
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

With thanks to Tim Harris and Martin Kleppmann,
Lecture notes on Concurrent and Distributed Systems

Replication

2

Overview

• Introduction to replication

• What is replication?

• Why replicate data?

• Why is replication challenging?

• Replicated storage API

• Replication schemes

What is replication?

• Storage service keeps multiple copies of data on

• Different nodes

• Different datacenters

• Different countries/continents

• A node that has a copy of the data is called a replica

• Replication is commonly used in file systems, databases,
key-value stores

• E.g., all common cloud storage providers replicate data

3

Replicated storage model

• Recall, clients use read/write API to access storage system

• Clients use the same API for a replicated storage system

R1 R2

4

Client1 Client2
Data

Storage system

API API

Client1 Client2

Replicated storage system

API API

Why replicate data?

• Scalability

• Availability

5

Replication for scalability

• Improves throughput

• Clients access different replicas, spreads load across replicas

• Lowers latency

• Clients can access close-by replica

6

Client1 Client2
R1 R2

Physical time

7

Replication for scalability

• Caching is an example of replication

• Creates copies of data

• Web browser cache

• Browser caches web server content locally for faster access

Local browser cache
(store for later use)

Web serverClient

RPC

8

Replication for scalability

• Caching is an example of replication

• Creates copies of data

• Geo-replicated caches

• Storage services replicate data on different continents to reduce
latency, improve throughput for geo-distributed clients

9

Replication for availability

• When replica fails, clients can access another replica, i.e.,
replication helps tolerate faults (fault tolerance)

• Application avoids downtime in case of server failure,
i.e., replication helps improve service availability

• Application avoids losing data in case of storage failure

Client1 Client2
R1 R2

Physical time

Replica availability

• A replica may be unavailable due to

• Network partition (e.g., node cannot be reached), or

• Node fault (e.g. crash, hardware issue, planned maintenance)

• Assume a replica has probability p of being unavailable at
any one time, and assume faults are independent

• Assume there are N replicas in the system

• Probability of all N replicas being faulty: pN

• Probability of all N replicas being correct: (1 − p)N

• Probability of at least one replica being faulty: 1 − (1 − p)N ≈ pN

10

Replication and availability

• Example with p=0.01, assuming independent failures

replicas n P(>= 1 faulty)
At least 1 faulty

P(all n faulty)
All faulty

P(>= (n+1)/2 fault)
Majority faulty

1 0.01 0.01 0.01

3 0.03 10-6 3.10-4

5 0.05 10-10 1.10-5

11

If replication requires all
replicas to be available,

then availability decreases
with more replicas!

If replication can tolerate some
replicas being unavailable,
then availability increases

with more replicas!

12

Replication goals

• Ideally, ensure that clients are unaware of replication,
observe the same behavior as a single machine that

• Provides scalability - high-throughput, low-latency

• Provides availability - appears to never fail

Client1 Client2
R1 R2

13

Data consistency

• What is “observe same behavior as single machine”?

• Replicated system ensures linearizability

• All clients observe the same order of writes

• Clients read latest data (immaterial of replica accessed)

Client1 Client2
R1 R2

Why is replication challenging?

• Suppose all accesses are read accesses,
e.g., accesses to statically replicated web pages

• Easy to meet replication goals

• Reads access latest content

• Reads from different clients can be sent to different replicas,
have high throughput, low latency

• On replica failure, reads can be switched to another replica,
ensuring fault tolerance

• Writes complicate replication

• Failures complicate replication

14

Writes complicate replication - 1

• Client 1 issues a put(k, v1), Client 2 issues a put(k, v2)

• Now the replicas are inconsistent!

• Need to order concurrent put() operations

15

Client1 Client2
R1 R2

put(k, v1)

put(k, v2)

v0 v0

v2
v1

Writes complicate replication - 2

• Client 1 issues a put(k, v1), Client 2 issues a get(k)

• get(k) may return v0 and v1, which value is correct?

• Need to order concurrent put() and get() operations

Client1 Client2
R1 R2

put(k, v1)

get(k)

v0 v0

16

Failures complicate replication - 1

• Client 1 issues a put(k, v0)

• Request to R1 fails, now the replicas are inconsistent!

