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Case study on scaling storage

* Facebook’s experience with using in-memory caches
to scale storage

 The practical problems that were encountered
* How they were solved

* Tradeoffs between performance and consistency



Overview

Introduction to Facebook storage infrastructure

* One Memcache server

* Memcache servers in a cluster

* Memcache servers in multiple clusters within a region

* Geographically distributed clusters in multiple regions



Requirements at Facebook

* Scale to process millions of user requests per second

Support heavy read load (over 1 billion reads/sec)

Near real-time communication, so tight latency requirements

Be able to access and update popular shared content, so hot spots

Poor locality for storage accesses

e Scale to petabytes of storage

* Geographically distributed users, multiple data centers



Facebook’s social graph
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Rendering the social graph
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Storing the social graph
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Objects and associations

* Objects, associations stored in separate database tables
* Objects identified by unique 64-bit IDs
* Each object has type field and other data fields

* Associations identified by <id1, type, id2>

e Associations have a time field and other data fields

id: 1807 =>

<1
type: POST . 807’COMME
“« tlme. N7;2003
str: “At the summ... 3
id: 2003 =>
type: COMMENT
3 AUTHORED,2003> str: “how wasi it ...
309,
55
id: 308 => ime: 1’371,707,3
type: USER
308>
name: “Alice” <2003,AU'\'HOR,




Association lists

* Association queries often require returning
a list of associations:

e assoc_get(1807, COMMENT)
returns <1807, COMMENT, *>, ordered by time

id: 1807 =>
type: POST
str: “At the summ...

<1807,COMMENT,4141>
time: 1,371,709,009

<1807,COMMENT,8332>
time: 1,371,708,678

<1807,COMMENT,2003>
time: 1,371,707,355

id: 4141 => type: COMMENT
str: “Been wanting to do ...

id: 8332 => type: COMMENT
str: “The rock is flawless, ...

id: 2003 => type: COMMENT
str: “how was it, was it w...

newer

older



Early days (pre-caching)

Just a few databases were enough to support the load

Webserver Webserver Webserver Webserver

NSl

Storage cluster
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Sharding data across databases

 Data sharded by object id randomly across databases

* Object and its outgoing associations stored in same shard

e Association queries for an object served from one shard

str: “At the summ.!. +371,704 655

id: 2003 =>
type: COMMENT
<308,AUTH0RE012003> str: “how was it ...

55
id: 308 => time: 1371'707'3

type: USER 308>
name: “Alice” <2003'AUTHOF;' 355
time: 1,371,707

Database Database Database

I%I u H H u
\shards




Problem

High fanout and multiple rounds of data fetching

 Each node issues a database request, poor locality

Data dependency DAG for a small request
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Scaling Memcache in 4 “easy” steps

0 No Memcache servers (pre-memcache)

2 Memcache servers in a cluster

3 Memcache servers in multiple clusters within a region
4 Geographically distributed clusters in multiple regions
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Cache social graph in Memcache

* Facebook has two orders
of magnitude more reads
than writes (500:1)

* Use a caching server
called Memcache

mysql databases
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Caching helps read performance

* Memache is a single-node, key-value store that
uses a hash table to store key and values

e Store nodes as keys

e Stores edge lists as values il e

 Webserver (client) reads
from Memcache

e Reduces load on database

Database Memcache
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Reading data from Memcache

e Use Memcache as a look-aside cache

* Avoids any changes to Memcache

read(key)
1: v = get(key) Webserver
2: if (v == NULL) // read miss
3: v = readDB(key) 1. get(key)
4: set(key, V) 3. readDB(key) 2. miss(key)
4. set(key, v)
Database Memcache
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Handling updates

On a database update,
Memcache needs to be synchronized

write(key, v)
writeDB(key, V)
delete(key)

Webserver uses
delete (cache invalidation)
instead of set (cache update)

 Why is this important?

« What if another Webserver issues
read() between 1 and 27

Webserver

1. writeDB(key, v)

Database

2. delete(key)

Memcache
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Understanding caching strategy

Will caching increase write performance?

* No, writes need to be sent to database (and deletes to Memcache)

Why not use a write-back cache?

 May cause inconsistency with multiple caches (discussed later)

Will caching increase read performance?

* Yes, and reads are dominant in the workload

Any other benefits?

* Helps reduce load on the database
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Stale set consistency problem

* Concurrent reads and updates to database can cause
inconsistency between database and Memcache

Webserver Webserver

Database
[k, A]

Memcache




Stale set consistency probl

Webserver

™

1. A < readDB(k)

em

Database
[k, A]

Webserver

Memcache
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Stale set consistency problem

:Webserver l: Webserver
1. A < readDB(k) 3.B « readDB(k)
Database Memcache
[k, B]

2. Another Webserver
updates value to B
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Stale set consistency problem

Webserver

@ Webserver

1. A < readDB(k) 3.B « readDB(k)
4. set(k, B)
Database Memcache
[k, B] [k, B]

2. Another Webserver
updates value to B
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Stale set consistency problem

Memcache and database
are inconsistent

Why does this problem occur?

