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What is Raft?

• A library that uses a leader-based consensus scheme to 
implement fault-tolerant state machine replication

• Keys components

• Leader election: elects one leader at a time

• Log replication: leader broadcasts messages to replicas in order

• Crash recovery: handles crashed replicas

• Log compaction: discards obsolete log entries

• Client interaction: ensures exactly-once semantics

• See animation: https://thesecretlivesofdata.com/raft/

Lab 3A

Lab 3B

Lab 3C

n/a

Lab 4A

https://thesecretlivesofdata.com/raft/
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Leader Election
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Terms (aka Epochs)

• Raft divides time into terms

• Each term starts with leader election

• If election fails, a term has no leader (e.g., Term 3)

• Otherwise, a term has one leader that performs log replication

• Each replica maintains latest known term value

• Updates value on receiving request/response with higher value

• Rejects requests from previous terms, responds with current term

Term 2 Term 3 Term 4

Time

Elections Log replicationSplit vote

Term 1 Term 5



Replica states

• At any given time, each replica is in one three states:

• Leader: handles all client interactions, performs log replication

• Follower: receives messages from leader, completely passive

• Candidate: starts election to become new leader

Follower Candidate Leader

5
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Starting an election

• All replicas start as followers

• After leader is elected, it sends periodic heartbeats to 
maintain authority over followers

Follower Candidate Leader

start
timeout,

starts election
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Starting an election

• All replicas start as followers

• After leader is elected, it sends periodic heartbeats to 
maintain authority over followers

• If a follower doesn’t receive a heartbeat within an 
election timeout, it assumes leader has crashed

• Starts election by incrementing current term, 
changing to candidate state, voting for self

Follower Candidate Leader

start
timeout,

starts election



Election

• Candidate sends RequestVote to all other replicas

Follower Candidate Leader

timeout,
starts election

8

start



Election

• Candidate sends RequestVote to all other replicas

• Receives votes from majority of replicas:

• Becomes leader

• Sends heartbeats to tell all other replicas

Follower Candidate Leader

timeout,
starts election

receives votes from
majority of replicas

9

start



Election

• Candidate sends RequestVote to all other replicas

• Receives votes from majority of replicas:

• Becomes leader

• Sends heartbeats to tell all other replicas

• Receives heartbeat from valid leader (with same/higher term):

• Returns to follower state

Follower Candidate Leader

timeout,
starts election

receives votes from
majority of replicas

discovers replica with
 higher term, steps down 10

start



Election

• Candidate sends RequestVote to all other replicas:

• Receives votes from majority of replicas:

• Becomes leader

• Sends heartbeats to tell all other replicas

• Receives heartbeat from valid leader (with same/higher term):

• Returns to follower state

• Election timeout elapses (election failed):

• Increments term, starts new election

timeout,
new election

11

Follower Candidate Leader

start
receives votes from
majority of replicas

discovers replica with
 higher term, steps down

timeout,
starts election
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Safety

• Safety: allow at most one winner per term

• Each replica votes only once per term

• Votes for first candidate that asks

• Vote is stored on disk durably (ensures safety under crashes)

• Two candidates can’t get majorities in same term

• What if previous leader isn’t aware of new leader?

• It will not receive acks from majority during log replication

Replicas

Voted for 
candidate A

B can’t also 
get majority



Liveness

• Liveness: some candidate eventually wins

• Suppose followers/candidates have same election timeout, 
could there be a problem?

• Followers/candidates choose election timeout randomly

• Randomness reduces chance of split vote by breaking symmetry

• One follower usually initiates, wins election before others start

13



Choosing election timeout

• Choice of election timeout affects liveness

• Should be short to reduce unavailability

• After leader crashes, system becomes unavailable for election timeout

• Should be at least a small multiple of heartbeat intervals

• Avoids unneeded election if a heartbeat from leader is lost

• Random part should be several network round-trip times

• A candidate can win an election before others start

• Timeout chosen randomly between 150-300 ms

• Assumes heartbeat interval in the 10 ms range

14
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Log Replication
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Overview of log replication

• Raft uses log replication to broadcast clients’ operations 
in FIFO-total order

