
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Case Study 1: Consensus in Raft



2

What is Raft?

• A library that uses a leader-based consensus scheme to 
implement fault-tolerant state machine replication

• Keys components

• Leader election: elects one leader at a time

• Log replication: leader broadcasts messages to replicas in order

• Crash recovery: handles crashed replicas

• Log compaction: discards obsolete log entries

• Client interaction: ensures exactly-once semantics

• See animation: https://thesecretlivesofdata.com/raft/

Lab 3A

Lab 3B

Lab 3C

n/a

Lab 4A

https://thesecretlivesofdata.com/raft/


3

Leader Election



4

Terms (aka Epochs)

• Raft divides time into terms

• Each term starts with leader election

• If election fails, a term has no leader (e.g., Term 3)

• Otherwise, a term has one leader that performs log replication

• Each replica maintains latest known term value

• Updates value on receiving request/response with higher value

• Rejects requests from previous terms, responds with current term

Term 2 Term 3 Term 4

Time

Elections Log replicationSplit vote

Term 1 Term 5



Replica states

• At any given time, each replica is in one three states:

• Leader: handles all client interactions, performs log replication

• Follower: receives messages from leader, completely passive

• Candidate: starts election to become new leader

Follower Candidate Leader

5



6

Starting an election

• All replicas start as followers

• After leader is elected, it sends periodic heartbeats to 
maintain authority over followers

Follower Candidate Leader

start
timeout,

starts election



7

Starting an election

• All replicas start as followers

• After leader is elected, it sends periodic heartbeats to 
maintain authority over followers

• If a follower doesn’t receive a heartbeat within an 
election timeout, it assumes leader has crashed

• Starts election by incrementing current term, 
changing to candidate state, voting for self

Follower Candidate Leader

start
timeout,

starts election



Election

• Candidate sends RequestVote to all other replicas

Follower Candidate Leader

timeout,
starts election

8

start



Election

• Candidate sends RequestVote to all other replicas

• Receives votes from majority of replicas:

• Becomes leader

• Sends heartbeats to tell all other replicas

Follower Candidate Leader

timeout,
starts election

receives votes from
majority of replicas

9

start



Election

• Candidate sends RequestVote to all other replicas

• Receives votes from majority of replicas:

• Becomes leader

• Sends heartbeats to tell all other replicas

• Receives heartbeat from valid leader (with same/higher term):

• Returns to follower state

Follower Candidate Leader

timeout,
starts election

receives votes from
majority of replicas

discovers replica with
 higher term, steps down 10

start



Election

• Candidate sends RequestVote to all other replicas:

• Receives votes from majority of replicas:

• Becomes leader

• Sends heartbeats to tell all other replicas

• Receives heartbeat from valid leader (with same/higher term):

• Returns to follower state

• Election timeout elapses (election failed):

• Increments term, starts new election

timeout,
new election

11

Follower Candidate Leader

start
receives votes from
majority of replicas

discovers replica with
 higher term, steps down

timeout,
starts election



12

Safety

• Safety: allow at most one winner per term

• Each replica votes only once per term

• Votes for first candidate that asks

• Vote is stored on disk durably (ensures safety under crashes)

• Two candidates can’t get majorities in same term

• What if previous leader isn’t aware of new leader?

• It will not receive acks from majority during log replication

Replicas

Voted for 
candidate A

B can’t also 
get majority



Liveness

• Liveness: some candidate eventually wins

• Suppose followers/candidates have same election timeout, 
could there be a problem?

• Followers/candidates choose election timeout randomly

• Randomness reduces chance of split vote by breaking symmetry

• One follower usually initiates, wins election before others start

13



Choosing election timeout

• Choice of election timeout affects liveness

• Should be short to reduce unavailability

• After leader crashes, system becomes unavailable for election timeout

• Should be at least a small multiple of heartbeat intervals

• Avoids unneeded election if a heartbeat from leader is lost

• Random part should be several network round-trip times

• A candidate can win an election before others start

• Timeout chosen randomly between 150-300 ms

• Assumes heartbeat interval in the 10 ms range

14



15

Log Replication



16

Overview of log replication

• Raft uses log replication to broadcast clients’ operations 
in FIFO-total order

