Case Study 3:
Scalable Caching with Memcache

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Slides are modified from the original talks by
Rajesh Nishtala and Nathan Bronson

Case study on scaling storage

* Facebook’s experience with using in-memory caches
to scale storage

 The practical problems that were encountered
* How they were solved

* Tradeoffs between performance and consistency

Overview

Introduction to Facebook storage infrastructure

* One Memcache server

* Memcache servers in a cluster

* Memcache servers in multiple clusters within a region

* Geographically distributed clusters in multiple regions

Requirements at Facebook

* Scale to process millions of user requests per second

Support heavy read load (over 1 billion reads/sec)

Near real-time communication, so tight latency requirements

Be able to access and update popular shared content, so hot spots

Poor locality for storage accesses

e Scale to petabytes of storage

* Geographically distributed users, multiple data centers

Facebook’s social graph

= &

I"' Nathan

At the summit — at Charlotte Dome.

Like - Comment

Carol and 3 others like this.

B Alice
+ how was it? is it worth the long approach?
&
Like - More -

LOCATION

GPS_DATA

AT |Charlotte Dome.

EXIF_INFO

AMeit y AAMMmant
Q ";U. e a commen

USER

I " Nathan

COMMENT

AUTHOR

how was it? is it worth the |
Like -More -

Rendering the social graph

USER
" Nathan
(ﬁ LOCATION h
= GPS_DATA AT | Charlotte Dome. A
» s
‘ Nathan — <<\
M ihe sommit t Chariahiz Came D— %
I
(a1 USER
S
o Carol
Q
>
S
g ISER
L - Comment 0 Likg USER
Carnl ard 3 others 130 thie, o
& %
t‘ -:‘;:msmul-mnmu kng agproach? ; %(\
Us W ¢
gic B EXIF_INFO A
USER COMMENT

[5= | H
¥ L AI'Q’E /] AUTHOR how was it7? is it worth the |
. i \J Like - More -

Storing the social graph

L ‘

Mib2sommt ot Charohiz Came

Like - Comment

Carnl ard 3 others 13o thiz,
Mioe

+ how was 7 bz ¢ worih the kng approach?
Ubz -4 - i i

& Viriwe 3 cmean)

[Webserver (PHP)]

mysql databases

LOCATION
GPS_DATA ¢ AT |Charlotie Dome,
o <
% $
% S
£z s
PHOTO bOST 5
_ g
~ PHOTO &
Al th it
'y
[1)
& %,
%
7.
EXIF_INFO 23
USER

| Alice
1 AUTHOR

USER
LIKE Carol

Likg USER

COMMENT

how waa i1? is it waorth the |
LIks - Mara - Just now /

Objects and associations

* Objects, associations stored in separate database tables
* Objects identified by unique 64-bit IDs
* Each object has type field and other data fields

* Associations identified by <id1, type, id2>

e Associations have a time field and other data fields

id: 1807 =>

<1
type: POST . 807’COMME
“« tlme. N7;2003
str: “At the summ... 3
id: 2003 =>
type: COMMENT
3 AUTHORED,2003> str: “how wasi it ...
309,
55
id: 308 => ime: 1’371,707,3
type: USER
308>
name: “Alice” <2003,AU'\'HOR,

Association lists

* Association queries often require returning
a list of associations:

e assoc_get(1807, COMMENT)
returns <1807, COMMENT, *>, ordered by time

id: 1807 =>
type: POST
str: “At the summ...

<1807,COMMENT,4141>
time: 1,371,709,009

<1807,COMMENT,8332>
time: 1,371,708,678

<1807,COMMENT,2003>
time: 1,371,707,355

id: 4141 => type: COMMENT
str: “Been wanting to do ...

id: 8332 => type: COMMENT
str: “The rock is flawless, ...

id: 2003 => type: COMMENT
str: “how was it, was it w...

newer

older

Early days (pre-caching)

Just a few databases were enough to support the load

Webserver Webserver Webserver Webserver

NSl

Storage cluster

10

Sharding data across databases

 Data sharded by object id randomly across databases

* Object and its outgoing associations stored in same shard

e Association queries for an object served from one shard

str: “At the summ.!. +371,704 655

id: 2003 =>
type: COMMENT
<308,AUTH0RE012003> str: “how was it ...