• A client issues an operation at the leader

• Leader logs the operation, broadcasts them to followers

• Followers log the operation, respond to the leader

• Raft ensures that the logs at the replica remain consistent
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Replicated lock service

• Let’s use a lock service to show how log replication works

• Lock service has two operations: lock, unlock

• Lock service maintains unlocked/locked state per lock

• When a client sends an operation to lock service, it will 
invoke the Raft library

• Raft library will use log replication to broadcast operation

Unlocked Locked

lock

unlock lock

unlock
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Replicated lock service

• Assume two locks below - 1: Unlocked, 2: Locked

• Assume leader is already elected

• At each replica, Raft maintains:

Leader

State
1:U, 2:L

Lock 
server

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2

Follower 2

State
1:U, 2:L

Lock 
server

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2

Follower 1

State
1:U, 2:L

Lock 
server

Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

C:3

T:6

C:3

T:6T:6

C:3

In memory Highest log entry known to be committed – C : 3

In non-volatile storage, e.g., 
disk, SSD

Log containing history of operations,
Latest known term – T : 6
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Replicated lock service

• Client invokes lock operation at leader replica

lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



20

Replicated lock service

• Lock server forwards operation to Raft library

lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6
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Replicated lock service

• Leader logs operation durably on disk

lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6
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Replicated lock service

• Leader sends log replication RPC to followers

• RPC is called AppendEntries (append operation entries to log)

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server should we 

deliver M?
should we 
deliver M?

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6
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Replicated lock service

• Followers log operation durably on disk

• Operation is committed when majority have logged it

• Will not be lost, even if all replicas fail (caveat)

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6
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Replicated lock service

• Followers ack AppendEntries RPC to leader

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6
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Replicated lock service

• Leader learns operation is committed when it receives 
AppendEntries acks from a majority (including itself)

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6
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Replicated lock service

• Leader delivers message to lock server

• Leader’s lock server updates its state

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



27

Replicated lock service

• Lock server acknowledges lock operation to client 

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3C:4C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6
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Replicated lock service

• Leader piggybacks commit info for operation when it sends 
AppendEntries RPC to followers for later operations

unlock(2, …)

C:4 C:4

unlock(2, …)

Client A Client B

Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

lock(1, …)

C:3C:4C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6
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Replicated lock service

• Followers learn and update their commit info

unlock(2, …)
unlock(2, …)

Client A Client B

Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

lock(1, …)

C:4C:4C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:L, 2:L

Lock 
server

Follower 1

State
1:L, 2:L

Lock 
server

30

Replicated lock service

• Followers deliver message to their lock server

• Follower’s lock server updates its state

unlock(2, …)
unlock(2, …)

Client A Client B

lock(1, …)

C:4C:4C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



31

Replicated lock service

• Now lock server state is consistent on the replicas

unlock(2, …)
unlock(2, …)

Client A Client B

Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:L, 2:L

Lock 
server

C:4

Follower 1

State
1:L, 2:L

Lock 
server

lock(1, …)

C:4C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6
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Why use logs?

• Lock service keeps current state of each lock

• Why maintain a log (history of operations) as well?

• Log allows leader to order the operations

• Follower logs may lag leader log, but eventually converge

• Log allows storing both tentative, committed operations

• Replicas only deliver committed operations to service

• Log allows handling failures

• Leader can resend logged operations to unavailable followers

• When replicas crash, they can recover their service state by 
replaying log from persistent storage on reboot
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Log divergence

• After failures, logs at different replicas can diverge

• How can this happen?

• R2 is leader in T6

• Crashes before it can send L2 entry at <I2, T6> to R1

• R2 reboots, becomes leader in T7

• Logs L1 entry at <I3, T7>, crashes

• R3 becomes leader at T8

• Logs U1 entry at <I3, T8>, I3 entries in R2 and R3 conflict!

