
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Byzantine Fault Tolerance

2

Overview

• Introduction to byzantine fault tolerance

• Three Generals problem

• Primer on secure channels

• Practical byzantine fault tolerance

3

Review: distributed system models

• Network behavior

• Reliable links: message received only if sent, may be reordered

• Best-effort links: messages may be lost, duplicated, or reordered,
with retries messages eventually gets through

• Insecure links: adversary may eavesdrop, modify, drop messages

• Node behavior

• Crash-stop failure: node crashes (e.g., power failure), stops forever

• Crash-recovery failure: node crashes, resumes, disk data survives crash

• Byzantine (fail-arbitrary) failure: node may execute incorrectly,
including being malicious

• Timing behavior

• Synchronous: message latency and node execution have bounds

• Asynchronous: message latency and node execution have no bounds

• Partially synchronous: system is most sync, occasionally async

secure
channel

retry +
dedup

4

Byzantine node behavior

• Until now, we have designed protocols assuming
crash-stop or crash-recovery node behavior

• E.g., for broadcast, state-machine replication

• Now we will look at how distributed systems
can handle byzantine node behavior

• Byzantine algorithms are very different because
is not possible to convert one node behavior into another

• The term “Byzantine” is drawn from an allegory
in the 1982 paper called “Byzantine Generals Problem”

• It has no specific historical basis

5

Byzantine node failures

Byzantine failures can occur due to
• Hardware faults

• E.g., firmware bugs, bit flips in memory, corrupted n/w packets, etc.

• Software bugs

• E.g., logic errors, memory corruption, concurrency bugs, etc.

• Malicious behavior

• Run modified/arbitrary code on a node, don’t follow protocol

• Send altered messages, insert messages, delay/drop messages

• Send different messages to different nodes

• Spoof messages (send using another identity)

• Collude with other malicious nodes

• In all these cases, we call node faulty, otherwise correct

• Faulty nodes can produce arbitrary output (or no output)

6

Byzantine fault tolerance

• Byzantine fault tolerance is the ability of a system or
service to tolerate (or survive under) byzantine faults

• Typically implemented using state machine replication,
where some replicas may be faulty

• Replicas agree to execute same operations, in same order

• Why not automatically detect, shutdown faulty replicas?

• Faulty replicas may present different outputs to other replicas, e.g.
correct output to some, wrong to others

• Not always possible to know if replica is faulty from its output

• Let’s look at these problems and a result that shows when
byzantine fault tolerance is not possible

7

Three Generals Problem

8

Three Generals problem

• A thought experiment that shows the
challenge with coordinating actions,
i.e., reaching agreement, when nodes are byzantine

• Assume reliable link, synchronous timing

• Message received unchanged, receiver know sender’s identity

• Dropped messages can be reliably detected

• Problem

• 1 leader, 2 followers, at most one of the three may be faulty

• Leader sends attack or retreat order (message) to followers

• Requirements

• Reqr1: All correct followers must agree on same order

• Reqr2: If leader is correct, correct followers must agree with leader

Commander

Lieutenant 1 Lieutenant 2msg

msg msgCity

attack? attack?

attack?

9

Three Generals dilemma

• For correct F2, Situations 1 and 2 are indistinguishable

• Situation 1: F1 is faulty, F2 should attack by Reqr2

• Situation 2: Leader is faulty, F2 should retreat by Reqr1

• With 1 faulty node, 3 nodes cannot reach agreement!

Time

Leader

Time

Follower 2

Situation 1

Follower 1

Time Time

Leader

Time

Follower 2

Situation 2

Follower 1

Time

F2 should
attack

F2 should
retreat

10

Primer on secure channels

11

Why secure channels?

• Three Generals problem assumes a reliable link

• But followers can still lie about the leader’s command

• Makes it more complicated to solve byzantine failure problems

• This problem can be avoided if nodes can sign messages

• Signed messages allow followers to check

1. Message originated at a leader, and

2. Message has not been changed

12

Secure channels

• Sender encrypts message to ensure

• Confidentiality: only intended receiver can decrypt message

• Sender signs message to ensure

• Integrity: data is trustworthy, i.e., message hasn’t been changed

• Authentication: allows receiver to verify sender’s identity

• We will discuss signing messages, needed for this lecture

13

Cryptographic hash

• A hash function H converts large input into small output

• h = H(m), m is message, h is called message digest (fixed size)

• A cryptographic hash function has three properties:

• Given h and H, it is hard to find m such that h = H(m)

• Given m, it is hard to find m’ such that H(m) = H(m’)

• It is hard to find m, m’ such that H(m) = H(m’)

• Crypto hashes, e.g., 128-bit MD5, 160-bit SHA-1, 256-bit
SHA-2, are used for ensuring integrity, naming data, etc.