• A client issues an operation at the leader

• Leader logs the operation, broadcasts them to followers

• Followers log the operation, respond to the leader

• Raft ensures that the logs at the replica remain consistent



17

Replicated lock service

• Let’s use a lock service to show how log replication works

• Lock service has two operations: lock, unlock

• Lock service maintains unlocked/locked state per lock

• When a client sends an operation to lock service, it will 
invoke the Raft library

• Raft library will use log replication to broadcast operation

Unlocked Locked

lock

unlock lock

unlock



18

Replicated lock service

• Assume two locks below - 1: Unlocked, 2: Locked

• Assume leader is already elected

• At each replica, Raft maintains:

Leader

State
1:U, 2:L

Lock 
server

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2

Follower 2

State
1:U, 2:L

Lock 
server

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2

Follower 1

State
1:U, 2:L

Lock 
server

Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

C:3

T:6

C:3

T:6T:6

C:3

In memory Highest log entry known to be committed – C : 3

In non-volatile storage, e.g., 
disk, SSD

Log containing history of operations,
Latest known term – T : 6



19

Replicated lock service

• Client invokes lock operation at leader replica

lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



20

Replicated lock service

• Lock server forwards operation to Raft library

lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



21

Replicated lock service

• Leader logs operation durably on disk

lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



22

Replicated lock service

• Leader sends log replication RPC to followers

• RPC is called AppendEntries (append operation entries to log)

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server should we 

deliver M?
should we 
deliver M?

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



23

Replicated lock service

• Followers log operation durably on disk

• Operation is committed when majority have logged it

• Will not be lost, even if all replicas fail (caveat)

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



24

Replicated lock service

• Followers ack AppendEntries RPC to leader

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



25

Replicated lock service

• Leader learns operation is committed when it receives 
AppendEntries acks from a majority (including itself)

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:U, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



26

Replicated lock service

• Leader delivers message to lock server

• Leader’s lock server updates its state

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3 C:3C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



27

Replicated lock service

• Lock server acknowledges lock operation to client 

unlock(2, …)
lock(1, …)

Client A Client B

Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

C:3C:4C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



28

Replicated lock service

• Leader piggybacks commit info for operation when it sends 
AppendEntries RPC to followers for later operations

unlock(2, …)

C:4 C:4

unlock(2, …)

Client A Client B

Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

lock(1, …)

C:3C:4C:3

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



29

Replicated lock service

• Followers learn and update their commit info

unlock(2, …)
unlock(2, …)

Client A Client B

Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:U, 2:L

Lock 
server

Follower 1

State
1:U, 2:L

Lock 
server

lock(1, …)

C:4C:4C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:L, 2:L

Lock 
server

Follower 1

State
1:L, 2:L

Lock 
server

30

Replicated lock service

• Followers deliver message to their lock server

• Follower’s lock server updates its state

unlock(2, …)
unlock(2, …)

Client A Client B

lock(1, …)

C:4C:4C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



31

Replicated lock service

• Now lock server state is consistent on the replicas

unlock(2, …)
unlock(2, …)

Client A Client B

Leader

State
1:L, 2:L

Lock 
server

Follower 2

State
1:L, 2:L

Lock 
server

C:4

Follower 1

State
1:L, 2:L

Lock 
server

lock(1, …)

C:4C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2 Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2Log
6

L1

1 2 3 4 5
6

U1
6

L1
6

U2
6

L2

T:6 T:6T:6



32

Why use logs?

• Lock service keeps current state of each lock

• Why maintain a log (history of operations) as well?

• Log allows leader to order the operations

• Follower logs may lag leader log, but eventually converge

• Log allows storing both tentative, committed operations

• Replicas only deliver committed operations to service

• Log allows handling failures

• Leader can resend logged operations to unavailable followers

• When replicas crash, they can recover their service state by 
replaying log from persistent storage on reboot



33

Log divergence

• After failures, logs at different replicas can diverge

• How can this happen?

• R2 is leader in T6

• Crashes before it can send L2 entry at <I2, T6> to R1

• R2 reboots, becomes leader in T7

• Logs L1 entry at <I3, T7>, crashes

• R3 becomes leader at T8

• Logs U1 entry at <I3, T8>, I3 entries in R2 and R3 conflict!