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2
7

L1Replica 2
6

L1
6

U2

6

L1
6

L2Replica 3
8

U1
6

L1
6

U2

index

term

op
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Log synchronization

• Raft forces followers to synchronize with leader’s log

• Ensures that a committed operation is at same index in all logs

• Raft always maintains these log matching properties

• If two log entries on different replicas have same index and term:

• They store the same operation

• Logs are identical in all preceding entries

• If an entry is committed, preceding entries are also committed

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2
7

L1Replica 2
6

L1
6

U2

6

L1
6

L2Replica 3
8

U1
6

L1
6

U2

index

term

op
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Log synchronization example

• Say R3 is leader in T9, logs <T9, U2> at Entry 4

• R3 sends AppendEntries RPC to R1 and R2

• Sends Entry 4

• Includes Term T8 of previous entry (Entry 3)

• R2 checks match for previous entry

• Term check fails (T7 != T8)

• R2 returns failure to R3

check fails

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2
7

L1Replica 2
6

L1
6

U2

8

U1
6

L1
6

L2Replica 3
6

U2
9

U2
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L1
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Log synchronization example

• R3 resends AppendEntries RPC to R2

• Sends Entry 3 and Entry 4 to R2

• Includes Term T6 of previous entry (Entry 2)

• R2 checks match for previous entry

• Term check succeeds (T6 == T6)

• R2 applies Entry 3 and Entry 4

check succeeds

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2Replica 2
6

U2

8

U1
6

L1
6

L2Replica 3
6

U2
9

U2

9

U2
8

U1
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L1
6

U2
6

L2
9

U2
8

U1

6

L2
9

U2
8

U1
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Log synchronization example

• Similarly, R3 resends AppendEntries RPC twice to R1 to 
send entries at I2, I3, I4

• Result: followers delete and synchronize the tail of their 
log that differs from the leader

1 2 3 4 5

Replica 1

6

L1Replica 2
6

U2

8

U1
6

L1
6

L2Replica 3
6

U2
9

U2
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Understanding log synchronization

• Why is it okay for R2 to rollback its Entry 3?

• What if a leader rolled back a committed entry?

• Client may have seen a reply for a committed entry

• Leader cannot forget a committed entry

• Leader’s log must have all previously committed entries

Log
synchronization 7

L1

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2Replica 2
6

U2

8

U1
6

L1
6

L2Replica 3
6

U2
9

U2

9

U2
8

U1

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2
7

L1Replica 2
6

L1
6

U2

8

U1
6

L1
6

L2Replica 3
6

U2
9

U2
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Is entry committed? 

• Say R1 is leader in T7, logs Entries 2 and 3, then crashes

6

L1

6

L1

6

L1

1 2 3 4 5

Replica 1
7

L2
7

U2
6

L1
6

U2

7

L1Replica 2
6

L1
6

U2

9

U2
8

U1Replica 3
6

U2
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L1

6

L1

6

L1

1 2 3 4 5

Replica 1
7

L2
7

U2
6

L1
6

U2

8

U1
7

L1Replica 2
6

L1
6

U2

9

U2
8

U1
8

U1Replica 3
6

U2 40

Is entry committed? 

• Say R1 is leader in T7, logs Entries 2 and 3, then crashes

• R2 becomes leader in T8, replicates Entry 2 to R2 & R3
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L1

6

L1

6

L1

1 2 3 4 5

Replica 1
7

L2
7

U2
6

L1
6

U2

8

U1
7

L1Replica 2
6

L1
6

U2

9

U2
8

U1
8

U1Replica 3
6

U2 41

Is entry committed? 

• Say R1 is leader in T7, logs Entries 2 and 3, then crashes

• R2 becomes leader in T8, replicates Entry 2 to R2 & R3

• Then, R2 crashes, R1 reboots
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L1

6

L1

6

L1

1 2 3 4 5

Replica 1
7

L2
7

U2
6

L1
6

U2

8

U1
7

L1Replica 2
6

L1
6

U2

9

U2
8

U1
8

U1Replica 3
6

U2 42

Is entry committed? 

• Say R1 is leader in T7, logs Entries 2 and 3, then crashes

• R2 becomes leader in T8, replicates Entry 2 to R2 & R3

• Then, R2 crashes, R1 reboots

• Can R1 and R3 determine whether U1 committed?

• Can R1, with the longest log, becomes the leader?



