ZooKeeper:
Wait-Free Coordination for
Internet-Scale systems

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

These slides are derived from the original slides by:

Patrick Hunt and Mahadev (Yahoo! Grid)
Flavio Jungueira and Benjamin Reed (Yahoo! Research)

Overview

* What is ZooKeeper?

* /ZooKeeper API

* Coordination recipes

* Consistency guarantees
* Handling failures

* Implementation

What is coordination?

* Group of nodes (or processes) need to manage their
interactions to perform some common tasks

e Configuration management: change, use configuration values
* Synchronization: locking, barriers

* Leader election: select leader, let others know about leader

* Group membership: get list of current members

e Status monitoring: monitor processes, machines, users, etc.

Classic coordination

Coordinator

) N\

Worker Worker

Worker

Worker

Fault-tolerant coordination

Coordinator Coordinator Coordinator
follower leader follower

A

Worker Worker Worker Worker

* Use state machine replication for fault tolerance

* |ssues
* Programming coordinator state machine is complicated
 Computation is replicated, expensive

e Coordinator can become bottleneck

Storage-based coordination

Storage
system
Worker Coordinator Worker Worker

 Maintain coordinator state in separate storage system

 E.g., IP of current coordinator, set of workers, task assignments

* Coordinator, workers coordinate via storage write/read

* Any worker can be coordinator

Fault-tolerant storage system

Storage Storage Storage
follower leader follower
Worker Coordinator Worker Worker

* Replicate storage (instead of computation) for fault
tolerance

* Coordinator code is simpler since no state machine needed

 What happens when coordinator fails?

* Any another worker can take over, but this may take some time

What is ZooKeeper?

* A fault-tolerant storage system that provides general
coordination services, i.e., coordination kernel

 E.g., group membership, locks, leader election, etc.

* Provides high performance

* Allows multiple outstanding operations by a client

 Reads are fast (although they may return stale data)

 Reliable and easy to use

ZooKeeper API

Data model

/
 Each nodeis called znode |
e Stores some data, |—> YaView
including version
— workers
* Datais read and written
in its entirety workerl
i worker?2
* znodes may have children
" hal —> locks
. ierarchal namespace |
. . . S-l
* Like a file system, registry
—- apps
e State maintained in memory
— users

10

Znode types

 Two special types of znodes:

Ephemeral: znode deleted
when explicitly deleted, or
when client session

that created the znode fails

Sequence: appends a
(unique) monotonically
Increasing counter

/

—> services

—> apps

—> users

ephemerals
created by

| > YaView d session

— workers
workerl

worker2

— |ocks

|—> s-1
N

sequence
number

appended
on create

11

Overview of API

Operations look like file system operations

* Take a path name to a znode, e.g., create(“/app1/workerl”, ...)

* Operations are non-blocking (or wait-free)

 QOperations by one client do not block on another client
* Slow and failed nodes cannot slow down fast ones

* No deadlocks

e ZooKeeper uses API to provide “coordination recipes”

 E.g., group membership recipe, locking recipe

 Some recipes need to wait on conditions, e.g., locking

 ZooKeeper supports waiting for conditions efficiently

12

ZooKeeper API

e Clients open a session with (any) one ZK server, issue
operations synchronously or asynchronously

s= openSession()

String create(path, data, acl, flags)
void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion)

(data, Stat) (path, watch)
Stat (path, watch)

String|] (path, watch)
void (s)

13

Key API Properties

Async operations allow batching many operations
Exclusive file creation: one concurrent create succeeds

(d1, v) = getData()/setData(d2, v) support atomic ops

e setData fails if data is modified since getData

Sequence files allow ordering operations across clients

 E.g., ordering lock operations

Ephemeral files help cope with client session failure

 E.g., group membership change, release locks, etc.