One way

Collision
resistance

14

Message authentication codes

• A Message Authentication Code (MAC) use hashes for
providing integrity and authentication

• Say Alice wants to send a signed message m to Bob

• Assume k is secret key known only to Alice and Bob

• Alice constructs MAC as h=H(F(k, m)), F is function of H

• Alice sends [m, h] to Bob

• Bob verifies H(F(k, m)) is h

• If so, Bob has high assurance:

1. Whoever generated h must know key k, so m must have
been generated by Alice (authenticates message sender)

2. Message m has not been changed (message integrity)

15

MAC limitations

• MAC requires secret key to be known to Alice and Bob

• But sharing a secret key securely is not simple

• An alternative is to use public-key cryptography

16

Public-key cryptography

• Every user owns a pair of keys, public and private key

• User distributes the public key, often in a well-known location

• User keeps the private key in a safe place

• The private and public key reveal nothing about each other

• Message can be encrypted with either key,
can only be decrypted with the other key

• Say Alice wants to send Bob message m securely

• Alice encrypts m using Bob’s public key, pub(b): c = E(pub(b), m)

• Alice sends encrypted message c to Bob

• Bob decrypt’s c using his private key, pri(b): m = D(pri(b), c)

17

Digital signatures

• A digital signature is like a MAC but uses public-key
cryptography for providing integrity and authentication

• Say Alice wants to send a signed message m to Bob

• Assume Alice’s public and private keys are: pub(a), pri(a)

• Alice constructs digital signature: sig(a) = E(pri(a), H(m))

• Alice sends [m, sig(a)] to Bob

• Bob verifies D(pub(a), sig(a)) is H(m)

• If so, Bob has high assurance that:

1. Whoever generated sig(a) must know key pri(a), so m must have been
generated by Alice (authenticates message sender)

2. Message m has not been changed (message integrity)

18

Practical Byzantine Fault Tolerance
(PBFT)

Castro and Liskov, OSDI ’99

Thanks to MIT 6.824 course notes

19

What is PBFT?

• Recall, Raft is a state machine replication protocol that
provides fault tolerance under crash-recovery failures

• Uses 2F+1 replicas, assumes F replicas may crash

• Uses quorum of F+1 replicas for consensus

• Handle crashed/delayed nodes, lost/delayed messages

• PBFT is a state machine replication protocol that provides
fault tolerance under byzantine failures

• Uses 3F+1 replicas, assumes F replicas may be faulty

• Uses quorums of 2F+1 replicas for consensus

• Must also handle malicious nodes, not so easy…

20

Attack model in PBFT

• An attacker can

• Run arbitrary code on a faulty node

• Control all F faulty nodes (and knows their crypto keys)

• Can read any message, temporarily delay any message

• An attacker cannot

• Control more than F nodes

• Requires node to have different implementations so
they don’t have same bugs or vulnerabilities

• Impersonate correct nodes, e.g., guess crypto keys of correct
nodes, or break signed messages

21

Motivation for PBFT

• Consider two clients

• What could a faulty system do?

• get(config) could return “old config” or totally random value

• Ignore put(config_done, TRUE) or write FALSE value,
Client 2 hangs

• Perform put(config_done, TRUE) on some replicas,
Client 2 hangs but Client 1 thinks put is done

Client 1:

put(config, “new config”)
put(config_done, TRUE)

Client 2:

while get(config_done) != TRUE:
 wait
get(config) // should be “new config”

22

PBFT setup

• Assume one or more clients, N servers (replicas)

• F of N replicas can be faulty

• All nodes have public-key pairs, know identities of other nodes

• All nodes use digital signatures

• Sender signs message, receiver authenticates message

• Basic protocol

• Client sends a request to invoke an operation

• Replicas execute operation, send reply to client with result

• Client waits for result from replicas

• To understand PBFT, let’s first try some simple designs

23

Try 1: Ask all

• Protocol

• Client sends a request to invoke an operation to all replicas

• Recall, requests must be deterministic for state machine replication

• Replicas execute operation, send reply to client with result

• Client waits for result from replicas

• Request is successful if all N results match

• What could go wrong?

