
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Consistency Models

2

Overview

• Strong consistency models

• CAP rule and base methodology

• Partition-tolerant consistency models

3

Data consistency model

• Recall, a data consistency model describes the expected
behavior from a storage system when clients access data

• When clients issue get()/put(), what values can get() read?

• Benefits of consistency model

• Allows reasoning about concurrency and failures

• Abstracts network, node and timing models, replication

• Helps with correct implement of applications, storage systems

• Now, we will see that consistency models make tradeoffs
in application complexity, performance, availability

• Informally: how system designer makes life harder for programmer,
to make system faster …

4

Linearizability redux

• Linearizability: all processes execute operations in some
total order, while preserving real-time ordering

• Operations appear to occur instantaneously, consistent with
program order, at some point in between invocation & response

• Linearizability provides strong consistency

• All clients see same order of writes

• All clients read latest data

• Strong consistency is intuitive for programmers

• Same behavior as a machine processing one request at a time

• Hides network, node, timing complexities in distributed systems

5

Issues with linearizability

• For linearizability, every read and write request involves
communicating with a majority (quorum) of replicas

• Problem 1: low performance, high latency

• With 5 replicas, every operation needs to communicate with 3 replicas

• With leader-based algorithms, leader becomes bottleneck

• Problem 2: low availability

• If a replica has stale data, it cannot serve any requests

• If a replica is partitioned, it cannot serve any requests

• If a majority of replicas are down, system is unavailable

• Takeaway: linearizability provides strong consistency but
limits performance and availability

6

How to improve performance &
availability?
• We need to allow accesses that may violate the strong

consistency guarantees provided by linearizability

• Say a set of geographically distributed web servers cache
data from a backend database server

• Each data item may have copies (replicas) at the web servers

• Ensuring that a response always returns the latest copy requires
synchronization between all the caches and the database

• Instead, a web server could directly return its cached item

• This may occasionally return stale data, but it is faster, and it allows
availability even when the database is unavailable or highly loaded

• Takeaway: need weaker consistency models for higher
performance and availability

7

Sequential consistency

• Sequential consistency weakens linearizability by not
providing any real-time guarantees

• Sequential consistency: all processes execute operations in
some total order, while preserving real-time ordering

• Operations appear to occur instantaneously, consistent with
program order, at some point in between invocation & response

• Provides better performance than linearizability because
operations across processes can be reordered
(provided there is some total order)

8

Sequential consistency - Example 1

• Sequentially consistent

• Writes may appear to be delayed

C1 C2

Rx1
Physical time

Total order

x is 0

Rx0

Wx1

9

Sequential consistency - Example 2

• Sequentially consistent

• Reads may return stale data

C1 C2

Rx0

Total order

x is 0

Rx1

Wx1

10

Sequential consistency - Example 3

• Not sequentially consistent

• There is no possible total ordering of operations

C3C1 C2 C4

Wx1

Wx2

Rx1 Rx2

Rx2 Rx1

11

Understanding sequential consistency

• There is a total ordering of operations, but

• A write may be ordered much after its response (delayed write)

• A read may return arbitrarily stale data (stale read)

• However, sequential consistency is still a strong model

• Still ensures total order of operations

• Once A observes data from B, A cannot observe B’s prior state

• As we will see, Zookeeper provides consistency in between
sequential consistency and linearizability

• Improves performance, availability compared to linearizability,
particularly for read-heavy workloads

• Problem: total order still limits availability

12

CAP Rule and Base Methodology

13

Amazon, Google Experiments (2006)

• Amazon found that every 100ms in
added page load time cost them 1%
in sales

• Today, would lose over 5 billion!

• Google took 0.4s to generate a web
page with 10 results, 0.9s to generate
a page with 30 results

• However, 0.5s delay caused a 20% drop in traffic!

• Conclusion: performance at scale determines revenue

• And revenue shapes technology

• An arms race began to improve cloud performance, availability

A sprint to render your
web page!