• Replicas can’t tell whether client only added key on R2,
or only removed key from R1!

• Need replicas to distinguish between these cases,
handle inconsistency between replicas

Client1 Client2
R1 R2

put(k, v0)

v0

17

Failures complicate replication - 2

• Client 1 issues a put(k, v1) and then get(k)

• Client 1 reads a stale value, seems like put() is lost!

• What if put(k, v1) and get(k) wait for both replicas?

• Then, a single replica failure delays put()/get() indefinitely!

• Cannot wait for all replicas, or else poor availability

Client1 Client2

put(k, v1)

v0 ← get(k)

v0 v0

18

R1 R2

Replicated Storage API

Storage API

• Assume storage system provides following operations:

• put(key, value, T) // create or update key with value, timestamp

• (value, T) = get(key) // return the value and timestamp of key

• del(key, T) // delete key

• Client generates unique timestamp T for put(), del()

• T is client’s logical or vector clock timestamp
(other options are possible)

• Each replica stores kv-pair records:

• timestamp can be a scalar or vector

• visible flag indicates record existence

• Typically, records accessed using an index,
and stored on disk in hierarchical format (e.g., B-tree)

key value timestamp visible

k0 v0 T0 true

k1 v1 T1 true

k2 v2 T2 false

20

key-value records

Purpose of timestamp

• Timestamps allow ignoring duplicate requests

• Recall at-most once RPC semantics

Client1
R1 R2

put(k, v1, T1)
v0, T0 v0, T0

put(k, v1, T1)

21

Client2

duplicate

v1, T1

Ordering writes – logical timestamp

• Timestamps also allow ordering concurrent writes,
using two common approaches:

1. Use total order timestamp, e.g., logical timestamp

• v2 replaces v1, if T2 > T1;

• Last writer wins, can lose data

Client1 Client2

put(k, v1, T1)

put(k, v2, T2)

v0, T0 v0, T0

v2, T2 v2, T2

22

R1 R2

loses

Ordering writes – vector timestamp

• Timestamps also allow ordering concurrent writes,
using two common approaches:

2. Use partial order timestamp, e.g., vector timestamp

• v2 replaces v1, if T2 > T1; preserve both {v1, v2} if T1 ∥ T2;

• Complicated scheme, vector timestamps can become large

Client1 Client2

put(k, v1, T1)

put(k, v2, T2)

v0, T0 v0, T0

v2, T2 v2, T2

23

R1 R2

Purpose of visible flag

• When put() creates a record, replica sets visible to true

• When del() deletes a record, replica will not delete it,
instead, it will set visible to false for the record

• Now replicas can tell whether put() or del() didn’t succeed

24

Client1 Client2
R1

v0, T0

R2
Client1 Client2

R1 R2

del(k)

put() not successful on R1 del() not successful on R2

put(k, v0)
v0, T0 v0, T0

Reconciling replicas

• Replicated systems need to detect differences between
replicas and reconcile them

• E.g., when replicas are added, when replicas crash and recover

• This reconciliation process (also called anti-entropy) helps
ensure that replicas eventually hold same data

• During reconciliation, say

• Replica R1 has record with visible flag set to false, and

• Replica R2 has the same record with visible flag set to true

• What should be done?

• Record timestamps also allow ordering requests during
reconciliation

25

Replication Schemes

Replication schemes

• Quorum-based replication

• Broadcast-based replication

• Primary-backup replication

• State machine replication

• Optimistic replication (discussed later)

27

Replication conundrum

• For data consistency

• Need to order put() operations across replicas

• Need to ensure get() operations read latest data

• For high availability

• Replicas may fail, can’t wait for all replicas to respond,
 or else availability decreases with more replicas

• But then, how do we know that reads return latest data?

28

Quorum-based replication

• Assume there are N replicas

• get() and put() use best-effort broadcast,
i.e., requests may be lost, duplicated or reordered

• With quorum-based replication, assume:

• A put() returns successfully when W replicas respond successfully

• A get() returns successfully when R replicas respond successfully

29

• Choose: R + W > N

• Typically, a majority quorum is used: R = W = (n+1)/2

• N = 3, R = 2, W = 2

• N = 5, R = 3, W = 3

• Since a put() is acknowledged by W replicas,
and a get() is subsequently reads from R replicas,
a get() will overlap with last put() at at-least one replica

• So, get() will read latest data from at least one replica,
even when (n-1)/2 replicas are unavailable!