• One replica is faulty, doesn’t reply, or replies incorrectly

• Stops progress

24

Try 2: Ask majority

• Liveness requirement

• F replicas may be faulty => can only wait for N-F replies

• Assume N = 2F+1 replicas

• Protocol

• Request is successful if N-F = F+1 results match

• So, at least one result is from correct replica

• What could go wrong?

• F+1 matching replies might be from F faulty replicas,
so maybe only one reply from correct replica

• Next request also waits for F+1 replicas,
may not include the one correct replica of previous request

25

Try 2: Ask majority (2 out of 3)

• Client issues put(x, 1)

• All replicas reply ok

• Client issues put(x, 2)

• R2 misses request

• 2 replicas reply ok

• Client issues get(x)

• R1 misses request

• 2 replicas reply 1

• Faulty replica lies

• Client reads stale data

• Problem: put(x, 2) and get(x) have no common correct replica

Client R2Faulty R1

Wx1

Wx2

Rx1

C CC C

26

Try 3: Ask supermajority

• Liveness requirement

• F replicas may be faulty => can only wait for N-F replies

• Quorum requirement

• Of N-F replies, only N-2F replies may be from correct replicas

• For any two requests to receive a reply from at least one common
correct replica, N-2F correct replies must include a majority of
correct replicas: N-2F > (N-F)/2 => N > 3F

• Assume N = 3F+1 replicas

• Protocol

• Request is successful if N-F = 2F+1 results match

• So, matching results from at least F+1 (majority of) correct replicas

C C F C

Quorum A Quorum B

Quorums intersect in
at least one correct replica

27

Try 3: Ask supermajority (3 out of 4)

• Client issues put(x, 1)

• All replicas reply ok

• Client issues put(x, 2)

• R3 misses request

• 3 replicas reply ok

• Client issues get(x)

• R1 and R2 reply 2

• Faulty and R3 reply 1

• Faulty replica lies, R3 returns stale value

• Client waits for 3 matching replies

• Client can detect that there is a problem

With 3F+1 replicas,
2F+1 matching replies allows

handling F faulty replicas

CC CC C

R3Client R2Faulty R1

Wx1

Wx2

Rx?

28

Ordering requests

• Until now, we have assumed 1 client issues requests, but
what about multiple clients issuing concurrent requests?

• Correct replicas must process requests in same order

• Let’s use a primary replica to pick an order

• But a primary replica can be faulty, so it can

• Ignore a client request

=> Client may need to send requests to all replicas

• Send requests to different replicas in different order

=> Replicas need to communicate with each other
 to ensure they received the same request in same order

• Send incorrect result to client

=> Replicas need to directly send result to client

29

Try 4: Add a primary

• Assume N = 3F+1 replicas, 1 is primary, others backup

• Protocol

1. Clients send a request to invoke an operation op to primary

2. Primary orders requests, assigns them sequence number n,
sends PRE-PREPARE(op, n) message to all backups

3. Each backup sends PREPARE(op, n) message to all replicas

4. Each replica waits to receive matching PREPARE(op, n)
from 2F+1 replicas (including self):

• Replica executes operation (in sequence number order),
sends reply to client with result

5. Client waits for result from replicas

• Request is successful if F+1 results match

Why 2F+1?

Why F+1?

Try 4: Add a primary (F = 1, N = 4)

30

R3Client R2Primary R1

1. request(op, t)

2. pre-prepare(op, n)

3. prepare(op, n)

5. wait for 2 matching reply(r, t)

4. wait for 3 matching prepare(op, n),
execute op, send reply

31

What about correctness, progress?

• Can replicas modify/forge client’s request?

• Client signs request, so attack is detectable

• What if faulty backups drop or delay their messages?

• If primary is correct, protocol can progress since
replicas only wait for 2F+1 matching prepares

• What if primary drops or delays requests?