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2
7

L1Replica 2
6

L1
6

U2

6

L1
6

L2Replica 3
8

U1
6

L1
6

U2

index

term

op



34

Log synchronization

• Raft forces followers to synchronize with leader’s log

• Ensures that a committed operation is at same index in all logs

• Raft always maintains these log matching properties

• If two log entries on different replicas have same index and term:

• They store the same operation

• Logs are identical in all preceding entries

• If an entry is committed, preceding entries are also committed

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2
7

L1Replica 2
6

L1
6

U2

6

L1
6

L2Replica 3
8

U1
6

L1
6

U2

index

term

op



35

Log synchronization example

• Say R3 is leader in T9, logs <T9, U2> at Entry 4

• R3 sends AppendEntries RPC to R1 and R2

• Sends Entry 4

• Includes Term T8 of previous entry (Entry 3)

• R2 checks match for previous entry

• Term check fails (T7 != T8)

• R2 returns failure to R3

check fails

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2
7

L1Replica 2
6

L1
6

U2

8

U1
6

L1
6

L2Replica 3
6

U2
9

U2



7

L1

36

Log synchronization example

• R3 resends AppendEntries RPC to R2

• Sends Entry 3 and Entry 4 to R2

• Includes Term T6 of previous entry (Entry 2)

• R2 checks match for previous entry

• Term check succeeds (T6 == T6)

• R2 applies Entry 3 and Entry 4

check succeeds

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2Replica 2
6

U2

8

U1
6

L1
6

L2Replica 3
6

U2
9

U2

9

U2
8

U1



6

L1
6

U2
6

L2
9

U2
8

U1

6

L2
9

U2
8

U1

37

Log synchronization example

• Similarly, R3 resends AppendEntries RPC twice to R1 to 
send entries at I2, I3, I4

• Result: followers delete and synchronize the tail of their 
log that differs from the leader

1 2 3 4 5

Replica 1

6

L1Replica 2
6

U2

8

U1
6

L1
6

L2Replica 3
6

U2
9

U2



38

Understanding log synchronization

• Why is it okay for R2 to rollback its Entry 3?

• What if a leader rolled back a committed entry?

• Client may have seen a reply for a committed entry

• Leader cannot forget a committed entry

• Leader’s log must have all previously committed entries

Log
synchronization 7

L1

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2Replica 2
6

U2

8

U1
6

L1
6

L2Replica 3
6

U2
9

U2

9

U2
8

U1

1 2 3 4 5
6

L1Replica 1
6

L2
6

U1
6

L1
6

U2

6

L1
6

L2
7

L1Replica 2
6

L1
6

U2

8

U1
6

L1
6

L2Replica 3
6

U2
9

U2



39

Is entry committed? 

• Say R1 is leader in T7, logs Entries 2 and 3, then crashes

6

L1

6

L1

6

L1

1 2 3 4 5

Replica 1
7

L2
7

U2
6

L1
6

U2

7

L1Replica 2
6

L1
6

U2

9

U2
8

U1Replica 3
6

U2



6

L1

6

L1

6

L1

1 2 3 4 5

Replica 1
7

L2
7

U2
6

L1
6

U2

8

U1
7

L1Replica 2
6

L1
6

U2

9

U2
8

U1
8

U1Replica 3
6

U2 40

Is entry committed? 

• Say R1 is leader in T7, logs Entries 2 and 3, then crashes

• R2 becomes leader in T8, replicates Entry 2 to R2 & R3



6

L1

6

L1

6

L1

1 2 3 4 5

Replica 1
7

L2
7

U2
6

L1
6

U2

8

U1
7

L1Replica 2
6

L1
6

U2

9

U2
8

U1
8

U1Replica 3
6

U2 41

Is entry committed? 

• Say R1 is leader in T7, logs Entries 2 and 3, then crashes

• R2 becomes leader in T8, replicates Entry 2 to R2 & R3

• Then, R2 crashes, R1 reboots



6

L1

6

L1

6

L1

1 2 3 4 5

Replica 1
7

L2
7

U2
6

L1
6

U2

8

U1
7

L1Replica 2
6

L1
6

U2

9

U2
8

U1
8

U1Replica 3
6

U2 42

Is entry committed? 

• Say R1 is leader in T7, logs Entries 2 and 3, then crashes

• R2 becomes leader in T8, replicates Entry 2 to R2 & R3

• Then, R2 crashes, R1 reboots

• Can R1 and R3 determine whether U1 committed?

• Can R1, with the longest log, becomes the leader?