R1

write quorum read quorum

R2 R3 R4 R5

Use quorums for correct ordering

30

Quorum replication and availability

• Majority quorum allows 1 replica failure with 3 replicas

• put(k, v1, T1) succeeds on R1 and R2

• get(k) succeeds on R1 and R3

• R1 returns (v1, T1), R3 returns (v0, T0): choose v1 (later one)

31

Client1

put(k, v1, T1)
v0, T0 v0, T0

get(k)

v0, T0

returns (v1, T1)

returns (v0, T0)

R1 R2 R3

v1, T1

v1, T1

32

Quorum and replica synchronization

• put() is not immediately delivered to all replicas ⇒
get() may read stale values from some replicas (e.g., v0)

• We can use reconciliation to synchronize the replicas

Client1

put(k, v1, T1)

get(k)

returns (v1, T1)

returns (v0, T0)

R1 R2 R3

v0, T0 v0, T0 v0, T0

v1, T1

v1, T1

Quorum and read repair

• put() is not immediately delivered to all replicas ⇒
get() may read stale values from some replicas (e.g., v0)

• Another option is to perform read repair

• After get() returns, it issues a put() with the latest value to all
replicas that responded with stale value or did not respond

Client1

get(k)

returns (v1, T1)

returns (v0, T0)

put(k, v1, T1)

v1, T1 33

R1 R2 R3

v1, T1 v1, T1 v0, T0

34

Quorum and linearizability

• If get() returns before read repair is done, it is possible to
show that another get() can read stale value

• But, if get() returns only after read repair has finished,
then quorum replication can ensure linearizability

• For more details, look for the ABD algorithm

Client1

get(k)

returns (v1, T1)

returns (v0, T0)

put(k, v1, T1)

v1, T1

R1 R2 R3

v1, T1 v1, T1 v0, T0

https://web.mit.edu/6.033/2005/wwwdocs/quorum_note.html

35

Broadcast-based replication

• Two schemes based on FIFO-total order broadcast,
both can ensure linearizability

• Primary-backup replication

• One replica is primary, others backup

• Primary receives and executes operations

• Replicates updated state to backup (passive replication)

• Traditionally, fault tolerance based on timeout

• State machine replication (SMR)

• Symmetric replicas

• Any replica receives and replicates operations

• All replicas execute operations (active replication)

• Fault tolerance based on consensus algorithm

• Various hybrid solutions that combine approaches

36

Replicated KV store

• PB replicates updated records

• SMR replicates KV store operations

36

P

KV

broadcast(record 1)
broadcast(record 2)

B1

Client A

B2

Client B

put(kv1, …) put(kv2, …)

Primary-Backup Replication

put(kv1, …) put(kv2, …)

broadcast(put, kv1, …) broadcast(put, kv2, …)

State Machine Replication

R2

KV

R1

Client A

R3

Client B

KV KV

37

Replicated lock service

• PB replicates updated records

• SMR replicates lock service operations

P

LS

B1 B2

lock(1, …) unlock(2, …)

Primary-Backup Replication

lock(1, …) unlock(2, …)

State Machine Replication

Lock service state machine

Unlocked Locked

lock

unlock lock

unlock

R2

LS

R1 R3

LS LS

broadcast(record 1)
broadcast(record 2)

broadcast(lock, 1, …) broadcast(unlock, 2, …)

Client A Client B Client A Client B

38

Primary-backup replication

• Clients send operations to designated primary

• Primary executes each client operation serially

• Broadcasts state updates to all backups

• Backups apply state updates in the same order as primary

• Backups acknowledge when they are done

• Primary waits for acks from all backups, then responds

• If primary fails, one backup becomes primary

• If backup fails, primary responsible for starting another backup

• Key requirement

• Agreement: There should only be one primary

39

Handling primary failure

• Like leader-based total order broadcast, handling primary
(leader) failures safely is not simple

• Traditionally, a separate server called view server detects a
primary failure based on timeout

• View server elevates an up-to-date backup to a new primary

• New primary lets all backups know that it is new primary,
so backups stop accepting requests from old primary

• As clients learn about the new primary, they start using it

• What may be the problems with using a view server?