55
id: 308 => time: 1371'707'3

type: USER 308>
name: “Alice” <2003'AUTHOF;' 355
time: 1,371,707

Database Database Database

I%I u H H u
\shards

Problem

High fanout and multiple rounds of data fetching

 Each node issues a database request, poor locality

Data dependency DAG for a small request

12

Scaling Memcache in 4 “easy” steps

0 No Memcache servers (pre-memcache)

2 Memcache servers in a cluster

3 Memcache servers in multiple clusters within a region
4 Geographically distributed clusters in multiple regions

13

Cache social graph in Memcache

* Facebook has two orders
of magnitude more reads
than writes (500:1)

* Use a caching server
called Memcache

mysql databases

)
—
(a
I USER
Mathan
(a1 LOCATION I
AT |Chariede Come
o GPS_D : - ,9%(\
: :
Q USER
CIL) PROT | POST /& LIKE
(O] A1 1h (% il
(7))
o) ;
Q Ike "\ UsER
S

COMMENT
AUTHOR b wis 17 s warih T
Libe W ¢ Lisince

14

Caching helps read performance

* Memache is a single-node, key-value store that
uses a hash table to store key and values

e Store nodes as keys

e Stores edge lists as values il e

 Webserver (client) reads
from Memcache

e Reduces load on database

Database Memcache

15

Reading data from Memcache

e Use Memcache as a look-aside cache

* Avoids any changes to Memcache

read(key)
1: v = get(key) Webserver
2: if (v == NULL) // read miss
3: v = readDB(key) 1. get(key)
4: set(key, V) 3. readDB(key) 2. miss(key)
4. set(key, v)
Database Memcache

16

Handling updates

On a database update,
Memcache needs to be synchronized

write(key, v)
writeDB(key, V)
delete(key)

Webserver uses
delete (cache invalidation)
instead of set (cache update)

 Why is this important?

« What if another Webserver issues
read() between 1 and 27

Webserver

1. writeDB(key, v)

Database

2. delete(key)

Memcache

17

Understanding caching strategy

Will caching increase write performance?

* No, writes need to be sent to database (and deletes to Memcache)

Why not use a write-back cache?

 May cause inconsistency with multiple caches (discussed later)

Will caching increase read performance?

* Yes, and reads are dominant in the workload

Any other benefits?

* Helps reduce load on the database

18

Stale set consistency problem

* Concurrent reads and updates to database can cause
inconsistency between database and Memcache

Webserver Webserver

Database
[k, A]

Memcache

Stale set consistency probl

Webserver

™

1. A < readDB(k)

em

Database
[k, A]

Webserver

Memcache

20

Stale set consistency problem

:Webserver l: Webserver
1. A < readDB(k) 3.B « readDB(k)
Database Memcache
[k, B]

2. Another Webserver
updates value to B

21

Stale set consistency problem

Webserver

@ Webserver

1. A < readDB(k) 3.B « readDB(k)
4. set(k, B)
Database Memcache
[k, B] [k, B]

2. Another Webserver
updates value to B

22

Stale set consistency problem

Memcache and database
are inconsistent

Why does this problem occur?

Webserver

@ ‘i Webserver

1. A < readDB(k) 3.B « readDB(k)
5. set(k, A) 4. set(k, B)
Database Memcache
[k, B] [k, A]

2. Another Webserver
updates value to B

23

Avoiding stale set problem

Extend Memcache protocol with “leases”

Webserver

Database
[k, A]

Webserver

Memcache

24

Avoiding stale set problem

Extend Memcache protocol with “leases”

Step 1: On read-miss,
Memcache returns
new lease-id to Webserver
Webserver

&

_, 1« get(k)

Database
[k, A]

Webserver

Memcache
[k, _, 1]