Watches avoid costly repeated polling

14

Coordination Recipes

15

Configuration

Workers read configuration config

« getData(*“.../config/settings”, true) L—»»gﬂﬂngs

Administrators change the configuration

« setData(“.../config/settings”, newConfig, -1)

Workers notified of change, re-read new configuration

« getData(“.../config/settings”, true)

16

Group membership

* Register worker with host information in group

« create(*“.../workers/workerNR”, hostInfo, EPHEMERAL)

e List group members

« getChildren(*“.../workers”, true)

e Job scheduling jobs
— jobl

— job2

— job2

workers
— workerl

— worker2

— Wworker3

17

Leader election

while true:
if exists(“.../config/leader”, watch=true)
follow the leader
return

if create(*.../config/leader”, hostname, EPHEMERAL)
become leader
return

config
If watch is triggered for “.../config/leader”
restart leader election process

leader

18

Locks

lock:
id = create(*.../locks/x-*, SEQUENCE|EPHEMERAL)

restart:

getChildren(*.../locks”, false)

if id is the 1°* child // lock is acquired
exit

// wait for previous node
if exists(name of last child before id, true) locks

wait for event // no herd L . 11

goto restart // why? > x-19
— x-20
unlock:
delete(id)

19

Consistency Guarantees

20

ZooKeeper consistency guarantees

e Linearizable writes =

e Clients see same order of writes, in real-time order What type of

/ consistency?

* Aclient’s operations are executed in order

* FIFO client order -—

 Implications:
 Aclient’s read must wait for all its previous writes to be executed
 Aclient’s writes are applied in order

e Aclient X reads another client Y’s writes in order

 Hypothesis: wait-free synchronization + linearizable writes
+ FIFO client order enable high-performance coordination

for read-heavy workloads .

Providing good read performance

Follower 1 Follower 2 Leader Follower 3 Follower 4
= L> = = =
—- - —- - —-
workerl worker2

* Clients connect to different servers for parallelism

 Writes forwarded by followers to leader

* Leader replicates writes using atomic total order broadcast

 Reads executed on replicas locally

e Efficient but may return stale data when follower is lagging

22

Providing good read performance

Follower 1 Follower 2
. o
—- -
workerl

Leader

=
—

Follower 3 Follower 4
= —
— —>
worker2

* Clients watch, rather than poll, for changes

 Watches implemented efficiently on replicas locally

e C(Clients can issue many concurrent async operations

* Clients number messages, ZK executes them in FIFO order

 Completion notifications delivered asynchronously, unlike RPC

e 7K can batch state updates, fewer messages & disk writes

23

Understanding FIFO client order

Follower 1 Follower 2 Leader Follower 3 Follower 4
= L> = = =
—- - —- - —-
workerl

 Say workerl issues W1, R2, W3 at Follower 1
* Follower 1 forwards writes to leader
e Leader delivers writes to Follower 1 in some order: W W W1 ...

* W are from other clients

* For FIFO client order, Follower 1 performs R2 after seeing
W1, but before seeing W3

Understanding FIFO client order

Follower 1 Follower 2
. o
—- -
workerl

workerl at Follower 1

setData(“file”, newdata, ..

create(“ready”, ..)

Leader Follower 3 Follower 4
= = —
- - —-
worker2

worker2 at Follower 3

if (exists(“ready”, ..))
// guaranteed to read newdata
getData(“file”, ..)

25

Understanding FIFO client order

Follower 1 Follower 2
. o
—- -
workerl

workerl at Follower 1

Leader Follower 4

= =
— —

setData(“file”, newdata, ..

create(“ready”, ..)

worker2

worker2 at Follower 3

if (exists(“ready”, ..))
// guaranteed to read newdata
// Follower 3 crashes
getData(“file”, ..)

