Byzantine Fault Tolerance

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Overview

* Introduction to byzantine fault tolerance
 Three Generals problem
* Primer on secure channels

* Practical byzantine fault tolerance

Review: distributed system models

e Network behavior

* Reliable links: message received only if sent, may be reordered retry +
* Best-effort links: messages may be lost, duplicated, or reordered, > dedup

with retries messages eventually gets through > secure
* Insecure links: adversary may eavesdrop, modify, drop messages channel

* Node behavior

* Crash-stop failure: node crashes (e.g., power failure), stops forever
e Crash-recovery failure: node crashes, resumes, disk data survives crash
* Byzantine (fail-arbitrary) failure: node may execute incorrectly,
including being malicious
* Timing behavior
* Synchronous: message latency and node execution have bounds
e Asynchronous: message latency and node execution have no bounds

e Partially synchronous: system is most sync, occasionally async

Byzantine node behavior

* Until now, we have designed protocols assuming
crash-stop or crash-recovery node behavior

 E.g., for broadcast, state-machine replication

* Now we will look at how distributed systems
can handle byzantine node behavior

* Byzantine algorithms are very different because
is not possible to convert one node behavior into another

 The term “Byzantine” is drawn from an allegory
in the 1982 paper called “Byzantine Generals Problem”

* It has no specific historical basis

Byzantine node failures

Byzantine failures can occur due to
* Hardware faults

* E.g., firmware bugs, bit flips in memory, corrupted n/w packets, etc.
e Software bugs
* E.g., logic errors, memory corruption, concurrency bugs, etc.

* Malicious behavior

* Run modified/arbitrary code on a node, don’t follow protocol
* Send altered messages, insert messages, delay/drop messages
* Send different messages to different nodes

* Spoof messages (send using another identity)

* Collude with other malicious nodes

* In all these cases, we call node faulty, otherwise correct

* Faulty nodes can produce arbitrary output (or no output)

Byzantine fault tolerance

e Byzantine fault tolerance is the ability of a system or
service to tolerate (or survive under) byzantine faults

* Typically implemented using state machine replication,
where some replicas may be faulty

* Replicas agree to execute same operations, in same order

* Why not automatically detect, shutdown faulty replicas?

* Faulty replicas may present different outputs to other replicas, e.g.
correct output to some, wrong to others

* Not always possible to know if replica is faulty from its output

 Let’s look at these problems and a result that shows when
byzantine fault tolerance is not possible

Three Generals Problem

Commander

Three Generals problem

* Athought experiment that shows the
challenge with coordinating actions, Lieutenant1 msg Lieutenant 2
i.e., reaching agreement, when nodes are byzantine

 Assume reliable link, synchronous timing

* Message received unchanged, receiver know sender’s identity

* Dropped messages can be reliably detected

* Problem

* 1 leader, 2 followers, at most one of the three may be faulty
 Leader sends attack or retreat order (message) to followers

* Requirements

* Reqrl: All correct followers must agree on same order

* Reqr2: If leader is correct, correct followers must agree with leader

Three Generals dilemma

* For correct F2, Situations 1 and 2 are indistinguishable

e Situation 1: F1 is faulty, F2 should by Reqr2
* Sijtuation 2: Leader is faulty, F2 should retreat by Reqrl

* With 1 faulty node, 3 nodes cannot reach agreement!

Situation 1 Situation 2

Leader Follower 1 Follower 2 Leader Follower 1 Follower 2

\\ F2 should m\
m % F2 should

Retfeat/ etfeat, retreat

\J \/ \J \/ \J \J
Time Time Time Time Time Time

9

Primer on secure channels

10

Why secure channels?

Three Generals problem assumes a reliable link

But followers can still lie about the leader’s command

 Makes it more complicated to solve byzantine failure problems

This problem can be avoided if nodes can sign messages

Signed messages allow followers to check

1. Message originated at a leader, and

2. Message has not been changed

11

Secure channels

* Sender encrypts message to ensure

* Confidentiality: only intended receiver can decrypt message

* Sender signs message to ensure

* |Integrity: data is trustworthy, i.e., message hasn’t been changed

* Authentication: allows receiver to verify sender’s identity

 We will discuss signing messages, needed for this lecture

12

Cryptographic hash

A hash function H converts large input into small output

* h=H(m), mis message, h is called message digest (fixed size)

A cryptographic hash function has three properties:

e Given handH, itis hard to find m such that h = H(m)

e Given m, itis hard to find m’ such that H(m) = H(m’) One way
* Itis hard to find m, m’ such that H(m) = H(m’) I Collision
resistance

Crypto hashes, e.g., 128-bit MD5, 160-bit SHA-1, 256-bit
SHA-2, are used for ensuring integrity, naming data, etc.