43

Restriction during leader election

• Recall, candidate becomes leader when it receives votes 
from majority of replicas

• Raft adds a restriction so a candidate can only become a 
leader if it has all potentially committed entries

• Replicas respond to candidate if it is at least as up to date:

• Candidate has higher term in last log entry, or

• Candidate has same last term and same or longer log length

With leader restriction,
only R2 and R3 can become leaders

6

L1

6

L1

6

L1

1 2 3 4 5

Replica 1
7

L2
7

U2
6

L1
6

U2

8

U1
7

L1Replica 2
6

L1
6

U2

9

U2
8

U1
8

U1Replica 3
6

U2



44

Leader restriction example

• Say leader R1 has crashed, which replicas can be leaders?

• R2, R4 and R5 can get votes from at least 4 replicas

• Is it okay if R2 becomes leader (though R4, R5 have longer logs)?

R1

R2

R3

R4

R5

R6

R7

index

term
(op not shown)



7

L2
7

U2

45

When does a leader commit an entry?

• Leader in Term 7 is Replica 1

• Leader knows Entry 2 of current term is committed when it 
is stored durably on a majority

• This is safe because leader in Term 8 must contain Entry 2

1 2 3 4 5
6

L1Replica 1
6

L1
6

U2

6

L1
7

L2
7

L1Replica 2
6

L1
6

U2

6

L1
9

U2
8

U1
7

L2Replica 3
6

U2

8

U1
6

L1
9

U2
8

U1Replica 4
6

U2

8

U1
6

L1
9

U2
8

U1Replica 5
6

U2

Can’t be elected as

leader for term 8



8

U1

9

U2

7

L2

46

Committing entry of previous term

• Say Leader R1 replicates Entry 2 <T7, L2> to R1 and R2

7

L2

1 2 3 4 5
6

L1Replica 1
6

L1
6

U2

6

L1
7

L2
7

L1Replica 2
6

L1
6

U2

6

L1
9

U2
8

U1Replica 3
6

U2

8

U1
6

L1
9

U2
8

U1Replica 4
6

U2

6

L1
9

U2
8

U1Replica 5
6

U2



9

U2

7

L2

47

Committing entry of previous term

• Say Leader R1 replicates Entry 2 <T7, L2> to R1 and R2

• Then R5 becomes leader at T8, creates Entry 2 at R5

7

L2

1 2 3 4 5
6

L1Replica 1
6

L1
6

U2

6

L1
7

L2
7

L1Replica 2
6

L1
6

U2

6

L1
9

U2
8

U1Replica 3
6

U2

8

U1
6

L1
9

U2
8

U1Replica 4
6

U2

8

U1
6

L1
9

U2
8

U1Replica 5
6

U2



7

L2

48

Committing entry of previous term

• Say Leader R1 replicates Entry 2 <T7, L2> to R1 and R2

• Then R5 becomes leader at T8, creates Entry 2 at R5

• Then R1 becomes leader at T9, creates Entry 3 at R1

7

L2
9

U2

1 2 3 4 5
6

L1Replica 1
6

L1
6

U2

6

L1
7

L2
7

L1Replica 2
6

L1
6

U2

6

L1
9

U2
8

U1Replica 3
6

U2

8

U1
6

L1
9

U2
8

U1Replica 4
6

U2

8

U1
6

L1
9

U2
8

U1Replica 5
6

U2



49

Committing entry of previous term

• Leader R1 at T9 replicates its Entry 2 to R3, then crashes

• Entry 2 is now on a majority of servers, is it safely committed?

• R5 can be elected as leader for Term 10 (how?)

• If elected, it will overwrite Entry 2 on R1, R2, and R3!

7

L2
9

U2

1 2 3 4 5
6

L1Replica 1
6

L1
6

U2

6

L1
7

L2
7

L1Replica 2
6

L1
6

U2

6

L1
9

U2
8

U1
7

L2Replica 3
6

U2

8

U1
6

L1
9

U2
8

U1Replica 4
6

U2

8

U1
6

L1
9

U2
8

U1Replica 5
6

U2



9

U2

9

U2

50

Raft’s commit rule

• A leader decides that an entry (in current/previous term) is 
committed when:

• Entry is stored on a majority

• At least 1 new entry from leader’s term is also in majority

7

L2
9

U2

1 2 3 4 5
6

L1Replica 1
6

L1
6

U2

6

L1
7

L2Replica 2
6

L1
6

U2

6

L1
9

U2
7

L2Replica 3
6

U2

8

U1
6

L1
9

U2
8

U1Replica 4
6

U2

8

U1
6

L1
9

U2
8

U1Replica 5
6

U2



51

Crash Recovery



52

Handling crash failures

• When 1 in 3 replicas crash, Raft can continue operation

• But crashed replica should be repaired soon

• Otherwise, a second replica failure will lead to unavailability

• Two types of failures

• Replica crashes permanently (crash-stop)

• Use a new server as replica

• Transfer entire log from leader to new server, may take a while

• Replica crashes, reboots, disk data survives (crash-recovery)

• Any or all replicas may crash due to power failure

• What state should be stored on disk to support faster recovery?



53

Durable state in Raft

• Each replica stores following state on disk

• Log: stores committed (and tentative) entries

• If committed entries are lost from a majority of replicas, 
then they could be forgotten by a leader in a later term

• votedFor: stores candidate that replica voted for in current term

• If lost after reboot, then replica could vote for another candidate in the 
same term, could lead to more than one leader in same term

• Current term: stores latest term known to replica

• Needed for votedFor

• Avoids voting for or responding to a superseded leader



54

How to access durable state?

• State on disk is cached in memory

• If state is cached at startup, it does not need to be read again

• When should state be stored to disk?

• After it is modified

• Before sending RPC or RPC response

• Storing state durably is expensive

• 10 ms on disk, 0.1 ms on SSD, limits throughput to 102-104 ops/s

• Various optimizations possible

• Batch multiple log entries per disk write

• Use battery-backed RAM or persistent memory



55

Simple crash recovery

• After a replica crashes and reboots, in-memory state of 
(e.g., lock) service needs to be reinitialized

• Can replay entire Raft log on disk to create service state

• Each Raft replica stores volatile state

• commitIndex: highest log entry known to be committed

• lastApplied: last log entry applied to state machine

• nextIndex/matchIndex: stored on leader, see paper

• After reboot, a replica initializes its volatile state so that log 
replication replays entire log to recreate service state

• E.g., lastApplied and commitIndex start at 0 on reboot



56

Log Compaction



57

Growing log size

• Log size will grow over time

• Occupies disk (needs more space)

• Crash recovery replays entire log (takes more time)

• Leader sends entire log to new server (takes more time)

• Log size can be much larger than service state

• But clients only see service state, not log



58

Reducing log size

• How can we reduce the log size?

• Intuition:

• Persist a snapshot of the service state to disk

• Keep only the tail of the log after the snapshot

• What entries must be in the tail of the log?

• Committed entries that have not been delivered to service yet

• Uncommitted entries



59

Snapshots and log compaction

• Service provides to Raft

• Snapshot of its state

• Last <log index, term> included in the snapshot

Lock 
server

Raft
replica

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1
6

U2T:6

T:6

C:4

State
1:L, 2:L

LI:4
LT:6



Snapshot

60

Snapshots and log compaction

• Raft persists snapshot state, last <log index, term>

• Then discards log until snapshot log index

T:6

T:6

Lock 
server

Raft
replica C:4

Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1

6

U2Log
6

L1

1 2 3 4 5
6

L2
6

U1
6

L1

State
1:L, 2:L

LI:4
LT:6

State
1:L, 2:L

LI:4
LT:6

6

U2



61

Snapshot RPC

• Every replica has a log

• Every replica (not just leader) snapshots independently

• Problem: If leader compacts its log while follower is offline, 
follower’s log may end before the start of leader’s log

• B ut leader only sends entries from its log to followers

• Solution: Leader sends its snapshot (InstallSnapshot RPC) 
to a slow follower, then can continue sending its log



62

Client interaction



63

Client operations

• Clients send operations to leader, if leader unknown, 
contact any server, server redirects clients to leader

• Problem:

• Suppose leader executes client operation, 
then crashes before sending response to client

• Client retries same operation with another leader

• Operation is executed twice

• For linearizability, we need an operation to execute exactly once



64

Ensuring exactly-once semantics

• Client embeds unique request ID in each operation

• State machine performs duplicate detection

• Keeps [client -> (request ID, response)] map 
for latest operation executed for the client

• When Raft delivers an operation to the state machine, 
state machine checks if it has seen the client’s request ID, 
and returns response (without re-executing operation)



65

Read-only operations

• Can a read-only operation be issued to any follower?