• If a client does not receive a reply for a request in time,
it resends its request to all replicas

• Backups relay the request to the primary

• If a backup receives this request and timeouts waiting to execute
requested operation, it suspects primary

• When enough backups suspect primary, they choose another primary

32

What about correctness, progress?

• What if primary sends requests in different order?

• If F+1 or more correct replicas get 2F+1 matching prepares:

• These replicas receive and execute the same requested operation,
client gets enough matching replies, protocol makes progress

• Rest of the correct replicas wait, but will not get 2F+1 matching
prepares for some other request, may ask to change primary

• Otherwise:

• Client waits, protocol make no progress

• F or less correct replicas may execute the requested operation,
but operation may never be successful (execute at F+1 correct replicas)

• We will fix that soon

• Client, backups take same action as when primary drops or delays
requests (previous slide)

33

Choosing new primary

• As we have seen, a faulty primary can stop progress

• Let’s divide the protocol into a sequence of views

• Views are numbered sequentially, i.e., v = 0, 1, 2, 3, …

• Replicas are numbers sequentially, i.e., r = 0, …, N-1

• Each view has one primary replica, rest are backup

• How to choose a primary?

• Need to ensure faulty replicas don’t always become primary!

• Elections can be subverted by faulty replicas colluding, denying service

• Use a round-robin protocol

• Primary in View v is Replica r, where r = v mod n

• At most F faulty replicas in a row, ensures progress

34

View change

• Backups ask to change primary (view change) when they
timeout waiting to execute an operation

• Protocol

• Backups send VIEW-CHANGE message to new primary

• New primary waits for enough VIEW-CHANGE messages

• We will discuss how many soon

• New primary sends NEW-VIEW message to all replicas with

• All VIEW-CHANGE messages it received to prove that
enough replicas asked for a view change

• New primary numbers requests after last operation it executed

35

View change problem

• Will all correct replicas agree about request numbers
across view change?

• Problem

• Correct replica saw 2F+1 PREPAREs for request n, executed it

• New primary executed operation n-1, hasn’t even seen request n

• New primary starts numbering at n, two different requests at n

• Can new primary ask all correct replicas for operations
they have executed?

• No, new primary can only wait for 2F+1 matching replies,
not all 2F+1 correct replicas!

36

View change solution

• Idea: a replica should let enough replicas know that it
plans to execute an operation so new primary can learn
about this operation

• Basic solution

• When a replica receives 2F+1 PREPARE for a request,
we will say request is prepared

• A replica should execute an operation only after it knows that a
majority of correct replicas are prepared to execute the operation

• Requires a third COMMIT phase in the protocol

• As we will see, new primary can then learn about any prepared
request at any replica by asking a majority of correct replicas

• We are finally ready to see the PBFT protocol!

37

PBFT protocol

1. Clients send a request to invoke an operation op to primary

2. Primary orders requests, assigns them sequence number n,
sends PRE-PREPARE(op, n) message to all backups

3. Each backup sends PREPARE(op, n) message to all replicas

4. Each replica waits to receive matching PREPARE(op, n)
from 2F+1 replicas (including self):

• Replica sends COMMIT(op, n) to all replicas

5. Each replica waits to receive matching COMMIT(op, n)
from 2F+1 replicas (including self):

• At least F+1 correct replicas are prepared to execute op (committed)

• Replica executes operation (in sequence number order),
sends reply to client with result

6. Client waits for result from replicas

• Request is successful if F+1 results match

PBFT (F = 1, N = 4)

38

R3Client R2Primary R1

1. request(op, t)

2. pre-prepare(op, n)

3. prepare(op, n)

6. wait for 2 matching reply(r, t)

4. wait for 3 matching prepare(op, n)

commit(op, n)

5. wait for 3 matching commit(op, n),
execute op, send reply

39

PBFT view change protocol

• Backups ask to change primary (view change) when they
timeout waiting to execute an operation

• Protocol

• Backups send VIEW-CHANGE message to new primary
with recent prepared requests, each with 2F+1 PREPARE messages

• New primary waits for 2F+1 VIEW-CHANGE messages

• New primary sends NEW-VIEW message to all replicas with

• Complete set of VIEW-CHANGE messages to prove that
a majority of correct replicas asked for a view change

• List of all prepared requests received in any VIEW-CHANGE,
so that replicas can execute, if needed, all these requested operations

40

Correctness of PBFT view change

• Say a replica executes operation in request R,
will the new primary know about it?

