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Motivation for transactions 

• When operations access multiple items, we would like 
them to execute atomically

• Appear to execute all accesses together (hide concurrency)

• Appear to execute all accesses or none (hide failures)

• Transactions provide these semantics

get(k)
put(m, V0)

put(r, V1)
get(m)

Client 2Client 1

a-f g-m n-s t-z
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Transaction guarantees: ACID

• Atomic: transaction executes 
completely or not at all, 
despite failures

• Consistent: system ensures 
application-specific invariants

• Isolated: no interference 
between concurrent 
transactions

• Durable: committed 
transactions are not lost, 
despite failures

We have seen how 
concurrency control 
ensures correctness 
under concurrency

Now, we will see how 
transactions can 

ensure correctness 
under failures
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Ensuring atomicity and durability

• We have already looked at write-ahead logging (WAL)

• With WAL, system logs a modified item before overwriting it

• Allows partial modifications to be rolled back (for atomicity), and 
completed modifications to be rolled forward (for durability)

• Are we done?

• When discussing write-ahead logging, 
we assumed that an operation accesses items on one node 

• What if transactions access items from multiple nodes?

• We need atomicity and durability across nodes

• Either all nodes execute transaction and make its updates durable, 
or all nodes roll back any updates made by a transaction
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Single node vs distributed transactions

• Assume items are sharded across nodes

• Clients send their transactions to one of the nodes

• Single-node transactions access items from one node

• Distributed transactions access items from multiple nodes

Client 2Client 1

begin_tx
read(k)
write(m, V0)
end_tx

begin_tx
write(r, V1)
read(m)
end_tx

single-node
transaction

distributed
transaction

a-f g-m n-s t-z
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Distributed transaction execution model

• Coordinator node receives and runs transaction code, 
participants nodes store data records

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    abort_tx
else
    write(A, a−10)
    b = read(B)
    write(B, b+10)
end_tx

A

B

Participant 1

Participant 2

Coordinator Participants
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Distributed transaction execution model

• Coordinator sends read/write RPC requests to participants

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    abort_tx
else
    write(A, a−10)
    b = read(B)
    write(B, b+10)
end_tx

A

B

Participant 1

Participant 2

Coordinator node:
runs transaction code,

coordinates with participants,
uses WAL for recovery

Participant nodes:
store data records,

acquire/release locks,
use WAL for recovery
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Distributed transaction execution model

• Coordinators

• Concurrent transactions may have different coordinators

• A coordinator can be a participant as well

• Transaction ID

• Coordinator assigns a unique ID (TID) to each transaction

• RPC messages, transaction state at nodes are tagged with TID

• Participants

• Acquire locks when data record is accessed (2PL), 
or at commit (OCC), and wait if record is locked

• Release locks on commit

• Log modifications and install them on commit
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Atomic commit

• Problems with distributed transactions

• One participant performs all accesses but the other crashes

• One participant performs all accesses but the other needs to abort

• Transaction constraint fails (e.g., a < 10)

• Cannot acquire required lock (e.g., deadlock)

• No memory or disk space available to perform read/write

• Both participants perform all accesses but aren’t sure about other

• Recall Two Generals problem!

• We need atomic commit

• All nodes agree to execute transaction (commit), or else

• Even if one node fails in any way, no node does anything (abort)
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Two-phase commit

• A protocol for ensuring atomic commit

• Runs after transaction execution is done

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    abort_tx
else
    write(A, a−10)
    b = read(B)
    write(B, b+10)
end_tx

A

B

ParticipantsCoordinator



Two-phase commit protocol
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transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    abort_tx
else
    write(A, a−10)
    b = read(B)
    write(B, b+10)
end_tx

A

B

Response
to client
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Two-phase commit

• Phase 1: vote collection

• Coordinator sends PREPARE message to all participants

• Each participant votes yes or no

• Records vote, locks held, in its log (in addition to updates)

• Each participant sends yes or no VOTE response to coordinator

• Coordinator inspects all votes

• If all yes, then commit, else abort transactions

• Records Commit/Abort decision in log (commit point)