• A follower can lag a leader, so the read may not read the latest 
data (needed for linearizability)

• Can a leader respond to a read-only operation without 
contacting any followers?

• A leader doesn’t know whether it has been superseded

• In Raft, when leader receives a read-only operation:

• Leader sends heartbeat messages to followers 

• Waits for a majority to know if it is still the current leader

• Responds to read-only operation (no logging needed)

• An alternative is to use leases, see paper



66

Conclusions

• Raft uses a leader-based consensus scheme to implement 
fault-tolerant state machine replication

• Ensures correctness by using majority when 

• Electing a leader (leader election)

• Delivering messages (log replication)

• Ensures liveness with randomized timers when electing leader

• Provides linearizability consistency guarantees

• Safety properties formally specified and proven

• A practical, heavily used implementation

• Handles leader/follower crash-stop/crash-recovery failures

• Log compaction, snapshots

• Membership changes - adding/removing replicas, see paper



67

Wrap up

• This has been a long tour, but we finally have answers

• Broadcast slides: Algorithms for all models, except total order 
broadcast, handle node failures. Later, we will look at fault-tolerant 
total order broadcast.

• Linearizability slides: A single server can crash. Later, we will look at 
how to build a fault-tolerant replicated service that can ensure 
linearizability.

• Replication slides: Fault tolerance in state-machine replication 
depends on the underlying total order broadcast protocol. Later, 
we will look at fault-tolerant total order broadcast.

• Raft is a fault-tolerant, total order broadcast protocol

• Implements state machine replication, provides fault tolerance, 
ensures linearizability


	Default Section
	Slide 1: Case Study 1: Consensus in Raft
	Slide 2: What is Raft?

	Leader election
	Slide 3: Leader Election
	Slide 4: Terms (aka Epochs)
	Slide 5: Replica states
	Slide 6: Starting an election
	Slide 7: Starting an election
	Slide 8: Election
	Slide 9: Election
	Slide 10: Election
	Slide 11: Election
	Slide 12: Safety
	Slide 13: Liveness
	Slide 14: Choosing election timeout

	Log replication
	Slide 15: Log Replication
	Slide 16: Overview of log replication
	Slide 17: Replicated lock service
	Slide 18: Replicated lock service
	Slide 19: Replicated lock service
	Slide 20: Replicated lock service
	Slide 21: Replicated lock service
	Slide 22: Replicated lock service
	Slide 23: Replicated lock service
	Slide 24: Replicated lock service
	Slide 25: Replicated lock service
	Slide 26: Replicated lock service
	Slide 27: Replicated lock service
	Slide 28: Replicated lock service
	Slide 29: Replicated lock service
	Slide 30: Replicated lock service
	Slide 31: Replicated lock service
	Slide 32: Why use logs?
	Slide 33: Log divergence
	Slide 34: Log synchronization
	Slide 35: Log synchronization example
	Slide 36: Log synchronization example
	Slide 37: Log synchronization example
	Slide 38: Understanding log synchronization
	Slide 39: Is entry committed? 
	Slide 40: Is entry committed? 
	Slide 41: Is entry committed? 
	Slide 42: Is entry committed? 
	Slide 43: Restriction during leader election
	Slide 44: Leader restriction example
	Slide 45: When does a leader commit an entry?
	Slide 46: Committing entry of previous term
	Slide 47: Committing entry of previous term
	Slide 48: Committing entry of previous term
	Slide 49: Committing entry of previous term
	Slide 50: Raft’s commit rule

	Crash recovery
	Slide 51: Crash Recovery
	Slide 52: Handling crash failures
	Slide 53: Durable state in Raft
	Slide 54: How to access durable state?
	Slide 55: Simple crash recovery

	Log compaction
	Slide 56: Log Compaction
	Slide 57: Growing log size
	Slide 58: Reducing log size
	Slide 59: Snapshots and log compaction
	Slide 60: Snapshots and log compaction
	Slide 61: Snapshot RPC

	Client interaction
	Slide 62: Client interaction
	Slide 63: Client operations
	Slide 64: Ensuring exactly-once semantics
	Slide 65: Read-only operations
	Slide 66: Conclusions
	Slide 67: Wrap up