25

Avoiding stale set problem

 Extend Memcache protocol with “leases”

Step 1: On read-miss,

Memcache returns new

lease-id to Webserver,

Webserver reads data Webserver

1. A < readDB(k)

Database
[k, A]

Webserver

Memcache
[k, _, 1]

26

Avoiding stale set problem

Extend Memcache protocol with “leases”

Step 1: On read-miss,
Memcache returns new
lease-id to Webserver,
Webserver reads data

Step 2: On update,
Memcache invalidates
lease-id

Webserver

1. A < readDB(k)

Database
[k, B]

2. Another Webserver
updates value to B

Webserver

Memcache

27

Avoiding stale set problem

 Extend Memcache protocol with “leases”

Step 1: On read-miss,
Memcache returns new
lease-id to Webserver,

Webserver reads data Webserver Webserver
Step 2: On update,
Memcache invalidates 1. A < readDB(k) 3.B « readDB(k)
lease-id

Step 3: same as Step 1

Steps 4, 5: On set,
Memcache checks Database Memcache
Webserver provided lease-id [k, B] [k, _, 2]

2. Another Webserver
updates value to B

28

Avoiding stale set problem

Extend Memcache protocol with “leases”

Step 1: On read-miss,
Memcache returns new
lease-id to Webserver,

Webserver reads data
Step 2: On update,

Webserver

Memcache invalidates 1. A < readDB(k)

lease-id 5. set(k, A, 1)
Step 3: same as Step 1

Steps 4, 5: On set,

Memcache checks Database
Webserver provided lease-id [k, B]

e Step 4 allowed
e Step 5 disallowed

2. Another Webserver
updates value to B

‘I Webserver

3.B « readDB(k)

4. set(k, B, 2)

Memcache
[k, B, 2]

29

Thundering herd problem

Say a key is read heavily
Step 1: key is updated

Steps 2, 3: all reads Webserver

will cause read-misses,

database accesses 2.B « readDB(K)

‘i Webserver

3.B « readDB(k)

Database
[k, B]

Memcache

1. Another Webserver

updates value to B

30

Thundering herd problem

* Say a key is read heavily
e Step 1: key is updated

* Steps 2, 3:all reads Webserver

: : Webserver
will cause read-misses,

database accesses

2. B < readDB(k) 3.B « readDB(k)
i 5. set(k, B 4. set(k, B
e Steps 4, 5: until key set(k, B) set(k, B)
is cached again
Database Memcache
[k, B] [k, B]

1. Another Webserver
updates value to B

31

Avoiding thundering herd

 Limit rate at which leases are returned on read miss

Webserver Webserver

Database
[k, B]

Memcache

1. Another Webserver
updates value to B

32

Avoiding thundering herd

 Limit rate at which leases are returned on read miss

Step 2: On read-miss,
Memcache returns new
lease-id to Webserver,

Webserver reads data Webserver Webserver
Step 3: On next get,

within 10 seconds, 2. B « readDB(k)

don’t return lease, 3. retry < get(k)

instead return
notification to retry

in a few milliseconds
Database Memcache

[k, B] [k, _, 1]

1. Another Webserver
updates value to B

33

Avoiding thundering herd

 Limit rate at which leases are returned on read miss

Step 2: On read-miss,
Memcache returns new
lease-id to Webserver,

Webserver reads data Webserver Webserver
Step 3: On next get,

within 10 seconds, 2. B «— readDB(k)

don’t return lease, 4.set(k, B, 1) 3.retry < get(k)

instead return
notification to try again

in a few milliseconds

Database Memcache
Step 4: On set, update cache Ik, B] (k, B, 1]

1. Another Webserver
updates value to B

34

Avoiding thundering herd

 Limit rate at which leases are returned on read miss

Step 2: On read-miss,
Memcache returns new
lease-id to Webserver,

Webserver reads data Webserver Webserver
Step 3: On next get,

within 10 seconds, 2. B « readDB(k)

don’t return lease, 4.set(k,B,1) 5.B, 1« get(k)

instead return
notification to try again

in a few milliseconds
Database Memcache
Step 4: On set, update cache [k, B] [k, B, 1]