43

Restriction during leader election

• Recall, candidate becomes leader when it receives votes 
from majority of replicas

• Raft adds a restriction so a candidate can only become a 
leader if it has all potentially committed entries

• Replicas respond to candidate if it is at least as up to date:

• Candidate has higher term in last log entry, or

• Candidate has same last term and same or longer log length

With leader restriction,
only R2 and R3 can become leaders

6

L1

6

L1

6

L1

1 2 3 4 5

Replica 1
7

L2
7

U2
6

L1
6

U2

8

U1
7

L1Replica 2
6

L1
6

U2

9

U2
8

U1
8

U1Replica 3
6

U2
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Leader restriction example

• Say leader R1 has crashed, which replicas can be leaders?

• R2, R4 and R5 can get votes from at least 4 replicas

• Is it okay if R2 becomes leader (though R4, R5 have longer logs)?

R1

R2

R3

R4

R5

R6

R7

index

term
(op not shown)
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L2
7

U2
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When does a leader commit an entry?

• Leader in Term 7 is Replica 1

• Leader knows Entry 2 of current term is committed when it 
is stored durably on a majority

• This is safe because leader in Term 8 must contain Entry 2

1 2 3 4 5
6

L1Replica 1
6

L1
6

U2

6

L1
7

L2
7

L1Replica 2
6

L1
6

U2

6

L1
9

U2
8

U1
7

L2Replica 3
6

U2

8

U1
6

L1
9

U2
8

U1Replica 4
6

U2

8

U1
6

L1
9

U2
8

U1Replica 5
6

U2

Can’t be elected as

leader for term 8
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U1

9

U2

7

L2
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Committing entry of previous term

• Say Leader R1 replicates Entry 2 <T7, L2> to R1 and R2

7

L2

1 2 3 4 5
6

L1Replica 1
6

L1
6

U2

6

L1
7

L2
7

L1Replica 2
6

L1
6

U2

6

L1
9

U2
8

U1Replica 3
6

U2

8

U1
6

L1
9

U2
8

U1Replica 4
6

U2

6

L1
9

U2
8

U1Replica 5
6

U2
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U2

7

L2

47

Committing entry of previous term

• Say Leader R1 replicates Entry 2 <T7, L2> to R1 and R2

• Then R5 becomes leader at T8, creates Entry 2 at R5
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Committing entry of previous term

• Say Leader R1 replicates Entry 2 <T7, L2> to R1 and R2

• Then R5 becomes leader at T8, creates Entry 2 at R5

• Then R1 becomes leader at T9, creates Entry 3 at R1
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Committing entry of previous term

• Leader R1 at T9 replicates its Entry 2 to R3, then crashes

• Entry 2 is now on a majority of servers, is it safely committed?

• R5 can be elected as leader for Term 10 (how?)

• If elected, it will overwrite Entry 2 on R1, R2, and R3!
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Raft’s commit rule

• A leader decides that an entry (in current/previous term) is 
committed when:

• Entry is stored on a majority

• At least 1 new entry from leader’s term is also in majority
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Crash Recovery
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Handling crash failures

• When 1 in 3 replicas crash, Raft can continue operation

• But crashed replica should be repaired soon

• Otherwise, a second replica failure will lead to unavailability

• Two types of failures

• Replica crashes permanently (crash-stop)

• Use a new server as replica

• Transfer entire log from leader to new server, may take a while

• Replica crashes, reboots, disk data survives (crash-recovery)

• Any or all replicas may crash due to power failure

• What state should be stored on disk to support faster recovery?
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Durable state in Raft

• Each replica stores following state on disk

• Log: stores committed (and tentative) entries

• If committed entries are lost from a majority of replicas, 
then they could be forgotten by a leader in a later term

• votedFor: stores candidate that replica voted for in current term

• If lost after reboot, then replica could vote for another candidate in the 
same term, could lead to more than one leader in same term

• Current term: stores latest term known to replica

• Needed for votedFor

• Avoids voting for or responding to a superseded leader
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How to access durable state?

• State on disk is cached in memory

• If state is cached at startup, it does not need to be read again

• When should state be stored to disk?