• Responds to client

• Phase 2: send decision

• Coordinator sends DECISION message to all participants

• Each participant commits or aborts changes, releases locks, 
sends ACK response to the coordinator
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Two-phase commit guarantees

• Under no failures, easy to see that 2PC guarantees:

• Atomic commit

• Participants commit when all prepared to commit, or else all abort

• Durability

• After coordinator commits, participants will apply changes

• But what happens under failures?
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Types of failures

• A participant (PA or PB) or transaction coordinator (TC) can

• Crash and restart

• Time out waiting for a message

• Node is up, but didn’t receive expected message

• Maybe the other node crashed, maybe network has failed

• We can't usually tell the difference, so must be correct in either case
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Participant crash failures

• What if PA crashes:

• Before logging vote

• PA hasn’t sent VOTE to TC

• TC could not have decided commit

• On reboot, PA can abort and forget transaction

• After logging NO vote

• TC could not have decided commit

• On reboot, PA can abort and forget transaction

• After logging YES vote

• TC may decide to commit

• On reboot, PA should reacquire locks, wait for TC to send DECISION

• After receiving DECISION

• On reboot, PA should reacquire locks, wait for TC to resend DECISION
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Coordinator crash failures

• What if TC crashes:

• Before logging decision

• TC hasn’t sent DECISION

• On reboot, TC can decide to abort transaction and send DECISION

• After logging decision

• Some participants may have received decision, others not

• On reboot, TC must send (same) DECISION
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Time out failures

• What if Participant PA times out waiting for PREPARE:

• TC could not have decided commit

• PA can abort transaction

• Respond No to later PREPARE message

• What if TC times out waiting for VOTE from PA:

• TC could not have sent DECISION yet

• TC can decide to abort transaction and send DECISION

• What if PA voted YES, times out waiting for DECISION:

• Can’t abort, since TC could have decided Commit and let PB know

• Can’t commit, since TC could have decided Abort

• PA must keep waiting for TC’s DECISION forever!
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Forgetting transaction state

• When can PA forget about a committed transaction?

• After it sends ACK

• If it gets another Commit DECISION, 
and has no record of the transaction, it sends ACK again

• When can TC forget about a committed transaction?

• If it sees ACK from every participant

• Then no participant will ever need to ask again
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Two-phase commit cost

• Two-phase commit makes distributed transactions costly

• Latency

• Requires two additional round trips after transaction code completes

• Votes and decision are logged to disk synchronously

• Throughput

• Locks are held from the time reads and writes are performed (2PC) or 
from prepare phase (OCC) until the end of two-phase commit

• Other transactions waiting on locks are also delayed

• Scalability

• Need to handle more distributed transactions with more nodes

• Availability

• Coordinator crash blocks participants (while they hold locks!)
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Two-phase commit in practice

• Typically, distributed transactions used within data center

• Round-trip times are short, network failures unlikely

• Much research on speeding up distributed transactions

• Key idea is to limit the power of transactions

• E.g., ensure that participants do not need to abort, 
look for "It's Time to Move on from Two Phase Commit"

• E.g., perform transaction operations during commit, 
look for Sinfonia mini-transactions
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Distributed transactions and replication

• We have seen distributed transactions on sharded data

• How does that relate to replication?

Sharding
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Replication, sharding, atomic commit

• Replication is about doing same thing in multiple places

• Can use majority consensus, since nodes store same data

• Enables handling node failures, primarily for high availability

• Sharding is about doing different things in multiple places

• Enables running operations concurrently, primarily for scalability

• Atomic commit is about doing different things in 
multiple places together (all or nothing)

• Can’t use majority consensus, since nodes store different data

• A single failed node blocks progress, limits availability

22
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Replication, sharding, atomic commit

• Replication for fault tolerance

• Sharding for scalability, atomic commit for all-or-nothing

• Modern databases support both, e.g., Google Spanner

Sharding:
atomic commit
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Conclusions

• Transactions enable executing operations atomically

• All accesses appear to execute together (hide concurrency)

• All accesses execute or none (hide failures)

• Concurrency control algorithms hide concurrency

• Atomic commit protocols hide failures

• Needed for distributed transactions

• Require logging (at coordinator and participants)

• Require two phases, for collecting votes, and sending decision
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