Webserver

@ ‘i Webserver

1. A < readDB(k) 3.B « readDB(k)
5. set(k, A) 4. set(k, B)
Database Memcache
[k, B] [k, A]

2. Another Webserver
updates value to B
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Avoiding stale set problem

Extend Memcache protocol with “leases”

Webserver

Database
[k, A]

Webserver

Memcache
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Avoiding stale set problem

Extend Memcache protocol with “leases”

Step 1: On read-miss,
Memcache returns
new lease-id to Webserver
Webserver

&

_, 1« get(k)

Database
[k, A]

Webserver

Memcache
[k, _, 1]
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Avoiding stale set problem

 Extend Memcache protocol with “leases”

Step 1: On read-miss,

Memcache returns new

lease-id to Webserver,

Webserver reads data Webserver

1. A < readDB(k)

Database
[k, A]

Webserver

Memcache
[k, _, 1]
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Avoiding stale set problem

Extend Memcache protocol with “leases”

Step 1: On read-miss,
Memcache returns new
lease-id to Webserver,
Webserver reads data

Step 2: On update,
Memcache invalidates
lease-id

Webserver

1. A < readDB(k)

Database
[k, B]

2. Another Webserver
updates value to B

Webserver

Memcache
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Avoiding stale set problem

 Extend Memcache protocol with “leases”

Step 1: On read-miss,
Memcache returns new
lease-id to Webserver,

Webserver reads data Webserver Webserver
Step 2: On update,
Memcache invalidates 1. A < readDB(k) 3.B « readDB(k)
lease-id

Step 3: same as Step 1

Steps 4, 5: On set,
Memcache checks Database Memcache
Webserver provided lease-id [k, B] [k, _, 2]

2. Another Webserver
updates value to B
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Avoiding stale set problem

Extend Memcache protocol with “leases”

Step 1: On read-miss,
Memcache returns new
lease-id to Webserver,

Webserver reads data
Step 2: On update,

Webserver

Memcache invalidates 1. A < readDB(k)

lease-id 5. set(k, A, 1)
Step 3: same as Step 1

Steps 4, 5: On set,

Memcache checks Database
Webserver provided lease-id [k, B]

e Step 4 allowed
e Step 5 disallowed

2. Another Webserver
updates value to B

‘I Webserver

3.B « readDB(k)

4. set(k, B, 2)

Memcache
[k, B, 2]
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Thundering herd problem

Say a key is read heavily
Step 1: key is updated

Steps 2, 3: all reads Webserver

will cause read-misses,

database accesses 2.B « readDB(K)

‘i Webserver

3.B « readDB(k)

Database
[k, B]

Memcache

1. Another Webserver

updates value to B
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Thundering herd problem

* Say a key is read heavily
e Step 1: key is updated

* Steps 2, 3:all reads Webserver

: : Webserver
will cause read-misses,

database accesses

2. B < readDB(k) 3.B « readDB(k)
i 5. set(k, B 4. set(k, B
e Steps 4, 5: until key set(k, B) set(k, B)
is cached again
Database Memcache
[k, B] [k, B]

1. Another Webserver
updates value to B
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Avoiding thundering herd

 Limit rate at which leases are returned on read miss

Webserver Webserver

Database
[k, B]

Memcache

1. Another Webserver
updates value to B
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Avoiding thundering herd

 Limit rate at which leases are returned on read miss

Step 2: On read-miss,
Memcache returns new
lease-id to Webserver,

Webserver reads data Webserver Webserver
Step 3: On next get,

within 10 seconds, 2. B « readDB(k)

don’t return lease, 3. retry < get(k)

instead return
notification to retry

in a few milliseconds
Database Memcache

[k, B] [k, _, 1]

1. Another Webserver
updates value to B
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Avoiding thundering herd

 Limit rate at which leases are returned on read miss

Step 2: On read-miss,
Memcache returns new
lease-id to Webserver,

Webserver reads data Webserver Webserver
Step 3: On next get,

within 10 seconds, 2. B «— readDB(k)

don’t return lease, 4.set(k, B, 1) 3.retry < get(k)

instead return
notification to try again

in a few milliseconds

Database Memcache
Step 4: On set, update cache Ik, B] (k, B, 1]

