
Ashvin Goel, Ding Yuan

ECE Dept, University of Toronto

ECE 454

Computer Systems

Programming

Introduction

slides courtesy: Greg Steffan

Contents of this Lecture

• Administration (personnel, policy, agenda, etc.)

• Why ECE 454?

• Overview of the course

2

Administration

3

Personnel

• Instructors:

• Ashvin Goel (ashvin@eecg.toronto.edu), SF 2001B

• Ding Yuan (yuan@ece.utoronto.ca), SF 2002E

• Teaching Assistants:

4

Ruibin Li (head TA)

Zhihao Lin

Shafin Haque

Hang Yan

Guozhen Ding

Ao Li

Kai Shen

Eric Xu

mailto:ashvin@eecg.toronto.edu
mailto:yuan@ece.utoronto.ca

Recommended Textbook

• Textbook is not essential

• The relevant contents will be covered in the slides

• Some online resources will be posted on Piazza

• “Computer Systems: A Programmer’s Perspective”,

3rd edition, Prentice Hall 2015,

Randal E. Bryant and David R. O’Hallaron

5

Communication

• Class web site

• http://www.eecg.toronto.edu/~ashvin/teaching/ece454/

• Provides slides, agenda, grading policy, lab info, etc.

• Piazza

• Used for Q/A, discussion with peers, TAs, profs

• Quercus

• For grades, course evaluations

6

http://www.eecg.toronto.edu/~ashvin/teaching/ece454/
http://www.eecg.toronto.edu/~ashvin/teaching/ece454/

Grading

• Exams (60%)

• Midterm (20%)

• Tuesday: Oct 21, 7-8:30 pm (FE114)

• Final (40%)

• TBA

• Homework (40%)

• 5 labs (varying % each – see class website)

7

Labs

• All labs involve programming

• You need to work on all labs individually

• Lab sessions provide help

• One or two TAs will be present

• Attendance is not mandatory

• Lab submission

• Electronic submission

• Follow the submit procedure as specified in lab handout

• Don’t put lab code on Internet!

8

Cheating

• Cheating is a serious offence, will be punished harshly

• For first offense, 0 grade for assignment

• What is cheating?

• Using someone else’s solution to finish your assignment

• Sharing code with others

• What is NOT cheating?

• Helping others use systems or tools

• Helping others with high-level design issues

• We do use cheater-beaters

• Automatically compares your solutions with others
9

How NotTo pass ECE454

• Do not come to lecture

• It’s nice outside, slides are online, material in the book anyway

• Reality: Lecture material will be the basis for exams

• It is much more efficient to learn through discussion

• Copy other people’s lab projects

• That is cheating!

• How can you answer the questions in the exams?

10

How NotTo pass ECE454 (2)

• Do not ask questions during the lecture or piazza

• It’s scary, I don’t want to embarrass myself

• Reality: asking questions is the best way to clarify lecture material

at the time it is being presented

• “There is no such thing as a stupid question…”

• Wait until the last couple of days to start a lab

• Some of the lab assignments cannot be done in the last few days

11

Term-Work Petitions

• Due to circumstances beyond your control, if you are unable

to submit labs or quizzes

• Please submit a term-work petition through the Engineering portal

• We will provide accommodations

• More details on course website

12

Before We Start

• Your background

• Any questions?

13

Why ECE 454?

14

Why Take this Course?

• Become a superstar programmer

• Most engineering jobs involve programming

• Superstar programmers are increasingly in demand

• A superstar programmer is worth 1000x normal – Bill Gates

15

Why Take this Course?

• Get better understanding of software/hardware interaction

• Important whether you are a software or hardware type

• Considering a programming job or grad school

• Jobs and entrepreneurial opportunities

• Computing is at the heart of many interesting ventures today

16

Start a Company in your 20’s!

17

Founders of Successful Tech Companies

Are Mostly Middle-Aged

18

Image

Tony Fadell started Nest in 2010, after leading the engineering team

that created the iPod and playing a crucial role in the development of

the iPhone. Like many entrepreneurs, he was then over 40.

NYtimes, Aug 29, 2019

Top Women Computer Engineers

19

Denise Dumas
Diane Bryant

Elissa Murphy

Priya Balasubramaniam Gwynne Shotwell Joy Chik

What do Great Programmers Care

About?

• Readability

• Debugability

• Reliability

• Maintainability

• Scalability

• Efficiency

20

ECE 454

Performance

(systems understanding)

Productivity

(choice of language, programming practices)

Let’s be More Concrete

• Suppose you’re building

• The “homepage” feature

21

void display_homepage(user) {
 friendlist = get_friendlist(user);
 foreach (friend in friendlist) {
 update = get_update_status(friend);
 display(update);
 }
}

How can I double the speed of this program?

