
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Introduction to Consensus



2

Overview

• Motivation for consensus

• What is consensus

• Intuition for consensus



3

Review

• We have looked at two replication schemes based on 
FIFO-total order broadcast

• Primary-backup replication

• State machine replication

• We have seen that FIFO-total order broadcast can be 
implemented by using a leader

• One node is designated as leader (sequencer)

• To broadcast message, node sends it to the leader

• Leader broadcasts it via FIFO broadcast

• Ensures FIFO-total order broadcast

• Recall we assumed that the leader does not crash



4

How can total order broadcast be made 
fault tolerant?
• Leader is a single point of failure

• If leader fails, broadcast stops! No more replication.

• Option 1: handle leader failure manually

• An operator can designate another node as leader, 
and reconfigure other nodes to use the new leader

• Works well for planned maintenance, e.g., software updates

• Problem: when leader fails suddenly, manual failover takes time

• Option 2: use external view server

• Used it for primary-backup replication to handle primary failure

• Problem: what happens if view server fails, use Option 1?



5

Automating fault tolerance

• Leader is a single point of failure

• If leader fails, broadcast stops! No more replication.

• Option 3: ideally, automate leader switching

• Straw man solution:

• Let’s say we have two servers S1 and S2

• If both are up, then S1 is leader

• if S2 sees S1 is down, S2 takes over as leader

• What could go wrong?

• Network partition ... split brain!

• Hard to distinguish between “server down” and “network down”

• This seemed hard to solve for a long time…

• How can we solve this problem?

• Using consensus algorithms



6

What is consensus?

• A set of nodes need to agree on a single data value, e.g.,
a single leader, in the presence of failures

• Each node may propose a value

• A consensus algorithm decides on one of those values

• Requirements

• Agreement: No two correct nodes decide differently 

• Integrity: No node decides twice

• Validity: Any value decided was proposed by some node

• Termination: Each correct node eventually decides a value

correctness
(safety)

progress
(liveness)



7

Consensus vs. total order broadcast

• Consensus and total order broadcast are equivalent

• When nodes need to broadcast messages in total order:

• Use consensus to decide on first message to deliver

• All nodes will deliver this message first

• Do the same thing for second, third, …, messages

• All messages are delivered to nodes in the same order

• Common consensus algorithms:

• Paxos: single-value consensus

• Multi-Paxos: generalization to total order broadcast

• Raft, Viewstamped Replication, Zab: FIFO-total order broadcast



8

Consensus system model

• Paxos, Raft, etc. assume best-effort links, 
partially synchronous, crash-recovery system model

• There are also consensus algorithms for insecure links, 
partially synchronous, byzantine failure system model

• E.g., PBFT, blockchain, discussed later

• Why not asynchronous?

• Cannot use timeouts to detect failures

• FLP result: no deterministic consensus algorithm is guaranteed to 
terminate in an asynchronous crash-stop system model



9

Consensus challenges

• In a partially synchronous system, we can use timeouts to 
eventually detect failures, but no bounds on delays

• Safety: Need to ensure correctness without depending on timing

• Liveness: Need to ensure progress even when failure detection is 
potentially incorrect



10

Intuition for consensus

• Multi-Paxos, Raft, etc. are leader-based schemes

• Key safety requirement: only one leader

• Since a leader can fail, we will weaken this requirement

• There should only be one leader at any time

• How to ensure only one leader at a time without 
depending on timing or correct failure detection?

• Aren’t we back to the leader switching problem?

• Key idea: use majority voting to elect a leader

• With majority voting, only one leader can be elected at a time

• Avoids dependence on correct failure detection for correctness!



11

Understanding majority voting

• Majority is based on all servers, not live servers

• With 3 servers, majority is 2 servers

• If no majority, then wait

• With 3 servers, if 2 have crashed, then wait for 1 to come back

• If majority available, then proceed

• With 2f+1 nodes, allows dealing with f failures

• Key property of majority is that any two intersect

• Allows conveying most recent information about voting process

• Ok, back to electing a leader



12

Leader election

• Nodes use failure detector to detect crashed leader

• E.g., based on timeout (no message from leader for some time)

• When a node detects (potentially) crashed leader, 
it becomes candidate (for leadership)

• Candidate starts election by

• Incrementing a counter (e.g., Raft term) to indicate new election

• A term lasts until the next election

• Asking other nodes to vote to accept it as new leader for the term

• If majority vote for candidate, it is elected for the term

• Other nodes only vote at most once per term (or election)

• Due to majority, two leaders cannot be elected for same term



13

Have we ensured one leader?

• Leader election guarantees (at most) one leader per term

• But failure detection is imprecise

• Leader from another previous term may still be running

• Cannot prevent multiple leaders from different terms

N1 N2 N3

Leader for 
Term 5

Network
partition

5 5

6 6

6Leader for 
Term 6



14

Am I a leader?

• Only leader of latest term must serve as leader when 
deciding a value, e.g, delivering next message

• But a leader for a new term can be elected at any time!

• How can a replica check whether it is leader of latest term?

• Once again, ask a majority …

• Why does this work?

• Since leader election requires a majority vote, there will be at least 
one node that will know if a new leader has been elected

• Doesn’t depend on timing!



15

Leader asks majority before delivering 
message

Leader repeats Steps 2 and 3 to deliver messages

N1 N2 N3

Leader for 
Term 5

Network
partition

5 5

6 6

6Leader for 
Term 6

6 6
6

6 6
6

Step 1

Step 2

Step 3



16

Conclusions

• Consensus: set of nodes need to agree on single value

• E.g., a single leader at a time

• Challenge: correct failure sensing is not possible

• E.g., if we use a timeout to detect and remove a faulty leader, 
it may still believe it is a leader

• Need to ensure correctness and progress without depending on 
correct failure sensing

• Solution: get permission from majority of participants

• Avoids split brain issues, since two majorities not possible

• Leader-based scheme: get majority when 1) electing leader, 
2) delivering messages. Intersection property ensures one leader at a 
time delivers messages in order.

• f failures possible with 2f+1 participants, good availability


	Slide 1: Introduction to Consensus
	Slide 2: Overview
	Slide 3: Review
	Slide 4: How can total order broadcast be made fault tolerant?
	Slide 5: Automating fault tolerance
	Slide 6: What is consensus?
	Slide 7: Consensus vs. total order broadcast
	Slide 8: Consensus system model
	Slide 9: Consensus challenges
	Slide 10: Intuition for consensus
	Slide 11: Understanding majority voting
	Slide 12: Leader election
	Slide 13: Have we ensured one leader?
	Slide 14: Am I a leader?
	Slide 15: Leader asks majority before delivering message
	Slide 16: Conclusions