40

State machine replication

• Clients send deterministic operations to any replica

• Replicas may receive concurrent requests

• When a replica receives an operation, it broadcasts that
operation to all replicas

• All replicas execute operations in the same order,
producing a consistent response for the client

• Key requirements:

• Initial state: All replicas start in the same state

• Determinism: All replicas receiving the same input on the same
state produce the same output and resulting state

• Agreement: All replicas process inputs in the same sequence

41

SMR fault tolerance

• Fault tolerance in SMR depends on the underlying total
order broadcast protocol

• Later, we will look at fault-tolerant total order broadcast

• Like quorum-based replication, it will provide availability
even when (n-1)/2 replicas are unavailable

Quorum Primary-Backup SMR

Replication
method

• Symmetric
replicas

• Replicates
get()/put()
operations

• 1 primary,
others backup

• Replicates records
from primary to
backup

• Symmetric
replicas

• Replicates SM
operations

Programming
model

• get(), put() • Arbitrary
operations

• Deterministic
operations

Consistency • Based on quorum
and read repair

• Cannot provide
linearizability for
CAS operations

• Can be used with
weak consistency
schemes (later)

• Based on total
order of
operations

• Can provide
linearizability

• Based on total
order of
operations

• Can provide
linearizability

Comparing replication methods

42

Comparing fault tolerance

43

Primary-Backup Quorum and SMR

• Pros: requires f+1 replicas to handle
f failures

• Cons: requires separate view server;
primary failures visible to clients;
timeouts need to be conservative to
avoid split brain

• Cons: requires 2f+1 replicas to handle
f failures

• Pros: f failures can be masked from
clients; does not depend on timeouts
for correctness

44

Conclusions

• Replication helps provides scalability and fault tolerance

• Commonly used in modern cloud storage systems

• Goal of a replicated storage system is to provide

• Strong (linearizable) consistency

• Same behavior as single-copy storage system

• High performance and availability

• We looked at quorum and broadcast-based replication

• We will see how they are used in real systems later

• Next, we will look at fault-tolerant total order broadcast

• Will ensure highly-availability, broadcast-based replication

	Slide 1: Replication
	Slide 2: Overview
	Slide 3: What is replication?
	Slide 4: Replicated storage model
	Slide 5: Why replicate data?
	Slide 6: Replication for scalability
	Slide 7: Replication for scalability
	Slide 8: Replication for scalability
	Slide 9: Replication for availability
	Slide 10: Replica availability
	Slide 11: Replication and availability
	Slide 12: Replication goals
	Slide 13: Data consistency
	Slide 14: Why is replication challenging?
	Slide 15: Writes complicate replication - 1
	Slide 16: Writes complicate replication - 2
	Slide 17: Failures complicate replication - 1
	Slide 18: Failures complicate replication - 2
	Slide 19: Replicated Storage API
	Slide 20: Storage API
	Slide 21: Purpose of timestamp
	Slide 22: Ordering writes – logical timestamp
	Slide 23: Ordering writes – vector timestamp
	Slide 24: Purpose of visible flag
	Slide 25: Reconciling replicas
	Slide 26: Replication Schemes
	Slide 27: Replication schemes
	Slide 28: Replication conundrum
	Slide 29: Quorum-based replication
	Slide 30: Use quorums for correct ordering
	Slide 31: Quorum replication and availability
	Slide 32: Quorum and replica synchronization
	Slide 33: Quorum and read repair
	Slide 34: Quorum and linearizability
	Slide 35: Broadcast-based replication
	Slide 36: Replicated KV store
	Slide 37: Replicated lock service
	Slide 38: Primary-backup replication
	Slide 39: Handling primary failure
	Slide 40: State machine replication
	Slide 41: SMR fault tolerance
	Slide 42: Comparing replication methods
	Slide 43: Comparing fault tolerance
	Slide 44: Conclusions