14

In the Cloud, Not Every Subsystem
Needs the Strongest Guarantees
• Brewer argued that strong consistency delays response

• For example, conflicting database updates
can be forced into an agreed order,
but this takes time and involves
node-node communication,
and with a network partition,
the system provides no availability

• But cloud services make money only when they always
provide fast response, so they must relax consistency

15

Examples of relaxing consistency

• Cache data in the application tier and serve it even
when back-end database servers are unavailable,
though cached data may be potentially stale

• Store a copy of data periodically (e.g., nightly) and use this
read-only (potentially stale) data for analysis

• Allow delayed updates by enqueuing update tasks for later
processing to amortize processing costs

• Guess the effects of updates and fix conflicts later, e.g.,
buy an item, eventually told it was sold out, get refund

16

CAP

• Brewer captured tradeoff between speed of response and
consistency by postulating a rule that connects
consistency, availability and partition tolerance (CAP)

• Consistency: Updates performed in some system-selected
order by all replicas. Queries return most up-to-date
values. Users see a single system.

• Availability: System responds to every user request,
even when some nodes are down.

• Partition Tolerant: System can tolerate network failures
between subsystems. E.g., machines are partitioned into
separate subnets, and switch between the subnet fails.

17

Cap Rule

• You cannot achieve all
three together:

• Consistency

• Availability

• Partition-Tolerance

• Popular interpretation: choose 2-out-of-3

• CA: Assumes partitions don’t occur, not realistic

• CP: poor availability, users unhappy

• AP: hard to program, possibly confusing to users

• None of these options are appealing!

Consistency Availability

Partition
Tolerance

CA

CP AP

18

CAP rule in practice

• Partitions do occur, so systems must tolerate partitions

• You cannot not choose partition tolerance …

• But you can design systems to make them rare

• When there are no partitions,
provide both consistency and availability

• When there is a partition, systems need to choose
between consistency, availability

• E.g., design systems that are best suited for application’s
consistency and availability needs

• When partition is fixed, restore consistency & availability

• E.g., reconcile inconsistent replicas

19

BASE methodology

• BASE: set of rules for implementing CAP-based solutions

• Invented at eBay, adopted by Amazon, others

• Basic Availability: provide continuous availability,
despite failures or temporary inconsistency

• Soft State: use state that can be regenerated (e.g., cached data) for
efficiency

• Eventual Consistency: assuming no further updates to an item, all
users will eventually see the same value of the item

• Soft state and eventual consistency help recovery from
failures, network partitions, data inconsistency, etc.

20

BASE example

• For example, if product photos rarely change, cache them,
do not check for staleness with each cache access, let
them expire after a few days or weeks

• Avoids all cache refresh traffic

• If a photo does change, you do see a stale photo, but this is rare

• BASE = "CAP in practice"
 = "Use CAP. You can clean up later."

• BASE encourages developers to think about when they
need or do not need consistency

21

Partition-Tolerant
Consistency Models

Consistency hierarchy

22

Serializability

Strict Serializability

Eventual consistency

Causal+ consistency

Sequential consistency

Linearizability

Partition Tolerant

= stronger than

Raft

ZooKeeper

Dynamo

Non-Partition Tolerant

FIFO

Causal

23

Eventual consistency

• All nodes execute operations (e.g., get, put) in any order

• Allows partition tolerance

• Assuming no new updates to a data item, all accesses to
that item will eventually return the last updated value

 Replicas must synchronize to converge to same state eventually

• Used in optimistically replicated systems

• Weakest “reasonable” form of consistency for replicated data

• Provides high availability and partition tolerance

• But eventual convergence is not suitable for all apps

• Later, we will look at Dynamo, an example of such a system

24

Understanding eventual consistency

• Reads, writes are performed at a replica without
synchronizing with other replicas, so replicas may diverge

• Conceptually, updates are totally ordered “immediately”,
but replicas establish/learn the total order eventually
when they synchronize updates with each other later

• Why is this model partition tolerant?

25

Understanding eventual consistency

• Applications need to handle out-of-order writes

• Say total order of two updates is Wx1, Wx2

• Initially, a replica receives Wx2 (out-of-order)

• Application tentatively reads Rx2

• During synchronization, when replica receives Wx1,
Wx2 may need to be rolled back,
invalidating application’s Rx2 read

• E.g., Wx1 is sale of last item of x, Wx2 is no longer possible

• Application needs to be able to handle such tentative reads

26

Causal+ consistency

• Causal consistency: all processes execute operations in an
order that satisfies causality (happens-before)

• Say Client 1 writes WxA, Client 2 reads RxA and then writes WyB

• Then, WxA -> WyB (happens-before)

• All processes should observe WxA and then WyB

• Implications

• High availability: allows partition tolerance since causally related
operations cannot occur across partitions

• No guarantee of convergence: replicas can apply two non-causally-
related events in different orders

• Causal+: data is eventually consistent also

27

Understanding causal consistency

• With causal consistency, there should be no cyclic
dependencies among operations

• Are these operations causally consistent?