13

Message authentication codes

A Message Authentication Code (MAC) use hashes for
providing integrity and authentication
e Say Alice wants to send a sighed message m to Bob

 Assume k is secret key known only to Alice and Bob

* Alice constructs MAC as h=H(F(k, m)), F is function of H
e Alice sends [m, h] to Bob

* Bob verifies H(F(k, m)) is

* |f so, Bob has high assurance:

1. Whoever generated h must know key k, so m must have
been generated by Alice (authenticates message sender)

2. Message m has not been changed (message integrity)
14

MAC limitations

MAC requires secret key to be known to Alice and Bob

 Butsharing a secret key securely is not simple

An alternative is to use public-key cryptography

15

Public-key cryptography

 Every user owns a pair of keys, public and private key

 User distributes the public key, often in a well-known location
* User keeps the private key in a safe place

* The private and public key reveal nothing about each other

 Message can be encrypted with either key,
can only be decrypted with the other key

e Say Alice wants to send Bob message m securely
e Alice encrypts m using Bob’s public key, pub(b): c = E(pub(b), m)
e Alice sends encrypted message c to Bob

* Bob decrypt’s c using his private key, pri(b): m = D(pri(b), c)

16

Digital signatures

A digital signature is like a MAC but uses public-key
cryptography for providing integrity and authentication

Say Alice wants to send a signed message m to Bob

* Assume Alice’s public and private keys are: pub(a), pri(a)
Alice constructs digital signature: = E(pri(a), H(m))
Alice sends [m,] to Bob

Bob verifies D(pub(a),) is H(m)

* |f so, Bob has high assurance that:

1. Whoever generated must know key pri(a), so m must have been
generated by Alice (authenticates message sender)

2. Message m has not been changed (message integrity)

17

Practical Byzantine Fault Tolerance

(PBFT)
Castro and Liskov, OSDI 99

Thanks to MIT 6.824 course notes

18

What is PBFT?

* Recall, Raft is a state machine replication protocol that
provides fault tolerance under crash-recovery failures

e Uses 2F+1 replicas, assumes F replicas may crash

 Uses quorum of F+1 replicas for consensus

* Handle crashed/delayed nodes, lost/delayed messages
 PBFT is a state machine replication protocol that provides

fault tolerance under byzantine failures

 Uses 3F+1 replicas, assumes F replicas may be faulty

e Uses quorums of 2F+1 replicas for consensus

 Must also handle malicious nodes, not so easy...

19

Attack model in PBFT

e An attacker can

 Run arbitrary code on a faulty node
* Control all F faulty nodes (and knows their crypto keys)

 Canread any message, temporarily delay any message

e An attacker cannot

e Control more than F nodes

* Requires node to have different implementations so
they don’t have same bugs or vulnerabilities

* Impersonate correct nodes, e.g., guess crypto keys of correct
nodes, or break signed messages

20

Motivation for PBFT

Consider two clients

Client 1: Client 2:
put(config, “new config”) while get(config done) != TRUE:
put(config done, TRUE) wait

get(config) // should be “new config’

What could a faulty system do?

get(config) could return “old config” or totally random value

lgnore put(config done, TRUE) or write FALSE value,
Client 2 hangs

Perform put(config done, TRUE) on some replicas,
Client 2 hangs but Client 1 thinks put is done

21

PBFT setup

 Assume one or more clients, N servers (replicas)
* F of N replicas can be faulty
* All nodes have public-key pairs, know identities of other nodes
* All nodes use digital signatures
* Sender signs message, receiver authenticates message
e Basic protocol
* Client sends a request to invoke an operation
* Replicas execute operation, send reply to client with result

e Client waits for result from replicas

 To understand PBFT, let’s first try some simple designs

22

Try 1: Ask all

* Protocol

* C(Client sends a request to invoke an operation to all replicas

* Recall, requests must be deterministic for state machine replication

* Replicas execute operation, send reply to client with result

* Client waits for result from replicas

* Request is successful if all N results match

 What could go wrong?

