
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

These slides are derived from the original slides by:

Patrick Hunt and Mahadev (Yahoo! Grid)
Flavio Junqueira and Benjamin Reed (Yahoo! Research)

ZooKeeper:
Wait-Free Coordination for

Internet-Scale systems

2

Overview

• What is ZooKeeper?

• ZooKeeper API

• Coordination recipes

• Consistency guarantees

• Handling failures

• Implementation

3

What is coordination?

• Group of nodes (or processes) need to manage their
interactions to perform some common tasks

• Configuration management: change, use configuration values

• Synchronization: locking, barriers

• Leader election: select leader, let others know about leader

• Group membership: get list of current members

• Status monitoring: monitor processes, machines, users, etc.

Classic coordination

4

Coordinator

Worker Worker Worker Worker

5

Fault-tolerant coordination

• Use state machine replication for fault tolerance

• Issues

• Programming coordinator state machine is complicated

• Computation is replicated, expensive

• Coordinator can become bottleneck

Coordinator
follower

Coordinator
follower

Coordinator
leader

Worker Worker Worker Worker

6

Storage-based coordination

• Maintain coordinator state in separate storage system

• E.g., IP of current coordinator, set of workers, task assignments

• Coordinator, workers coordinate via storage write/read

• Any worker can be coordinator

Storage
system

Worker Coordinator Worker Worker

7

Fault-tolerant storage system

• Replicate storage (instead of computation) for fault
tolerance

• Coordinator code is simpler since no state machine needed

• What happens when coordinator fails?

• Any another worker can take over, but this may take some time

Storage
follower

Storage
follower

Storage
leader

Worker Coordinator Worker Worker

8

What is ZooKeeper?

• A fault-tolerant storage system that provides general
coordination services, i.e., coordination kernel

• E.g., group membership, locks, leader election, etc.

• Provides high performance

• Allows multiple outstanding operations by a client

• Reads are fast (although they may return stale data)

• Reliable and easy to use

9

ZooKeeper API

10

Data model

• Each node is called znode

• Stores some data,
including version

• Data is read and written
in its entirety

• znodes may have children

• Hierarchal namespace

• Like a file system, registry

• State maintained in memory

/

YaView

workers

locks

services

apps

users

worker1

worker2

s-1

11

Znode types

• Two special types of znodes:

• Ephemeral: znode deleted
when explicitly deleted, or
when client session
that created the znode fails

• Sequence: appends a
(unique) monotonically
increasing counter

/

YaView

workers

locks

services

apps

users

worker1

worker2

s-1

sequence
number

appended
on create

ephemerals
created by
a session

12

Overview of API

• Operations look like file system operations

• Take a path name to a znode, e.g., create(“/app1/worker1”, …)

• Operations are non-blocking (or wait-free)

• Operations by one client do not block on another client

• Slow and failed nodes cannot slow down fast ones

• No deadlocks

• ZooKeeper uses API to provide “coordination recipes”

• E.g., group membership recipe, locking recipe

• Some recipes need to wait on conditions, e.g., locking

• ZooKeeper supports waiting for conditions efficiently

13

ZooKeeper API

• Clients open a session with (any) one ZK server, issue
operations synchronously or asynchronously

s= openSession()

String create(path, data, acl, flags)

void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion)

(data, Stat) getData(path, watch)

Stat exists(path, watch)

String[] getChildren(path, watch)

void sync(s)

14

Key API Properties

• Async operations allow batching many operations

• Exclusive file creation: one concurrent create succeeds

• (d1, v) = getData()/setData(d2, v) support atomic ops

• setData fails if data is modified since getData

• Sequence files allow ordering operations across clients

• E.g., ordering lock operations

• Ephemeral files help cope with client session failure

• E.g., group membership change, release locks, etc.

• Watches avoid costly repeated polling

Coordination Recipes

15

16

Configuration

• Workers read configuration

• getData(“.../config/settings”, true)

• Administrators change the configuration

• setData(“.../config/settings”, newConfig, -1)

• Workers notified of change, re-read new configuration

• getData(“.../config/settings”, true)

settings

config

17

Group membership

• Register worker with host information in group

• create(“.../workers/workerNR”, hostInfo, EPHEMERAL)

• List group members

• getChildren(“.../workers”, true)

• Job scheduling

workers

worker1

worker2

worker3

jobs

job1

job2

job2

leader

Leader election

18

while true:
 if exists(“.../config/leader”, watch=true)
 follow the leader
 return

 if create(“.../config/leader”, hostname, EPHEMERAL)
 become leader
 return

If watch is triggered for “.../config/leader”
 restart leader election process

config

lock:
 id = create(“.../locks/x-”, SEQUENCE|EPHEMERAL)

 restart:
 getChildren(“.../locks”, false)
 if id is the 1st child // lock is acquired
 exit