1. Another Webserver
updates value to B
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Avoiding thundering herd

 Limit rate at which leases are returned on read miss

Step 2: On read-miss,
Memcache returns new
lease-id to Webserver,

Webserver reads data Webserver Webserver
Step 3: On next get,

within 10 seconds, 2. B « readDB(k)

don’t return lease, 4.set(k,B,1)  5.B, 1« get(k)

instead return
notification to try again

in a few milliseconds
Database Memcache
Step 4: On set, update cache [k, B] [k, B, 1]

Step 5: On get again,

1. Another Webserver
return cached value

updates value to B
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Scaling Memcache in 4 “easy” steps

0 No Memcache servers (pre-memcache)

1 One Memcache server

3 Memcache servers in multiple clusters within a region
4 Geographically distributed clusters in multiple regions
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Need even more read capacity

* Use multiple Memcache servers

* |tems are sharded across Memcache servers using consistent
hashing on the key, so any Webserver can find a cached key

e All Webservers talk to all Memcache servers

\( \( \( A

Webserver J_{ Webserver ]_[ Webserver }_[ Webserver

\Z=S2X/
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Problem: incast congestion

* For a user request, a Webserver may fetch 500+ keys from
100s of Memcache servers in parallel

 Many simultaneous responses from Memcache servers may
overwhelm networking resources, cause responses to be dropped

e Solution: Limit the number of outstanding requests by
Webserver to Memcache with a sliding window (e.g., TCP)

* Larger windows result in more congestion,
smaller windows result in more network round trips

Webserver

Memcache Memcache Memcache
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Scaling Memcache in 4 “easy” steps

0 No Memcache servers (pre-memcache)
1 One Memcache server
2 Memcache servers in a cluster

4 Geographically distributed clusters in multiple regions
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Scaling problem

 All-to-all communication between Webservers and
Memcache servers limits horizontal scaling

* Communication T with more Webservers, Memcaches

* Some Memcaches become hotspots, slowing all requests

D ( D ( D ( D
Y ( ) ( 2 ( )
Webserver J_[ Webserver J_{ Webserver H Webserver ]

/\'




Solution: use multiple clusters

e Each cluster caches data in

its own Memcache servers

* A Webserver only accesses the
Memcache servers in its cluster

e All the clusters are backed
by a single storage cluster

Frontend cluster Frontend cluster

v Webserver v Webserver

= 1

:

Memcache Memcache

* Pros:

* Helps limit # of servers per cluster

 Hot keys get cached in multiple clusters

e (Cons:

 Fewer unique keys can be cached
across all clusters

Database

Storage cluster

Database Database
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Cache consistency problem

* Same data may be cached

in the Memcache servers

Frontend cluster Frontend cluster
in different clusters ;
\'Webserver \'Webserver
* Need to keep caches consistent _ ,
. - o
When data IS updated \_1_1Memcache Memcache
[k, A] [k, A]

Storage cluster

Database

Database [k, Al

Database
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Solution: use invalidations

When Webserver updates key
in database

Frontend cluster

v Webserver

Memcache
[k, A]

Frontend cluster

v Webserver

Memcache
[k, A]

writeDB(k, B)

Database

Storage cluster

Database

[k, B] Database
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Solution: use invalidations

* When Webserver updates key
in database

e Storage cluster invalidates
key in the Memcache servers
in all clusters

e What if invalidations are lost?

Frontend cluster

v Webserver

\_1_1 Memcache

Frontend cluster

v Webserver

\_1_1 Memcache

_
2
<.
o
%
G
>

writeDB(k, B)

S
9
0
kS
~
I3
&

Database

Storage cluster

Database

5 Database
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Reliable invalidations

e Storage cluster logs invalidations for updates,
before sending them to all Memcache servers

* If frontend cluster fails, invalidation daemons (McSqueal)
resend invalidations from log to resynchronize caches

Frontend cluster Frontend cluster Frontend cluster
v Vy Vy
Webserver Webserver Webserver

MCI MCI MCI MC| |[MC| | MC MC| |[MC| | MC

| |

—_ — —— —e——e—ee—— e— e—

Storage cluster

Commit Log :
Database [ McSqueal ]




Scalable invalidations

* Invalidations are batched and routed hierarchically
to reduce network bandwidth

Frontend cluster Frontend cluster Frontend cluster
VWebserver VWebserver VWebserver
MC| [MC| |MC MC| |[MC| |MC MC| |MC| |MC
MC MC MC
Router Router Router
WY
Router|
Storage cluster McSqueal McSqueal McSqueal

Database Database Database




Cache consistency and performance

 Webserver updates key in
database directly

e Database performs updates
in a total order, so no conflicts,
then sends invalidations

* For read-your-write consistency,
Webserver deletes key in the
Memcache server of the
local cluster as well

* For performance, updates do not
wait for invalidations to complete

* So get() at other clusters may return
stale cached value for a short time

Frontend cluster Frontend cluster
\'Webserver \'Webserver
delete() get()
" | o
' Memcache Memcache
2\ writeDB(B) S
e 5
o 9
3 £