• After it is modified

• Before sending RPC or RPC response

• Storing state durably is expensive

• 10 ms on disk, 0.1 ms on SSD, limits throughput to 102-104 ops/s

• Various optimizations possible

• Batch multiple log entries per disk write

• Use battery-backed RAM or persistent memory
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Simple crash recovery

• After a replica crashes and reboots, in-memory state of 
(e.g., lock) service needs to be reinitialized

• Can replay entire Raft log on disk to create service state

• Each Raft replica stores volatile state

• commitIndex: highest log entry known to be committed

• lastApplied: last log entry applied to state machine

• nextIndex/matchIndex: stored on leader, see paper

• After reboot, a replica initializes its volatile state so that log 
replication replays entire log to recreate service state

• E.g., lastApplied and commitIndex start at 0 on reboot
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Log Compaction
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Growing log size

• Log size will grow over time

• Occupies disk (needs more space)

• Crash recovery replays entire log (takes more time)

• Leader sends entire log to new server (takes more time)

• Log size can be much larger than service state

• But clients only see service state, not log
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Reducing log size

• How can we reduce the log size?

• Intuition:

• Persist a snapshot of the service state to disk

• Keep only the tail of the log after the snapshot

• What entries must be in the tail of the log?

• Committed entries that have not been delivered to service yet

• Uncommitted entries
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Snapshots and log compaction

• Service provides to Raft

• Snapshot of its state

• Last <log index, term> included in the snapshot
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Snapshots and log compaction

• Raft persists snapshot state, last <log index, term>

• Then discards log until snapshot log index
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Snapshot RPC

• Every replica has a log

• Every replica (not just leader) snapshots independently

• Problem: If leader compacts its log while follower is offline, 
follower’s log may end before the start of leader’s log

• B ut leader only sends entries from its log to followers

• Solution: Leader sends its snapshot (InstallSnapshot RPC) 
to a slow follower, then can continue sending its log
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Client interaction
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Client operations

• Clients send operations to leader, if leader unknown, 
contact any server, server redirects clients to leader

• Problem:

• Suppose leader executes client operation, 
then crashes before sending response to client

• Client retries same operation with another leader

• Operation is executed twice

• For linearizability, we need an operation to execute exactly once
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Ensuring exactly-once semantics

• Client embeds unique request ID in each operation

• State machine performs duplicate detection

• Keeps [client -> (request ID, response)] map 
for latest operation executed for the client

• When Raft delivers an operation to the state machine, 
state machine checks if it has seen the client’s request ID, 
and returns response (without re-executing operation)
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Read-only operations

• Can a read-only operation be issued to any follower?

• A follower can lag a leader, so the read may not read the latest 
data (needed for linearizability)

• Can a leader respond to a read-only operation without 
contacting any followers?

• A leader doesn’t know whether it has been superseded

• In Raft, when leader receives a read-only operation:

• Leader sends heartbeat messages to followers 

• Waits for a majority to know if it is still the current leader

• Responds to read-only operation (no logging needed)

• An alternative is to use leases, see paper
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Conclusions

• Raft uses a leader-based consensus scheme to implement 
fault-tolerant state machine replication

• Ensures correctness by using majority when 

• Electing a leader (leader election)

• Delivering messages (log replication)

• Ensures liveness with randomized timers when electing leader

• Provides linearizability consistency guarantees

• Safety properties formally specified and proven

• A practical, heavily used implementation

• Handles leader/follower crash-stop/crash-recovery failures

• Log compaction, snapshots

• Membership changes - adding/removing replicas, see paper
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Wrap up

• This has been a long tour, but we finally have answers

• Broadcast slides: Algorithms for all models, except total order 
broadcast, handle node failures. Later, we will look at fault-tolerant 
total order broadcast.

• Linearizability slides: A single server can crash. Later, we will look at 
how to build a fault-tolerant replicated service that can ensure 
linearizability.

• Replication slides: Fault tolerance in state-machine replication 
depends on the underlying total order broadcast protocol. Later, 
we will look at fault-tolerant total order broadcast.

• Raft is a fault-tolerant, total order broadcast protocol

• Implements state machine replication, provides fault tolerance, 
ensures linearizability
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