• Informal proof:

• Replica executes operation in prepared request R after it receives
COMMIT from F+1 correct replicas, i.e., replica knows that majority
of correct replicas have prepared request R

• Primary waits for view-change from majority of correct replicas

• At least one correct replica must have the prepared request R and
will tell primary about this request

• Can the new primary ignore request R?

• No, VIEW-CHANGE messages are signed,
replicas validate them when they receive them in NEW-VIEW

41

Summary of PBFT protocol

• Normal operation, after primary receives request:

• PRE-PREPARE: primary initiates consensus by
sending message to backups

• PREPARE: backups send messages to all,
replicas agree on order of request (within a view)

• COMMIT: replicas send messages to all,
replicas agree to commit request (across views)

• View change, after backups timeout:

• VIEW-CHANGE: backups initiate consensus by
sending message to new primary

• NEW-VIEW: replicas agree on new primary and
starting request number in new view

42

More details in PBFT paper

• Logging of messages so correct replicas can recover

• Checkpoints to garbage collect logs

• Cryptographic optimizations

• Communication optimizations to reduce size and latency of
messages in common case

• Fast, one round-trip, read-only operations

43

Performance

• Request latency until commit is two round trips

• Number of messages is O(N2), where N is # of replicas

• Why is it called practical?

• Ensures correctness

• Ensures liveness under partially synchronous setting

• Optimizations enable good performance

44

Applications of BFT

• BFT is not widely-used today

• People rely on prevention, detection of compromised nodes

• BFT is seeing a revival in Blockchain systems

• IBM’s Hyperledger is a permissioned blockchain that uses PBFT

• Stellar generalizes PBFT for federated deployments

45

Conclusions

• With byzantine failure, node may execute arbitrary code

• PBFT implements byzantine fault tolerance,
i.e., state machine replication under byzantine failures

• Requires 3F+1 nodes to handle F faulty nodes, optimal

• Uses quorums of 2F+1 nodes for consensus,
i.e.., to ensure a total order of requests within and across views

• Limitations

• Requires independent node implementations

• Identity and number of replicas must be known to all,
typically assigned by a central authority

• Next, let’s look at systems that avoid these limitations

	Slide 1: Byzantine Fault Tolerance
	Slide 2: Overview
	Slide 3: Review: distributed system models
	Slide 4: Byzantine node behavior
	Slide 5: Byzantine node failures
	Slide 6: Byzantine fault tolerance
	Slide 7: Three Generals Problem
	Slide 8: Three Generals problem
	Slide 9: Three Generals dilemma
	Slide 10: Primer on secure channels
	Slide 11: Why secure channels?
	Slide 12: Secure channels
	Slide 13: Cryptographic hash
	Slide 14: Message authentication codes
	Slide 15: MAC limitations
	Slide 16: Public-key cryptography
	Slide 17: Digital signatures
	Slide 18: Practical Byzantine Fault Tolerance (PBFT) Castro and Liskov, OSDI ’99
	Slide 19: What is PBFT?
	Slide 20: Attack model in PBFT
	Slide 21: Motivation for PBFT
	Slide 22: PBFT setup
	Slide 23: Try 1: Ask all
	Slide 24: Try 2: Ask majority
	Slide 25: Try 2: Ask majority (2 out of 3)
	Slide 26: Try 3: Ask supermajority
	Slide 27: Try 3: Ask supermajority (3 out of 4)
	Slide 28: Ordering requests
	Slide 29: Try 4: Add a primary
	Slide 30: Try 4: Add a primary (F = 1, N = 4)
	Slide 31: What about correctness, progress?
	Slide 32: What about correctness, progress?
	Slide 33: Choosing new primary
	Slide 34: View change
	Slide 35: View change problem
	Slide 36: View change solution
	Slide 37: PBFT protocol
	Slide 38: PBFT (F = 1, N = 4)
	Slide 39: PBFT view change protocol
	Slide 40: Correctness of PBFT view change
	Slide 41: Summary of PBFT protocol
	Slide 42: More details in PBFT paper
	Slide 43: Performance
	Slide 44: Applications of BFT
	Slide 45: Conclusions