Step 5: On get again,

1. Another Webserver
return cached value

updates value to B

35

Scaling Memcache in 4 “easy” steps

0 No Memcache servers (pre-memcache)

1 One Memcache server

3 Memcache servers in multiple clusters within a region
4 Geographically distributed clusters in multiple regions

36

Need even more read capacity

* Use multiple Memcache servers

* |tems are sharded across Memcache servers using consistent
hashing on the key, so any Webserver can find a cached key

e All Webservers talk to all Memcache servers

\(\(\(A

Webserver J_{ Webserver]_[Webserver }_[Webserver

\Z=S2X/

37

Problem: incast congestion

* For a user request, a Webserver may fetch 500+ keys from
100s of Memcache servers in parallel

 Many simultaneous responses from Memcache servers may
overwhelm networking resources, cause responses to be dropped

e Solution: Limit the number of outstanding requests by
Webserver to Memcache with a sliding window (e.g., TCP)

* Larger windows result in more congestion,
smaller windows result in more network round trips

Webserver

Memcache Memcache Memcache

38

Scaling Memcache in 4 “easy” steps

0 No Memcache servers (pre-memcache)
1 One Memcache server
2 Memcache servers in a cluster

4 Geographically distributed clusters in multiple regions

39

Scaling problem

 All-to-all communication between Webservers and
Memcache servers limits horizontal scaling

* Communication T with more Webservers, Memcaches

* Some Memcaches become hotspots, slowing all requests

D (D (D (D
Y () (2 ()
Webserver J_[Webserver J_{ Webserver H Webserver]

/\'

Solution: use multiple clusters

e Each cluster caches data in

its own Memcache servers

* A Webserver only accesses the
Memcache servers in its cluster

e All the clusters are backed
by a single storage cluster

Frontend cluster Frontend cluster

v Webserver v Webserver

= 1

:

Memcache Memcache

* Pros:

* Helps limit # of servers per cluster

 Hot keys get cached in multiple clusters

e (Cons:

 Fewer unique keys can be cached
across all clusters

Database

Storage cluster

Database Database

41

Cache consistency problem

* Same data may be cached

in the Memcache servers

Frontend cluster Frontend cluster
in different clusters ;
\'Webserver \'Webserver
* Need to keep caches consistent _ ,
. - o
When data IS updated _1_1Memcache Memcache
[k, A] [k, A]

Storage cluster

Database

Database [k, Al

Database

42

Solution: use invalidations

When Webserver updates key
in database

Frontend cluster

v Webserver

Memcache
[k, A]

Frontend cluster

v Webserver

Memcache
[k, A]

writeDB(k, B)

Database

Storage cluster

Database

[k, B] Database

43

Solution: use invalidations

* When Webserver updates key
in database

e Storage cluster invalidates
key in the Memcache servers
in all clusters

e What if invalidations are lost?

Frontend cluster

v Webserver

_1_1 Memcache

Frontend cluster

v Webserver

_1_1 Memcache

_
2
<.
o
%
G
>

writeDB(k, B)

S
9
0
kS
~
I3
&

Database

Storage cluster

Database

5 Database

44

Reliable invalidations

e Storage cluster logs invalidations for updates,
before sending them to all Memcache servers

* If frontend cluster fails, invalidation daemons (McSqueal)
resend invalidations from log to resynchronize caches

Frontend cluster Frontend cluster Frontend cluster
v Vy Vy
Webserver Webserver Webserver

MCI MCI MCI MC| |[MC| | MC MC| |[MC| | MC

| |

—_ — —— —e——e—ee—— e— e—

Storage cluster

Commit Log :
Database [McSqueal]

Scalable invalidations

* Invalidations are batched and routed hierarchically
to reduce network bandwidth

Frontend cluster Frontend cluster Frontend cluster
VWebserver VWebserver VWebserver
MC| [MC| |MC MC| |[MC| |MC MC| |MC| |MC
MC MC MC
Router Router Router
WY
Router|
Storage cluster McSqueal McSqueal McSqueal