 Onereplica is faulty, doesn’t reply, or replies incorrectly

* Stops progress

23

Try 2: Ask majority

Liveness requirement

* Freplicas may be faulty => can only wait for N-F replies

Assume N = 2F+1 replicas

Protocol

* Request is successful if N-F = F+1 results match

* So, at least one result is from correct replica

What could go wrong?

* F+1 matching replies might be from F faulty replicas,
so maybe only one reply from correct replica

 Next request also waits for F+1 replicas,

may not include the one correct replica of previous request
24

Try 2: Ask majority (2 out of 3)

Client issues put(x, 1)

All replicas reply ok Wx1
Client issues put(x, 2)
R2 misses request Wx2
2 replicas reply ok
Rx1

Client issues get(x)

R1 misses request

2 replicas reply 1

Faulty replica lies

Client reads stale data

Client Faulty R1 R2

*§§ T —
S

I s
Vk \J \J \J

Problem: put(x, 2) and get(x) have no common correct replica

25

Try 3: Ask supermajority

* Liveness requirement

* Freplicas may be faulty => can only wait for N-F replies

Quorum requirement

 Of N-F replies, only N-2F replies may be from correct replicas

* For any two requests to receive a reply from at least one common
correct replica, N-2F correct replies must include a majority of
correct replicas: N-2F > (N-F)/2 => N > 3F

Quorums intersect in
e Assume N =3F+1 replicas at least one correct replica

Quorum A

Protocol © @ o

 Request is successful if N-F = 2F+1 results match

e So, matching results from at least F+1 (majority of) correct replicas
26

Try 3: Ask supermajority (3 out of 4)

* C(lientissues put(x, 1)

* Allreplicas reply ok

* C(Client issues put(x, 2)
* R3 misses request

3 replicas reply ok

* C(Client issues get(x)
* RlandR2reply?2

* Faultyand R3 reply 1

* Faulty replica lies, R3 returns stale value

Wx1

Wx2

Rx?

Client Faulty R1 R2 R3
&\ —
‘———

-—

Eﬁ\

-—

%\ —
‘——f

-—

\J \J \J \J \J

e Client waits for 3 matching replies

With 3F+1 replicas,
2F+1 matching replies allows

handling F faulty replicas

e Client can detect that there is a problem

27

Ordering requests

* Until now, we have assumed 1 client issues requests, but
what about multiple clients issuing concurrent requests?

e Correct replicas must process requests in same order

 Let’suseaprimary replica to pick an order

 Buta primary replica can be faulty, so it can

* Ignore a client request
=> Client may need to send requests to all replicas
* Send requests to different replicas in different order

=> Replicas need to communicate with each other
to ensure they received the same request in same order

e Send incorrect result to client

=> Replicas need to directly send result to client

28

Try 4: Add a primary

 Assume N = 3F+1 replicas, 1 is primary, others backup

* Protocol

1. Clients send a request to invoke an operation op to primary

2. Primary orders requests, assigns them sequence number n,
sends PRE-PREPARE(op, n) message to all backups

3. Each backup sends PREPARE(op, n) message to all replicas

4. Each replica waits to receive matching PREPARE(op, n)
from 2F+1 replicas (including self): - Why 2F+17?

* Replica executes operation (in sequence number order),
sends reply to client with result

5. Client waits for result from replicas

* Request is successful if F+1 results match - Why F+1?

29

Try 4: Add a primary (F=1, N = 4)

Client Primary R1 R2 R3

1. request(op, t)

2. pre-prepare(op, n)

3. prepare(op, n)

4. wait for 3 matching prepare(op, n),
execute op, send reply

5. wait for 2 matching reply(r, t)

T
— |
\J \J \J \J

30

What about correctness, progress?

* Can replicas modify/forge client’s request?

* Client signs request, so attack is detectable

 What if faulty backups drop or delay their messages?

* |f primary is correct, protocol can progress since
replicas only wait for 2F+1 matching prepares

 What if primary drops or delays requests?
* |faclient does not receive a reply for a request in time,
it resends its request to all replicas

e Backups relay the request to the primary

* |f a backup receives this request and timeouts waiting to execute
requested operation, it suspects primary

* When enough backups suspect primary, they choose another primary
31

What about correctness, progress?