• Yes: no dependency between Wx1 and Wx2,
C3 and C4 can observe them in either order

C3C1 C2 C4

Wx1

Wx2

Rx1 Rx2

Rx2 Rx1

28

Understanding causal consistency

• With causal consistency, there should be no cyclic
dependencies among operations

• Are these operations causally consistent?

• No: Wx1 happens before Wx2,
C4 should not observe Rx2 and then Rx1

C3C1 C2 C4

Wx1

Wx2

Rx1 Rx2

Rx2 Rx1

Rx1

29

Session (client-centric) guarantees

• We have focused on consistency guarantees provided by a
system to all users

• Session guarantees describe consistency guarantees
provided by a system to a single client

• No guarantees are made about accesses from different clients

• Motivation from mobile computing

• Consider a mobile client that is connected to a replica

• Client travels to another continent, connects to another replica

• What guarantees can the client expect when it accesses its data?

30

Session (client-centric) guarantees

• Causal consistency ensures four session guarantees

• Read-your-writes: a process’s read can only be served by replicas
that have applied all previous writes of the process

• Monotonic writes: a process’s write is only applied on replicas that
have applied all previous writes of the process

• Monotonic reads: a process’s read can only be served by replicas
that have applied all previous writes observed (read) by the
process (i.e., reads don’t go backwards)

• Writes-follow-reads: a process’s write is only applied on replicas
that have applied all previous writes observed (read) by the
process (i.e., causal writes)

• These guarantees become important when client sessions
switch replicas (otherwise, trivially satisfied)

31

FIFO consistency

• FIFO consistency ensures the first three session
guarantees: read-your-writes, monotonic writes and
monotonic reads

• Writes across processes that are causally related may be
performed in any order

32

Comparing consistency models

• Consider a message board, e.g., Piazza

• A user posts a new message

• Users reply to the post

Linearizability Users sees the post and all replies in same
real-time order

Sequential Users sees the post and a prefix of all replies in
same order, replies may not be real-time order

Causal Users sees the post before replies,
but may see replies in different order

FIFO Users read messages from each user in order but
not across users, so may see replies before post

33

Conclusions

• Strong consistency models such as linearizability and
sequential consistency ensure total order of operations

• Pros: Make it easier to write applications

• Cons: Limit performance and availability under partitions

• CAP rule and base methodology

• In the cloud, fast response and partition tolerance is critical

• Base: continuous availability, cache data, eventual consistency

• Causal and eventual consistency models

• Pros: Provide partition tolerance

• Cons: Make it harder to write applications, e.g., users can see
temporarily inconsistent data, replicas need reconciliation

	Slide 1: Consistency Models
	Slide 2: Overview
	Slide 3: Data consistency model
	Slide 4: Linearizability redux
	Slide 5: Issues with linearizability
	Slide 6: How to improve performance & availability?
	Slide 7: Sequential consistency
	Slide 8: Sequential consistency - Example 1
	Slide 9: Sequential consistency - Example 2
	Slide 10: Sequential consistency - Example 3
	Slide 11: Understanding sequential consistency
	Slide 12: CAP Rule and Base Methodology
	Slide 13: Amazon, Google Experiments (2006)
	Slide 14: In the Cloud, Not Every Subsystem Needs the Strongest Guarantees
	Slide 15: Examples of relaxing consistency
	Slide 16: CAP
	Slide 17: Cap Rule
	Slide 18: CAP rule in practice
	Slide 19: BASE methodology
	Slide 20: BASE example
	Slide 21: Partition-Tolerant Consistency Models
	Slide 22: Consistency hierarchy
	Slide 23: Eventual consistency
	Slide 24: Understanding eventual consistency
	Slide 25: Understanding eventual consistency
	Slide 26: Causal+ consistency
	Slide 27: Understanding causal consistency
	Slide 28: Understanding causal consistency
	Slide 29: Session (client-centric) guarantees
	Slide 30: Session (client-centric) guarantees
	Slide 31: FIFO consistency
	Slide 32: Comparing consistency models
	Slide 33: Conclusions