Database Database Database

Cache consistency and performance

 Webserver updates key in
database directly

e Database performs updates
in a total order, so no conflicts,
then sends invalidations

* For read-your-write consistency,
Webserver deletes key in the
Memcache server of the
local cluster as well

* For performance, updates do not
wait for invalidations to complete

* So get() at other clusters may return
stale cached value for a short time

Frontend cluster Frontend cluster
\'Webserver \'Webserver
delete() get()
" | o
' Memcache Memcache
2\ writeDB(B) S
e 5
o 9
3 £

Storage cluster

Database
Database B Database

47

Why this consistency model?

e Writes are ordered and slow but not lost

 E.g., “like” countis correct

e (Caches are eventually consistent

* Leases and reliable invalidates ensure that
caches do not serve stale data forever

 Reads are fast but may return stale data
 This is facebook!, data is news feed, likes, etc.
* Most people will not notice or care about slightly stale data

* Next refresh will fetch up-to-date data

48

Scaling Memcache in 4 “easy” steps

0 No Memcache servers (pre-memcache)

1 One Memcache server

2 Memcache servers in a cluster

3 Memcache servers in multiple clusters within a region

49

Geographically distributed clusters

Each region has a separate database replica

Why replicate databases, why not partition users? 50

Geographically distributed clusters

One region holds master database,
rest are read-only replicas -

Geographically distributed clusters

* Fast local reads from local Memcache and database replica

e All writes from any region are sent to master
* Avoids any conflicting writes
« Why is performance acceptable?

* Master synchronizes replicas asynchronously using
database’s replication mechanism

* Replicas lag master, potential for cache inconsistency

* Areplica take over in case master fails

Replica Master Replica
DB DB DB

52

Write at master region

* Ensure consistency of replica and Memcache by reusing
invalidation mechanism

Region 1 Region 2

Webserver

Master Replica Memcache
[k, A] [k, A] [k, A]

Write at master region

* Ensure consistency of replica and Memcache by reusing
invalidation mechanism

Region 1 Region 2

Webserver

1. writeDB(k, B)

Master Replica Memcache
[k, B] [k, A] [k, A]

Write at master region

* Ensure consistency of replica and Memcache by reusing

invalidation mechanism

* Replicate update

Region 1

Webserver

1. writeDB(k, B)

Master
[k, B]

2. replicate
update

Replica
[k, B]

Region 2

Memcache
[k, A]

55

Write at master region

* Ensure consistency of replica and Memcache by reusing
invalidation mechanism

* Replicate update, then
why replicate and then invalidate?

* |nvalidate cache

Region 1 Region 2
Webserver
1. writeDB(k, B)
Master Replica Memcache
[k, B] [k, B]
2. replicate 3. invalidate

update cache 56

Write at replica region

After Webserver issues writeDB(k, B) at master (Step 1),

it can read and cache stale value from replica (Steps 3, 4)
until update is replicated (Step 5)

Read-your-write consistency is violated

Region 1 Region 2
Webserver

1. writeDB(k, B) 3. A readDB(k) 4. set(k, A)

2. delete(k)

Master Replica Memcache
[k, B] [k, Al [k, A]
5. replicate
update

57

Use remote marker

* Set marker in Memcache indicating replica has stale value

* |f marker is set, read from master, else from replica

* Ensures read-your-write consistency

Region 1 Region 2

Webserver

2. writeDB(k, B) 1. set remote marker

3. delete(k)

Master Replica Memcache
DB DB

4. replicate 5. delete
update remote marker 58

Putting it all together

e Start with a single
front-end cluster

* Allows scaling by
partitioning data set
across caches

* Add multiple front-end
clusters in region

 Allows scaling by
replicating caches,
reduces communication,
hotspots

 Add multiple regions

* Allows scaling by

Geo region

Geo region

Frontend cluster

VWebserver

_1! Memcache

Storage cluster
(master)

Database Database

Frontend cluster

v Webserver

m Memcache

Database

Storage cluster
(replica)

Database

replicating databases, improves locality

Storage
replication

59

Lessons learned

* Caching reduces latency, vital for surviving high load
* Choose carefully when to shard versus replicate caches

* Provide consistency based on application needs

* Linearizability will not scale, eventual consistency is okay

 Separate cache and persistent store

* Allows them to be designed, scaled and operated independently

* Reusing the standard MySQL database allows reusing standard
asynchronous replication mechanisms, replica creation, bulk
import, backup, monitoring tools, etc.

