

Primary-Backup Replication State Machine Replication
Client A Client B Client A Client B
put(kvl, ...) put(kv2, ...) put(kvl,)I Iput(kvz, ..
KV KV KV KV
8] (8] [R o] R2 ||, R3
o1 |o—] /7|~ b2 o\ B 18
broadcast(record 1) broadcast(put, kvi, ...) broadcast(put, kv2, ...)

broadcast(record 2)
36

Lock service state machine

Replicated lock service

unlock

* PBreplicates updated records

* SMR replicates lock service operations

Primary-Backup Replication State Machine Replication
Client A Client B Client A Client B
|ock(1wk(z, . lock(,)I Iunlock(z, ..)
LS LS LS LS
= = = RL o] R2 |+ B3
T e P e BT o\ [B] 18
broadcast(record 1) broadcast(lock, 1, ...) broadcast(unlock, 2, ...)

broadcast(record 2)
37

Primary-backup replication

* Clients send operations to designated primary

* Primary executes each client operation serially

* Broadcasts state updates to all backups
 Backups apply state updates in the same order as primary

* Backups acknowledge when they are done

* Primary waits for acks from all backups, then responds

* |f primary fails, one backup becomes primary

* |If backup fails, primary responsible for starting another backup

* Key requirement

* Agreement: There should only be one primary

38

Handling primary failure

* Like leader-based total order broadcast, handling primary
(leader) failures safely is not simple

* Traditionally, a separate server called view server detects a
primary failure based on timeout

* View server elevates an up-to-date backup to a new primary

 New primary lets all backups know that it is new primary,
so backups stop accepting requests from old primary

* Asclients learn about the new primary, they start using it

 What may be the problems with using a view server?

39

State machine replication

e Clients send deterministic operations to any replica
* Replicas may receive concurrent requests

 When areplica receives an operation, it broadcasts that
operation to all replicas

* All replicas execute operations in the same order,
producing a consistent response for the client

* Key requirements:

* Initial state: All replicas start in the same state

* Determinism: All replicas receiving the same input on the same
state produce the same output and resulting state

* Agreement: All replicas process inputs in the same sequence

40

SMR fault tolerance

* Fault tolerance in SMR depends on the underlying total
order broadcast protocol

* Later, we will look at fault-tolerant total order broadcast

* Like guorum-based replication, it will provide availability
even when (n-1)/2 replicas are unavailable

41

Comparing replication methods

Quorum Primary-Backup SMR
Replication Symmetric 1 primary, Symmetric
method replicas others backup replicas
Replicates Replicates records Replicates SM
get()/put() from primary to operations
operations backup

Programming
model

get(), put()

Arbitrary
operations

Deterministic
operations

Consistency

Based on quorum
and read repair
Cannot provide
linearizability for
CAS operations
Can be used with
weak consistency
schemes (later)

Based on total
order of
operations
Can provide
linearizability

Based on total
order of
operations
Can provide
linearizability

42

Comparing fault tolerance

Primary-Backup

Quorum and SMR

Pros: requires f+1 replicas to handle
f failures

Cons: requires separate view server;
primary failures visible to clients;
timeouts need to be conservative to
avoid split brain

Cons: requires 2f+1 replicas to handle
f failures

Pros: f failures can be masked from
clients; does not depend on timeouts
for correctness

43

Conclusions

Replication helps provides scalability and fault tolerance

e Commonly used in modern cloud storage systems

Goal of a replicated storage system is to provide

e Strong (linearizable) consistency

e Same behavior as single-copy storage system

 High performance and availability

We looked at quorum and broadcast-based replication

 We will see how they are used in real systems later

Next, we will look at fault-tolerant total order broadcast

* Will ensure highly-availability, broadcast-based replication

44

	Slide 1: Replication
	Slide 2: Overview
	Slide 3: What is replication?
	Slide 4: Replicated storage model
	Slide 5: Why replicate data?
	Slide 6: Replication for scalability
	Slide 7: Replication for scalability
	Slide 8: Replication for scalability
	Slide 9: Replication for availability
	Slide 10: Replica availability
	Slide 11: Replication and availability
	Slide 12: Replication goals
	Slide 13: Data consistency
	Slide 14: Why is replication challenging?
	Slide 15: Writes complicate replication - 1
	Slide 16: Writes complicate replication - 2
	Slide 17: Failures complicate replication - 1
	Slide 18: Failures complicate replication - 2
	Slide 19: Replicated Storage API
	Slide 20: Storage API
	Slide 21: Purpose of timestamp
	Slide 22: Ordering writes – logical timestamp
	Slide 23: Ordering writes – vector timestamp
	Slide 24: Purpose of visible flag
	Slide 25: Reconciling replicas
	Slide 26: Replication Schemes
	Slide 27: Replication schemes
	Slide 28: Replication conundrum
	Slide 29: Quorum-based replication
	Slide 30: Use quorums for correct ordering
	Slide 31: Quorum replication and availability
	Slide 32: Quorum and replica synchronization
	Slide 33: Quorum and read repair
	Slide 34: Quorum and linearizability
	Slide 35: Broadcast-based replication
	Slide 36: Replicated KV store
	Slide 37: Replicated lock service
	Slide 38: Primary-backup replication
	Slide 39: Handling primary failure
	Slide 40: State machine replication
	Slide 41: SMR fault tolerance
	Slide 42: Comparing replication methods
	Slide 43: Comparing fault tolerance
	Slide 44: Conclusions