 What if primary sends requests in different order?

* If F+1 or more correct replicas get 2F+1 matching prepares:

* These replicas receive and execute the same requested operation,
client gets enough matching replies, protocol makes progress

* Rest of the correct replicas wait, but will not get 2F+1 matching
prepares for some other request, may ask to change primary

e QOtherwise:

* Client waits, protocol make no progress

* Forless correct replicas may execute the requested operation,
but operation may never be successful (execute at F+1 correct replicas)
* We will fix that soon

* Client, backups take same action as when primary drops or delays
requests (previous slide)

Choosing new primary

 As we have seen, a faulty primary can stop progress

 Let’s divide the protocol into a sequence of views
* Views are numbered sequentially, i.e.,,v=0,1, 2, 3, ...
* Replicas are numbers sequentially, i.e., r=0, ..., N-1

* Each view has one primary replica, rest are backup

 How to choose a primary?

* Need to ensure faulty replicas don’t always become primary!
* Elections can be subverted by faulty replicas colluding, denying service
 Use a round-robin protocol

* Primary in View v is Replica r, where r =v mod n

e At most F faulty replicas in a row, ensures progress

33

View change

* Backups ask to change primary (view change) when they
timeout waiting to execute an operation

* Protocol
 Backups send VIEW-CHANGE message to new primary
* New primary waits for enough VIEW-CHANGE messages

* We will discuss how many soon
* New primary sends NEW-VIEW message to all replicas with

e All VIEW-CHANGE messages it received to prove that
enough replicas asked for a view change

* New primary numbers requests after last operation it executed

34

View change problem

* Will all correct replicas agree about request numbers
across view change?
* Problem

 Correct replica saw 2F+1 PREPAREs for request n, executed it
* New primary executed operation n-1, hasn’t even seen request n

 New primary starts numbering at n, two different requests at n

 Can new primary ask all correct replicas for operations
they have executed?

* No, new primary can only wait for 2F+1 matching replies,
not all 2F+1 correct replicas!

35

View change solution

* I|dea: areplica should let enough replicas know that it
plans to execute an operation so new primary can learn
about this operation

e Basic solution

* When areplica receives 2F+1 PREPARE for a request,
we will say request is prepared

* Areplica should execute an operation only after it knows that a
majority of correct replicas are prepared to execute the operation

* Requires a third COMMIT phase in the protocol

 As we will see, new primary can then learn about any prepared
request at any replica by asking a majority of correct replicas

 We are finally ready to see the PBFT protocol!
36

PBFT protocol

1. Clients send a request to invoke an operation op to primary

2. Primary orders requests, assigns them sequence number n,
sends PRE-PREPARE(op, n) message to all backups

3. Each backup sends PREPARE(op, n) message to all replicas

4. Each replica waits to receive matching PREPARE(op, n)
from 2F+1 replicas (including self):

* Replica sends COMMIT(op, n) to all replicas

5. Each replica waits to receive matching COMMIT(op, n)
from 2F+1 replicas (including self):

» At least F+1 correct replicas are prepared to execute op (committed)

* Replica executes operation (in sequence number order),
sends reply to client with result

6. Client waits for result from replicas

* Request is successful if F+1 results match -

PBFT (F=1, N = 4)

Client Primary R1 R2 R3
1. request(op, t)

2. pre-prepare(op, n)

3. prepare(op, n)

4. wait for 3 matching prepare(op, n)

commit(op, n)

5. wait for 3 matching commit(op, n),
execute op, send reply

6. wait for 2 matching reply(r, t) [«e—"1_—

PBFT view change protocol

* Backups ask to change primary (view change) when they
timeout waiting to execute an operation

 Protocol

 Backups send VIEW-CHANGE message to new primary
with recent prepared requests, each with 2F+1 PREPARE messages

 New primary waits for 2F+1 VIEW-CHANGE messages

* New primary sends NEW-VIEW message to all replicas with

* Complete set of VIEW-CHANGE messages to prove that
a majority of correct replicas asked for a view change

* List of all prepared requests received in any VIEW-CHANGE,
so that replicas can execute, if needed, all these requested operations

39

Correctness of PBFT view change

e Say areplica executes operation in request R,
will the new primary know about it?