26

Understanding FIFO client order

Follower 1 Follower 2 Leader Follower 4
= L> = =
—- - —- —-
workerl worker2
workerl at Follower 1 worker2 at Follower 3

setData(“file”, newdata, ..) if (exists(“ready”, ..))
create(“ready”, ..) // guaranteed to read newdata
// Follower 3 crashes
// worker 2 connects to Follower 4
// still guaranteed to read newdata
getData(“file”, ..)
27

FIFO client order across replicas

 ZK leader tags each change in its state with a unique id
(zxid) in increasing (total) order

 ZKreplicas maintains last_zxid they have seen

e C(lient’s read request at replica returns replica’s last_zxid

e Clients also maintain last_zxid they have seen

* When a client connects to another replica,
replica delays responding to the client until
replica’s last_zxid >= client’s last_zxid

* Ensures that replica’s view is newer than client’s view

* In previous example, worker2’s connection to Follower 4 is

delayed until Follower 4 has seen “ready” file .

Handling Failures

29

Challenges

e How does ZooKeeper detect coordinator failure?
 What if coordinator fails midway during complex update?

e After a coordinator is elected, what if old coordinator is
alive, thinks it is still the coordinator?

30

Coordinator failure

A client establishes a session with a ZK server

* Each session sends keep-alive messages to ZK server

ZK leader decides a session has failed when no ZK server
receives keep-alive message from session within a timeout

Then, ZK leader

e Terminates session

* Deletes ephemeral files created by session

When coordinator’s session is terminated,
clients use leader election to elect another coordinator

31

Failure while updating state

* A coordinator could fail while it is updating ZK state

e Clients should not see coordinator’s partial updates

 Option 1: store all coordinator data in one file

» setData() calls are performed failure atomically

 Option 2: use a ready file scheme

* Why does this scheme work?

Coordinator Worker

delete(*../ready”, ..); if (exists(“../ready”, watch=true))
setData(“../configl”, ..); getData(“../configl”)
setData(“../config2”, ..); getData(“../config2”)

create(“../ready”, ..);
32

Old coordinator

« What if old coordinator is alive, thinks it is coordinator?

When ZooKeeper leader terminates coordinator’s session,
it also stops accepting requests from the coordinator’s session

Old coordinator can no longer modify ZooKeeper state!

 What if old coordinator talks directly to a worker?

Worker needs to ignore requests from old coordinator

New coordinator reads zxid of newly created “leader” znode,
sends zxid on each message to workers

If worker receives message with zxid < previously seen zxid,
it ignores (old coordinator’s) message

This method of ignoring requests from an old coordinator is called
fencing

33

Implementation

34

ZooKeeper service

Replica Replica Replica Replica Replica
= L> = = =
— —- —- —- —

 ZooKeeper maintains a replicated database

* Each replica keeps a copy of ZooKeeper state in memory

* Logs writes to ZooKeeper state in a write-ahead log on disk for
recovering committed operations

* Creates and stores snapshots of ZooKeeper state on disk for faster
recovery

ZooKeeper leader

Follower 1 Follower 2 Leader Follower 3 Follower 4
— L> = = —
—- - - - —-

* Servers elect a leader at startup

* If aleader fails, they re-elect another leader using the ZAB
leader-based atomic broadcast protocol

* This election is different from clients electing a coordinator

ZooKeeper reads

Follower 1 Follower 2 Leader Follower 3 Follower 4
= L> = = =
—- - —- - —-
workerl worker2

* Clients connect to any one server (follower or leader)

* Client’sread (e.g., getData) performed by local server

 E.g., When worker2 issues read, Follower 3 reads and returns data
from its own copy

 Reads may return stale results

37

ZooKeeper writes

Follower 1

=
—

workerl

Follower 2

L

—

~a

Leader

=
—

Follower 3

-
-

Follower 4

=
—

workerl’s write (e.g., setData) forwarded by local server

(Follower 1) to leader

38

ZooKeeper: send writes

Follower 1

—-
>

workerl

Follower 2

L

—

Leader

=
—

Follower 3

-
>

Follower 4

—
>

NIEEg D SV

Leader logs the write to its write-ahead log

Leader sends write to all followers

39

ZooKeeper: receive acks

Follower 1

=
—

workerl

Followers log the write to their write-ahead log

Respond to the leader

Follower 2

L

—

Leader

=
—

Follower 3

-
-

Follower 4

=
—

IR Sl

40

ZooKeeper: commit write

Follower 1 Follower 2 Leader Follower 3 Follower 4
= L> = = =
—- - - - —-
workerl

