
1

ECE454, Fall 2025

Homework1: Profiling and Compiler Optimization

Assigned: Sept 11th, Due: Sept 21th, 11:59PM

The TAs for lab assignment 1:
Ao (Dino) Li (dino.li@mail.utoronto.ca), Shafin Haque (shafinul.haque@mail.utoronto.ca)

1 Introduction

Upon graduating from Skule, and having become a high-performance program-optimizing guru, you
decided to open your own high-performance code optimization consulting firm. After great success with
your previous client, you have a second client: a virtual reality headset startup. The startup is co-founded
by a group of hardware geeks, who like to design electrical circuits and integrate sensors. The VR headset
prototype hardware is almost ready but lacks a high-performance software image rendering engine. The
hardware engineers have already written functionally correct code in C but want your help to supercharge
software performance and efficiency.

The rendering engine’s input is a preprocessed time-series data set representing a list of object
manipulation actions. Each action is consecutively applied over a 2D object in a bitmap image such that
the object appears to move with reference to the viewer. To generate smooth and realistic visual
animations, sensor data points are oversampled at 1500Hz or 25x normal screen refresh rate (60 frames/s).

Figure 1 shows all the possible object manipulation actions. The goal of the rendering engine is to process
all the basic object manipulation actions and output rendered images for the display at 60 frames/s.

Figure 1: Basic Actions

mailto:dino.li@mail.utoronto.ca
mailto:shafinul.haque@mail.utoronto.ca

2

2 Procedure

For this lab, please answer all questions below with a few bullet points or short sentences. Performance
measurements must be performed on the UG machines.

2.1 Source Code

Start by copying the hw2.tar.gz file from the UG shared directory
/cad2/ece454f/hw2/hw2.tar.gz
into a protected directory within your UG home directory and then run the command:
tar xzvf hw2.tar.gz

This will cause several files to be unpacked into the directory.

2.2 Build and Test

The lab assignment utilizes the open-source cross-platform CMake packaging system to manage the
source code. Unlike the simple projects you have seen before, the Makefile is automatically generated
based on your computer configuration.

Below are the instructions to compile the project:

> cd <project directory> // Navigate to the lab assignment directory you extracted
> mkdir bin && cd bin // Make a new directory called bin, then navigate inside
> cmake ../ // Use cmake to generate Makefile automatically

After the simple configuration steps, the Makefile is automatically generated. Simply run the Makefile and an
executable named ECE454 Lab2 should appear within the bin folder.

When you run ECE454_Lab2 binary using the command below, you should receive output that is similar to the
output shown below.

ugXXX:˜/ECE454-Lab2/bin% ./ECE454_Lab2 -g -f ../lab1.csv -i ../lab1.bmp
Loading input sensor input from file: ../lab1.csv
Loading initial 2D object bmp image from file: ../lab1.bmp
**
Team Information:

team_name: default-name
student_first_name: john
student_last_name: doe
student_student_number: 0000000000

**
Performance Results:

Number of cpu cycles consumed by the reference implementation: 33492345978
Number of cpu cycles consumed by your implementation: 33170344755
Optimization Speedup Ratio (nearest integer): 1

**

Tip: You will be investigating and profiling Lab2’s source code in Lab1. You will not be modifying this
source code in Lab1 thus not required to understand what the code is doing exactly. However, it may

3

be a good idea to use this opportunity to explore around and think about how you can optimize this
code in Lab 2 while you work on ab 1.

Q1 (1 mark) List the function you think might be important to optimize in Lab 2’s source code?

2.3 Measuring Compilation Time

In this assignment, you will use /usr/bin/time to measure compilation and performance. In the output, note
that the number that ends in “user” is the runtime in seconds for “user-mode”. This is the time you should use in
this report. Note that since you are measuring performance in a real system, measurements are a little different
each time due to system variability. Try to measure on an unloaded machine. For every timing measurement
always do 5 runs and average them (please only report the final average).

To build the gprof version, use the flags: -g -pg -no-pie
To build the gcov version, use the flags: -g -fprofile-arcs -ftest-coverage

Measure compilation times using the 1) gprof, 2) gcov, 3) -g, 4) -O2, 5) -O3, and 6) -Os compilation flags.
Be sure to regenerate the make file and run “make clean” in between each build to ensure that all files are rebuilt
properly.
Note: We have intentionally left out the details on how to add compiler flags to CMake to encourage you to
practice reading and researching CMake’s documentation or stackoverflow pages.