* Informal proof:

* Replica executes operation in prepared request R after it receives
COMMIT from F+1 correct replicas, i.e., replica knows that majority
of correct replicas have prepared request R

* Primary waits for view-change from majority of correct replicas
e At least one correct replica must have the prepared request R and

will tell primary about this request

 Canthe new primary ignore request R?

* No, VIEW-CHANGE messages are signed,
replicas validate them when they receive them in NEW-VIEW

40

Summary of PBFT protocol

* Normal operation, after primary receives request:

PRE-PREPARE: primary initiates consensus by
sending message to backups

PREPARE: backups send messages to all,
replicas agree on order of request (within a view)

COMMIT: replicas send messages to all,
replicas agree to commit request (across views)

* View change, after backups timeout:

VIEW-CHANGE: backups initiate consensus by
sending message to new primary

NEW-VIEW: replicas agree on new primary and
starting request number in new view

41

More details in PBFT paper

* Logging of messages so correct replicas can recover
 Checkpoints to garbage collect logs
* Cryptographic optimizations

e Communication optimizations to reduce size and latency of
messages in common case

* Fast, one round-trip, read-only operations

42

Performance

* Request latency until commit is two round trips
 Number of messages is O(N?), where N is # of replicas

e Whyis it called practical?
* Ensures correctness
* Ensures liveness under partially synchronous setting

* Optimizations enable good performance

43

Applications of BFT

 BFT is not widely-used today

* People rely on prevention, detection of compromised nodes

 BFT is seeing a revival in Blockchain systems

 |BM’s Hyperledger is a permissioned blockchain that uses PBFT

e Stellar generalizes PBFT for federated deployments

44

Conclusions

* With byzantine failure, node may execute arbitrary code

 PBFT implements byzantine fault tolerance,
i.e., state machine replication under byzantine failures

 Requires 3F+1 nodes to handle F faulty nodes, optimal

* Uses quorums of 2F+1 nodes for consensus,
i.e.., to ensure a total order of requests within and across views

* Limitations
* Requires independent node implementations

* |dentity and number of replicas must be known to all,
typically assigned by a central authority

* Next, let’s look at systems that avoid these limitations
45

	Slide 1: Byzantine Fault Tolerance
	Slide 2: Overview
	Slide 3: Review: distributed system models
	Slide 4: Byzantine node behavior
	Slide 5: Byzantine node failures
	Slide 6: Byzantine fault tolerance
	Slide 7: Three Generals Problem
	Slide 8: Three Generals problem
	Slide 9: Three Generals dilemma
	Slide 10: Primer on secure channels
	Slide 11: Why secure channels?
	Slide 12: Secure channels
	Slide 13: Cryptographic hash
	Slide 14: Message authentication codes
	Slide 15: MAC limitations
	Slide 16: Public-key cryptography
	Slide 17: Digital signatures
	Slide 18: Practical Byzantine Fault Tolerance (PBFT) Castro and Liskov, OSDI ’99
	Slide 19: What is PBFT?
	Slide 20: Attack model in PBFT
	Slide 21: Motivation for PBFT
	Slide 22: PBFT setup
	Slide 23: Try 1: Ask all
	Slide 24: Try 2: Ask majority
	Slide 25: Try 2: Ask majority (2 out of 3)
	Slide 26: Try 3: Ask supermajority
	Slide 27: Try 3: Ask supermajority (3 out of 4)
	Slide 28: Ordering requests
	Slide 29: Try 4: Add a primary
	Slide 30: Try 4: Add a primary (F = 1, N = 4)
	Slide 31: What about correctness, progress?
	Slide 32: What about correctness, progress?
	Slide 33: Choosing new primary
	Slide 34: View change
	Slide 35: View change problem
	Slide 36: View change solution
	Slide 37: PBFT protocol
	Slide 38: PBFT (F = 1, N = 4)
	Slide 39: PBFT view change protocol
	Slide 40: Correctness of PBFT view change
	Slide 41: Summary of PBFT protocol
	Slide 42: More details in PBFT paper
	Slide 43: Performance
	Slide 44: Applications of BFT
	Slide 45: Conclusions

