Introduction to Consensus

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Overview

e Motivation for consensus
e What is consensus

 |ntuition for consensus

Review

 We have looked at two replication schemes based on
FIFO-total order broadcast

* Primary-backup replication

e State machine replication

* We have seen that FIFO-total order broadcast can be
implemented by using a leader

 One node is designated as leader (sequencer)
 To broadcast message, node sends it to the leader

e Leader broadcasts it via FIFO broadcast

* Ensures FIFO-total order broadcast

e Recall we assumed that the leader does not crash

How can total order broadcast be made
fault tolerant?

Leader is a single point of failure

* |f leader fails, broadcast stops! No more replication.

Option 1: handle leader failure manually

 An operator can designate another node as leader,
and reconfigure other nodes to use the new leader

 Works well for planned maintenance, e.g., software updates

* Problem: when leader fails suddenly, manual failover takes time

Option 2: use external view server

e Used it for primary-backup replication to handle primary failure

* Problem: what happens if view server fails, use Option 17

Automating fault tolerance

 Leader is a single point of failure

If leader fails, broadcast stops! No more replication.

e Option 3: ideally, automate leader switching

Straw man solution:

Let’s say we have two servers S1 and S2

If both are up, then S1 is leader

if S2 sees S1 is down, S2 takes over as leader
What could go wrong?

Network partition ... split brain!

* Hard to distinguish between “server down” and “network down’

* This seemed hard to solve for a long time...

How can we solve this problem?

Using consensus algorithms

What is consensus?

 Aset of nodes need to agree on a single data value, e.g.,
a single leader, in the presence of failures

 Each node may propose a value

* A consensus algorithm decides on one of those values

* Requirements

 Agreement: No two correct nodes decide differently
correctness

* Integrity: No node decides twice ~ (safety)

* \Validity: Any value decided was proposed by some node

e Termination: Each correct node eventually decides a value }—‘

progress
(liveness)

Consensus vs. total order broadcast

* Consensus and total order broadcast are equivalent

* When nodes need to broadcast messages in total order:

 Use consensus to decide on first message to deliver

* All nodes will deliver this message first

Do the same thing for second, third, ..., messages
* All messages are delivered to nodes in the same order
e Common consensus algorithms:

* Paxos: single-value consensus
* Multi-Paxos: generalization to total order broadcast

* Raft, Viewstamped Replication, Zab: FIFO-total order broadcast

Consensus system model

 Paxos, Raft, etc. assume best-effort links,
partially synchronous, crash-recovery system model

 There are also consensus algorithms for insecure links,
partially synchronous, byzantine failure system model

 E.g., PBFT, blockchain, discussed later

* Why not asynchronous?

e Cannot use timeouts to detect failures

* FLP result: no deterministic consensus algorithm is guaranteed to
terminate in an asynchronous crash-stop system model

Consensus challenges

* In a partially synchronous system, we can use timeouts to
eventually detect failures, but no bounds on delays

» Safety: Need to ensure correctness without depending on timing

* Liveness: Need to ensure progress even when failure detection is
potentially incorrect

Intuition for consensus

Multi-Paxos, Raft, etc. are leader-based schemes
* Key safety requirement: only one leader

* Since a leader can fail, we will weaken this requirement

* There should only be one leader at any time

e How to ensure only one leader at a time without
depending on timing or correct failure detection?

 Aren’t we back to the leader switching problem?

 Key idea: use majority voting to elect a leader

* With majority voting, only one leader can be elected at a time

* Avoids dependence on correct failure detection for correctness!
10

Understanding majority voting

* Majority is based on all servers, not live servers

* With 3 servers, majority is 2 servers

* If no majority, then wait

 With 3 servers, if 2 have crashed, then wait for 1 to come back

* |If majority available, then proceed

 With 2f+1 nodes, allows dealing with f failures

 Key property of majority is that any two intersect

* Allows conveying most recent information about voting process

Ok, backto electing a leader

11

Leader election

* Nodes use failure detector to detect crashed leader
 E.g., based on timeout (no message from leader for some time)

* When a node detects (potentially) crashed leader,
it becomes candidate (for leadership)

 Candidate starts election by

* Incrementing a counter (e.g., Raft term) to indicate new election
e A term lasts until the next election

e Asking other nodes to vote to accept it as new leader for the term

* |If majority vote for candidate, it is elected for the term

 Other nodes only vote at most once per term (or election)

* Due to majority, two leaders cannot be elected for same term -

Have we ensured one leader?

* Leader election guarantees (at most) one leader per term

e But failure detection is imprecise
* Leader from another previous term may still be running

 Cannot prevent multiple leaders from different terms

N1 Network N2 N3

8 partition 8 8
Leader for c
Term 5 5 5 NI be leader
) for Term 6?
/) °
6 C

Leader for
Term 6

Am | a leader?

* Only leader of latest term must serve as leader when
deciding a value, e.g, delivering next message

 But aleader for a new term can be elected at any time!

* How can a replica check whether it is leader of latest term?
* Once again, ask a majority ...

 Why does this work?

* Since leader election requires a majority vote, there will be at least
one node that will know if a new leader has been elected

 Doesn’t depend on timing!

14

Leader asks majority before delivering

message

N1

Leader for
Term 5 —Sl’\x

Network
partition

Leader for
Term 6

N3

B

Can | be leader
fOt‘ Term 6;

Shou-ld we deliver 1
Miin Term g>

/)6 |

x/o%i
[6

Q

\/

Step 1

Step 2

15

Conclusions

* Consensus: set of nodes need to agree on single value

 E.g., asingleleader at atime

e Challenge: correct failure sensing is not possible

 E.g., if we use a timeout to detect and remove a faulty leader,
it may still believe it is a leader

* Need to ensure correctness and progress without depending on
correct failure sensing

e Solution: get permission from majority of participants

* Avoids split brain issues, since two majorities not possible

* Leader-based scheme: get majority when 1) electing leader,
2) delivering messages. Intersection property ensures one leader at a
time delivers messages in order.

» ffailures possible with 2f+1 participants, good availability

16

	Slide 1: Introduction to Consensus
	Slide 2: Overview
	Slide 3: Review
	Slide 4: How can total order broadcast be made fault tolerant?
	Slide 5: Automating fault tolerance
	Slide 6: What is consensus?
	Slide 7: Consensus vs. total order broadcast
	Slide 8: Consensus system model
	Slide 9: Consensus challenges
	Slide 10: Intuition for consensus
	Slide 11: Understanding majority voting
	Slide 12: Leader election
	Slide 13: Have we ensured one leader?
	Slide 14: Am I a leader?
	Slide 15: Leader asks majority before delivering message
	Slide 16: Conclusions