Storage cluster

Database
Database B Database
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Why this consistency model?

e Writes are ordered and slow but not lost

 E.g., “like” countis correct

e (Caches are eventually consistent

* Leases and reliable invalidates ensure that
caches do not serve stale data forever

 Reads are fast but may return stale data
 This is facebook!, data is news feed, likes, etc.
* Most people will not notice or care about slightly stale data

* Next refresh will fetch up-to-date data
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Scaling Memcache in 4 “easy” steps

0 No Memcache servers (pre-memcache)

1 One Memcache server

2 Memcache servers in a cluster

3 Memcache servers in multiple clusters within a region

49



Geographically distributed clusters

Each region has a separate database replica

Why replicate databases, why not partition users? 50



Geographically distributed clusters

One region holds master database,
rest are read-only replicas -



Geographically distributed clusters

* Fast local reads from local Memcache and database replica

e All writes from any region are sent to master
* Avoids any conflicting writes
« Why is performance acceptable?

* Master synchronizes replicas asynchronously using
database’s replication mechanism

* Replicas lag master, potential for cache inconsistency

* Areplica take over in case master fails

Replica Master Replica
DB DB DB
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Write at master region

* Ensure consistency of replica and Memcache by reusing
invalidation mechanism

Region 1 Region 2

Webserver

Master Replica Memcache
[k, A] [k, A] [k, A]




Write at master region

* Ensure consistency of replica and Memcache by reusing
invalidation mechanism

Region 1 Region 2

Webserver

1. writeDB(k, B)

Master Replica Memcache
[k, B] [k, A] [k, A]




Write at master region

* Ensure consistency of replica and Memcache by reusing

invalidation mechanism

* Replicate update

Region 1

Webserver

1. writeDB(k, B)

Master
[k, B]

2. replicate
update

Replica
[k, B]

Region 2

Memcache
[k, A]
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Write at master region

* Ensure consistency of replica and Memcache by reusing
invalidation mechanism

* Replicate update, then
why replicate and then invalidate?

* |nvalidate cache

Region 1 Region 2
Webserver
1. writeDB(k, B)
Master Replica Memcache
[k, B] [k, B]
2. replicate 3. invalidate

update cache 56



Write at replica region

After Webserver issues writeDB(k, B) at master (Step 1),

it can read and cache stale value from replica (Steps 3, 4)
until update is replicated (Step 5)

Read-your-write consistency is violated

Region 1 Region 2
Webserver

1. writeDB(k, B) 3. A readDB(k) 4. set(k, A)

2. delete(k)

Master Replica Memcache
[k, B] [k, Al [k, A]
5. replicate
update
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Use remote marker

* Set marker in Memcache indicating replica has stale value

* |f marker is set, read from master, else from replica

* Ensures read-your-write consistency

Region 1 Region 2

Webserver

2. writeDB(k, B) 1. set remote marker

3. delete(k)

Master Replica Memcache
DB DB

4. replicate 5. delete
update remote marker 58



Putting it all together

e Start with a single
front-end cluster

* Allows scaling by
partitioning data set
across caches

* Add multiple front-end
clusters in region

 Allows scaling by
replicating caches,
reduces communication,
hotspots

 Add multiple regions

* Allows scaling by

Geo region

Geo region

Frontend cluster

VWebserver

\_1! Memcache

Storage cluster
(master)

Database Database

Frontend cluster

v Webserver

m Memcache

Database

Storage cluster
(replica)

Database

replicating databases, improves locality

Storage
replication
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Lessons learned

* Caching reduces latency, vital for surviving high load
* Choose carefully when to shard versus replicate caches

* Provide consistency based on application needs

* Linearizability will not scale, eventual consistency is okay

 Separate cache and persistent store

* Allows them to be designed, scaled and operated independently

* Reusing the standard MySQL database allows reusing standard
asynchronous replication mechanisms, replica creation, bulk
import, backup, monitoring tools, etc.

* Push complexity into the Webserver, when possible,

to simplify design of caching and storage service
60



Conclusions

* Facebook needed scalable storage for its social graph

e Storage system uses
e Sharded caches for scaling within a cluster
* Replicated caches for locality and skew tolerance across clusters

* Replicated databases for geographic locality across regions

e Design optimized for read-mostly workloads

* Writes to master database, replicated using primary backup
* Total order ensures no conflicts, but writes are slower
 Reads from local database

* Reads are fast, but may return stale data

* |dempotent cache invalidations help ensure eventual consistency
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Background reading

Scaling Memcache at Facebook, NSDI 2013
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Many other practical details

 Regional Memcache pools
* Warming up a new Memcache cluster

 Handling Memcache server failures
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