* When leader receives acks from a majority of servers, it
commits the write (need 2f+1 servers to handle f failures)

* Leader applies write to ZooKeeper state in memory

e Leader informs followers that write is committed

41

ZooKeeper: apply write

Follower 1 Follower 2 Leader Follower 3 Follower 4
= L> = = =
—- - - - —-
workerl

Each follower:

Commits the write
Applies write to ZooKeeper state in memory

Issues watch notifications to clients connected to follower

42

ZooKeeper: write response

Follower 1 Follower 2 Leader Follower 3 Follower 4
= L> = = =
—- - - - —-
workerl

* Follower 1 delivers write response to workerl

ZooKeeper performance

Operations per second

Throughput of saturated system
90000

3 servers ———

80000 5 servers
7 Servers
70000 9 servers oo
13 servers

60000
50000
40000

30000

o

.
“‘

‘‘‘‘‘‘
l“ *
.

o
......
- .
‘‘‘‘‘‘
,,,,,

‘‘‘‘‘

-

20000

........
......

...............
..................
..............
.....

10000

0 20 40 60 80 100

Percentage of read requests

44

Performance: clients connect to leader

Operations per second

Throughput of saturated system (all requests to leader)

90000
3 servers

5 servers
7 servers
9 servers
70000 13 servers

80000

60000

50000

40000

30000

20000

10000

0 20 40 60 80
Percentage of read requests

100

45

Conclusions

 ZooKeeper is a coordination service with a wait-free API
and a change notification service

* Applications implement coordination recipes with this API

 ZooKeeper ensures linearizable writes and FIFO execution
of client operations

 These guarantees are sufficient for many applications

 Enable good performance for read-heavy workloads

 Released as an Apache open-source project

* Relatively easy to use

* Today, used extensively for coordination functions

46

	Slide 1: ZooKeeper: Wait-Free Coordination for Internet-Scale systems
	Slide 2: Overview
	Slide 3: What is coordination?
	Slide 4: Classic coordination
	Slide 5: Fault-tolerant coordination
	Slide 6: Storage-based coordination
	Slide 7: Fault-tolerant storage system
	Slide 8: What is ZooKeeper?
	Slide 9: ZooKeeper API
	Slide 10: Data model
	Slide 11: Znode types
	Slide 12: Overview of API
	Slide 13: ZooKeeper API
	Slide 14: Key API Properties
	Slide 15: Coordination Recipes
	Slide 16: Configuration
	Slide 17: Group membership
	Slide 18: Leader election
	Slide 19: Locks
	Slide 20: Consistency Guarantees
	Slide 21: ZooKeeper consistency guarantees
	Slide 22: Providing good read performance
	Slide 23: Providing good read performance
	Slide 24: Understanding FIFO client order
	Slide 25: Understanding FIFO client order
	Slide 26: Understanding FIFO client order
	Slide 27: Understanding FIFO client order
	Slide 28: FIFO client order across replicas
	Slide 29: Handling Failures
	Slide 30: Challenges
	Slide 31: Coordinator failure
	Slide 32: Failure while updating state
	Slide 33: Old coordinator
	Slide 34: Implementation
	Slide 35: ZooKeeper service
	Slide 36: ZooKeeper leader
	Slide 37: ZooKeeper reads
	Slide 38: ZooKeeper writes
	Slide 39: ZooKeeper: send writes
	Slide 40: ZooKeeper: receive acks
	Slide 41: ZooKeeper: commit write
	Slide 42: ZooKeeper: apply write
	Slide 43: ZooKeeper: write response
	Slide 44: ZooKeeper performance
	Slide 45: Performance: clients connect to leader
	Slide 46: Conclusions