 // wait for previous node
 if exists(name of last child before id, true)
 wait for event // no herd

 goto restart // why?

unlock:
 delete(id)

Locks

19

locks

x-11

x-19

x-20

20

Consistency Guarantees

21

ZooKeeper consistency guarantees

• Linearizable writes

• Clients see same order of writes, in real-time order

• FIFO client order

• A client’s operations are executed in order

• Implications:

• A client’s read must wait for all its previous writes to be executed

• A client’s writes are applied in order

• A client X reads another client Y’s writes in order

• Hypothesis: wait-free synchronization + linearizable writes
+ FIFO client order enable high-performance coordination
for read-heavy workloads

What type of
consistency?

22

Providing good read performance

• Clients connect to different servers for parallelism

• Writes forwarded by followers to leader

• Leader replicates writes using atomic total order broadcast

• Reads executed on replicas locally

• Efficient but may return stale data when follower is lagging

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1 worker2

23

Providing good read performance

• Clients watch, rather than poll, for changes

• Watches implemented efficiently on replicas locally

• Clients can issue many concurrent async operations

• Clients number messages, ZK executes them in FIFO order

• Completion notifications delivered asynchronously, unlike RPC

• ZK can batch state updates, fewer messages & disk writes

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1 worker2

24

Understanding FIFO client order

• Say worker1 issues W1, R2, W3 at Follower 1

• Follower 1 forwards writes to leader

• Leader delivers writes to Follower 1 in some order: W W W1 …

• W are from other clients

• For FIFO client order, Follower 1 performs R2 after seeing
W1, but before seeing W3

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1

25

Understanding FIFO client order

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1 worker2

worker1 at Follower 1

setData(“file”, newdata, …)
create(“ready”, …)

worker2 at Follower 3

if (exists(“ready”, …))
 // guaranteed to read newdata
 getData(“file”, …)

26

Understanding FIFO client order

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1 worker2

worker1 at Follower 1

setData(“file”, newdata, …)
create(“ready”, …)

worker2 at Follower 3

if (exists(“ready”, …))
 // guaranteed to read newdata
 // Follower 3 crashes
 getData(“file”, …)

27

Understanding FIFO client order

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1 worker2

worker1 at Follower 1

setData(“file”, newdata, …)
create(“ready”, …)

worker2 at Follower 3

if (exists(“ready”, …))
 // guaranteed to read newdata
 // Follower 3 crashes
 getData(“file”, …)
// Follower 3 crashes

 // worker 2 connects to Follower 4
 // still guaranteed to read newdata
 getData(“file”, …)

28

FIFO client order across replicas

• ZK leader tags each change in its state with a unique id
(zxid) in increasing (total) order

• ZK replicas maintains last_zxid they have seen

• Client’s read request at replica returns replica’s last_zxid

• Clients also maintain last_zxid they have seen

• When a client connects to another replica,
replica delays responding to the client until
replica’s last_zxid >= client’s last_zxid

• Ensures that replica’s view is newer than client’s view

• In previous example, worker2’s connection to Follower 4 is
delayed until Follower 4 has seen “ready” file

29

Handling Failures

30

Challenges

• How does ZooKeeper detect coordinator failure?

• What if coordinator fails midway during complex update?

• After a coordinator is elected, what if old coordinator is
alive, thinks it is still the coordinator?

31

Coordinator failure

• A client establishes a session with a ZK server

• Each session sends keep-alive messages to ZK server

• ZK leader decides a session has failed when no ZK server
receives keep-alive message from session within a timeout

• Then, ZK leader

• Terminates session

• Deletes ephemeral files created by session

• When coordinator’s session is terminated,
clients use leader election to elect another coordinator

32

Failure while updating state

• A coordinator could fail while it is updating ZK state

• Clients should not see coordinator’s partial updates

• Option 1: store all coordinator data in one file

• setData() calls are performed failure atomically

• Option 2: use a ready file scheme

• Why does this scheme work?

Worker

if (exists(“…/ready”, watch=true))
 getData(“…/config1”)
 getData(“…/config2”)

Coordinator

delete(“…/ready”, …);
setData(“…/config1”, …);
setData(“…/config2”, …);
create(“…/ready”, …);

33

Old coordinator

• What if old coordinator is alive, thinks it is coordinator?