* Push complexity into the Webserver, when possible,

to simplify design of caching and storage service
60

Conclusions

* Facebook needed scalable storage for its social graph

e Storage system uses
e Sharded caches for scaling within a cluster
* Replicated caches for locality and skew tolerance across clusters

* Replicated databases for geographic locality across regions

e Design optimized for read-mostly workloads

* Writes to master database, replicated using primary backup
* Total order ensures no conflicts, but writes are slower
 Reads from local database

* Reads are fast, but may return stale data

* |dempotent cache invalidations help ensure eventual consistency

61

Background reading

Scaling Memcache at Facebook, NSDI 2013

62

Many other practical details

 Regional Memcache pools
* Warming up a new Memcache cluster

 Handling Memcache server failures

63

	Slide 1: Case Study 3: Scalable Caching with Memcache
	Slide 2: Case study on scaling storage
	Slide 3: Overview
	Slide 4: Requirements at Facebook
	Slide 5: Facebook’s social graph
	Slide 6: Rendering the social graph
	Slide 7: Storing the social graph
	Slide 8: Objects and associations
	Slide 9: Association lists
	Slide 10: Early days (pre-caching)
	Slide 11: Sharding data across databases
	Slide 12: Problem
	Slide 13: Scaling Memcache in 4 “easy” steps
	Slide 14: Cache social graph in Memcache
	Slide 15: Caching helps read performance
	Slide 16: Reading data from Memcache
	Slide 17: Handling updates
	Slide 18: Understanding caching strategy
	Slide 19: Stale set consistency problem
	Slide 20: Stale set consistency problem
	Slide 21: Stale set consistency problem
	Slide 22: Stale set consistency problem
	Slide 23: Stale set consistency problem
	Slide 24: Avoiding stale set problem
	Slide 25: Avoiding stale set problem
	Slide 26: Avoiding stale set problem
	Slide 27: Avoiding stale set problem
	Slide 28: Avoiding stale set problem
	Slide 29: Avoiding stale set problem
	Slide 30: Thundering herd problem
	Slide 31: Thundering herd problem
	Slide 32: Avoiding thundering herd
	Slide 33: Avoiding thundering herd
	Slide 34: Avoiding thundering herd
	Slide 35: Avoiding thundering herd
	Slide 36: Scaling Memcache in 4 “easy” steps
	Slide 37: Need even more read capacity
	Slide 38: Problem: incast congestion
	Slide 39: Scaling Memcache in 4 “easy” steps
	Slide 40: Scaling problem
	Slide 41: Solution: use multiple clusters
	Slide 42: Cache consistency problem
	Slide 43: Solution: use invalidations
	Slide 44: Solution: use invalidations
	Slide 45: Reliable invalidations
	Slide 46: Scalable invalidations
	Slide 47: Cache consistency and performance
	Slide 48: Why this consistency model?
	Slide 49: Scaling Memcache in 4 “easy” steps
	Slide 50: Geographically distributed clusters
	Slide 51: Geographically distributed clusters
	Slide 52: Geographically distributed clusters
	Slide 53: Write at master region
	Slide 54: Write at master region
	Slide 55: Write at master region
	Slide 56: Write at master region
	Slide 57: Write at replica region
	Slide 58: Use remote marker
	Slide 59: Putting it all together
	Slide 60: Lessons learned
	Slide 61: Conclusions
	Slide 62: Background reading
	Slide 63: Many other practical details