Q2 (1 mark) Report the 6 compilation time measurements using the slowest method of compilation as a baseline.
Report the speedup for each of the other five measurements (compared to the baseline). Eg., If gcov is the
slowest, and -g is twice as fast as gcov, then the speedup for -g relative to gcov is 2.0.

Q3 (1 mark) Which compilation time is the slowest and why?

Q4 (1 mark) Which compilation time is the fastest and why?

Q5 (1 mark) Which of gprof and gcov is faster and why?

2.4 Measuring Program Size

Use “ls -l” to measure the size of each version of the binary from the previous section.

Q6 (1 mark) Report the six size measurements using the smallest method of compilation as a baseline. Report
the relative size increase for each of the six measurements. Eg., if -g is the smallest, and gprof is twice the size
of -g, then the relative size increase for gprof relative to -g is 2.0.

Q7 (1 mark) Which size is the smallest and why?

Q8 (1 mark) Which size is the largest and why?

4

Q9 (1 mark) Which of gprof and gcov is smaller and why?

2.5 Measuring Performance

Measure the run-time of all six versions compiled in the previous section.

Q10 (1 mark) Report the six measurements using the slowest measurement as a baseline, also report the
speedup for each version.

Q11 (1 mark) Which version is the slowest and why?

Q12 (1 mark) Which version is the fastest and why?

Q13 (1 mark) Which of grof and gcov is faster and why?

2.6 Profiling with gprof

Compile gprof support for the -g, -O2, and -O3 versions, by using flags “-g -pg”, “-O2 -pg” and “-O3 -
pg” respectively; run each of these versions to collect the gprof results; you don’t have to time any of these
experiments.

Q14 (1 mark) For each version, list the top 3 functions (provide the function name and percentage execution
time).

Q15 (1 mark) For the “number-one” function for -O3 (the one with the greatest percentage execution time),
how does its percentage execution time compare with the percentage execution time for the same function in
the -g version? How is this possible? What transformation did the compiler do and to which functions?

2.7 Inspect Assembly

Use objdump to list the assembly for the -g and -O3 versions (eg., run “objdump -d OBJ/main.o” to examine
the assembly instructions for the file main.c).

Q16 (1 mark) Count the instructions for the “number-one” function identified in the previous question and
report the counts, as well as the reduction (reported as a ratio) in the number of instructions for the -O3 version
(ie., if the -O3 version has half as many instructions as the -g version, the reduction is 2.0x).

2.8 Profiling with gcov

Use gcov to get the per-line execution counts of the “number-one” function from the -O3 version (but use the
“-g” version to gather the gcov profile). After running the gcov version, execute the gcov program to generate
a profile of the appropriate file (eg., run “gcov -o OBJ -b main.c” to profile the file main.c). Running gcov will
create main.c.gcov (for main.c).

5

Note: if you run the gcov program multiple times it will add to the counts in main.c.gcov; you have to remove
the .gcda and .gcno files in OBJ/ to start counting from zero.

Q17 (1 mark) Based only on the gcov results (ie., don’t think too much about what the code says) list the
functions in the order that you would focus on optimizing them for the provided lab1 inputs and why. Identify
each location by its line numbers in the original source file.

2.9 Get familiar with GCC man page

Use the man gcc shell command or view gcc manual page online at https://man7.org/linux/man-
pages/man1/gcc.1.html

Q18 (1 bonus mark) Name the shortest GCC compiler flag (i.e, -xxxxxxxxxxx) that enables a compiler
optimization that requires memory alignment. How many bytes does the data need to be aligned?

3 Submission

Please record your answers in a lab1.txt file. The format to use is in /cad2/ece454f/hw1/lab1.txt.
Make sure you fill out your personal details before submitting using the following command.

submitece454f 1 lab1.txt

Changing the format or failure to submit using the template file will result in a mark of zero. If you wish to change
your report, you may overwrite your submitted file by executing the above script again. To view your submission,
enter:

submitece454f -l 1

https://man7.org/linux/man-pages/man1/gcc.1.html
https://man7.org/linux/man-pages/man1/gcc.1.html

	1 Introduction
	2 Procedure
	2.1 Source Code
	2.2 Build and Test
	2.3 Measuring Compilation Time
	2.4 Measuring Program Size
	2.5 Measuring Performance
	2.6 Profiling with gprof
	2.7 Inspect Assembly
	2.8 Profiling with gcov
	2.9 Get familiar with GCC man page

	3 Submission