• When ZooKeeper leader terminates coordinator’s session,
it also stops accepting requests from the coordinator’s session

• Old coordinator can no longer modify ZooKeeper state!

• What if old coordinator talks directly to a worker?

• Worker needs to ignore requests from old coordinator

• New coordinator reads zxid of newly created “leader” znode,
sends zxid on each message to workers

• If worker receives message with zxid < previously seen zxid,
it ignores (old coordinator’s) message

• This method of ignoring requests from an old coordinator is called
fencing

Implementation

34

35

ZooKeeper service

• ZooKeeper maintains a replicated database

• Each replica keeps a copy of ZooKeeper state in memory

• Logs writes to ZooKeeper state in a write-ahead log on disk for
recovering committed operations

• Creates and stores snapshots of ZooKeeper state on disk for faster
recovery

Replica Replica ReplicaReplica Replica

36

ZooKeeper leader

• Servers elect a leader at startup

• If a leader fails, they re-elect another leader using the ZAB
leader-based atomic broadcast protocol

• This election is different from clients electing a coordinator

Follower 2 Leader Follower 3Follower 1 Follower 4

37

ZooKeeper reads

• Clients connect to any one server (follower or leader)

• Client’s read (e.g., getData) performed by local server

• E.g., When worker2 issues read, Follower 3 reads and returns data
from its own copy

• Reads may return stale results

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1 worker2

38

ZooKeeper writes

• worker1’s write (e.g., setData) forwarded by local server
(Follower 1) to leader

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1

39

ZooKeeper: send writes

• Leader logs the write to its write-ahead log

• Leader sends write to all followers

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1

40

ZooKeeper: receive acks

• Followers log the write to their write-ahead log

• Respond to the leader

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1

41

ZooKeeper: commit write

• When leader receives acks from a majority of servers, it
commits the write (need 2f+1 servers to handle f failures)

• Leader applies write to ZooKeeper state in memory

• Leader informs followers that write is committed

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1

42

ZooKeeper: apply write

• Each follower:

• Commits the write

• Applies write to ZooKeeper state in memory

• Issues watch notifications to clients connected to follower

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1

43

ZooKeeper: write response

• Follower 1 delivers write response to worker1

Follower 2 Leader Follower 3Follower 1 Follower 4

worker1

ZooKeeper performance

44

Performance: clients connect to leader

45

46

Conclusions

• ZooKeeper is a coordination service with a wait-free API
and a change notification service

• Applications implement coordination recipes with this API

• ZooKeeper ensures linearizable writes and FIFO execution
of client operations

• These guarantees are sufficient for many applications

• Enable good performance for read-heavy workloads

• Released as an Apache open-source project

• Relatively easy to use

• Today, used extensively for coordination functions

	Slide 1: ZooKeeper: Wait-Free Coordination for Internet-Scale systems
	Slide 2: Overview
	Slide 3: What is coordination?
	Slide 4: Classic coordination
	Slide 5: Fault-tolerant coordination
	Slide 6: Storage-based coordination
	Slide 7: Fault-tolerant storage system
	Slide 8: What is ZooKeeper?
	Slide 9: ZooKeeper API
	Slide 10: Data model
	Slide 11: Znode types
	Slide 12: Overview of API
	Slide 13: ZooKeeper API
	Slide 14: Key API Properties
	Slide 15: Coordination Recipes
	Slide 16: Configuration
	Slide 17: Group membership
	Slide 18: Leader election
	Slide 19: Locks
	Slide 20: Consistency Guarantees
	Slide 21: ZooKeeper consistency guarantees
	Slide 22: Providing good read performance
	Slide 23: Providing good read performance
	Slide 24: Understanding FIFO client order
	Slide 25: Understanding FIFO client order
	Slide 26: Understanding FIFO client order
	Slide 27: Understanding FIFO client order
	Slide 28: FIFO client order across replicas
	Slide 29: Handling Failures
	Slide 30: Challenges
	Slide 31: Coordinator failure
	Slide 32: Failure while updating state
	Slide 33: Old coordinator
	Slide 34: Implementation
	Slide 35: ZooKeeper service
	Slide 36: ZooKeeper leader
	Slide 37: ZooKeeper reads
	Slide 38: ZooKeeper writes
	Slide 39: ZooKeeper: send writes
	Slide 40: ZooKeeper: receive acks
	Slide 41: ZooKeeper: commit write
	Slide 42: ZooKeeper: apply write
	Slide 43: ZooKeeper: write response
	Slide 44: ZooKeeper performance
	Slide 45: Performance: clients connect to leader
	Slide 46: Conclusions