Easy: TAKE ECE 454!!!

Pre 2005

• To improve performance, just buy a new computer

22

“Moore’s Law”

Gordon Moore, 1965

The number of

transistors per chip

seems to be doubling

every 18 months!

Transistors vs. Clock Freq.

23

Multicores - Present and Future

 2x cores every 1-2yrs: 1000 cores by 2022!?

24

C

P

PentiumIV

P

C C

Core2 Duo

P

C C C C

P

Core 2 Quad

P

C C C C

C C C C

P

P P

8-core

C C C C

C C C C

C C C C

C C C C

P

P

P

P

16-core

Only One Sequential Program to Run?

25
one core idle

T
im

e

15 cores idle!

C C C C

C C C C

C C C C

C C C C

P

P

P

P

16-core

void display_homepage(user) {
 friendlist = get_friendlist(user);
 foreach (friend in friendlist) {
 update = get_update_status(friend);
 display(update);
 }
}

P

C C

2-core

Improving Execution Time

26

C

Single Program:

need parallel threads to reduce execution time


Exec.

Time

C C C C

void display_homepage(user) {
 friendlist = get_friendlist(user);
 foreach (friend in friendlist) {
 pthread_create(fetch_and_display, friend);
 }
}

void fetch_and_display(friend) {
 update = get_update_status(friend);
 display(update);
}

C C C C

fetch_and
_display

fetch_and
_display

fetch_and
_display

fetch_and
_display

27

Punch line: We Must

Parallelize All Software!

 You will learn it in ECE 454

28

But…

• So far we have only discussed CPU

• But is it true that faster CPU always implies faster program?

• The same program may run slower on a faster CPU. Why?

29

void display_homepage (user) {
 friendlist = get_friendlist(user);
 foreach (friend in friendlist) {
 update = get_update_status(friend);
 display(update);
 }
}

Storage Hierarchy

• Your program needs to access data. That takes time!

30

Numbers Everyone Should Know

• 1 ns = 1/1,000,000,000 second

• For a 2 GHz CPU, 1 cycle = 0.5 ns

• L1 cache reference 0.5 ns (L1 cache size: ~10 KB)

• Branch misprediction 5 ns

• L2 cache reference 7 ns (L2 cache size: hundreds KB)

• Mutex lock/unlock 100 ns

• Main memory reference 100 ns (mem size: GBs)

• Send 2K bytes over 1 Gbps network 20,000 ns

• Read 1 MB sequentially from memory 250,000 ns

• Round trip within same datacenter 500,000 ns

• Flash drive read 40,000 ns

• Disk seek 10,000,000 ns (10 milliseconds)

• Read 1 MB sequentially from network 10,000,000 ns

• Read 1 MB sequentially from disk 30,000,000 ns

• Send packet Cal.->Netherlands->Cal. 150,000,000 ns 31

Data from Jeff Dean

Performance Optimization is About

Finding the bottleneck

• If you can avoid unnecessary disk I/O

• Your program can run 100,000 times faster

• Have you heard of Facebook’s memcached?

• If you allocate your memory in a smart way

• Your data can fit entirely in cache

• Your program can be another 100 times faster

• You will learn this in lab assignments

32

Back to the Facebook Example

33

void display_homepage(user) {
 friendlist = get_friendlist(user);
 foreach (friend in friendlist) {
 pthread_create(fetch_and_display, friend);
 }
}

void fetch_and_display(friend) {
 update = get_update_status(friend);
 display(update);
}

Challenge: the data is too large!

100 Petabytes = 100,000 x my laptop

Back to the Facebook Example

34

void display_homepage(user) {
 friendlist = get_friendlist(user);
 updates = MULTI_GET(“updates”, friendlist);
 display (updates);
}

memory

server

memory

server

memory

server

memory

server

FriendBFriendA FriendC

MULTI_GET
Opt 1: parallelization +

 distribution

Opt. 2: Store in

memory instead

of hard disk

Course Content

35

Course Breakdown

• Module 1: Code measurement and optimization

• Module 2: Memory management and optimization

• Module 3: Multi-core parallelization

• Module 4: Multi-machine parallelization

36

1) Code Measurement and Optimization

• Topics

• Finding the bottleneck!

• Principles of code optimization

• Measuring time on a computer and profiling

• Understanding and using an optimizing compiler

• Assignments

• Lab1: Compiler optimization and program profiling

• Basic performance profiling, finding the bottleneck

37

2) Memory Management and Opt.

• Topics

• Memory hierarchy

• Caches and locality

• Virtual memory

• Note: all involve aspects of software, hardware, and OS

• Assignments

• Lab2: Optimizing memory performance

• Profiling, measurement, locality enhancements for cache performance

• Lab3: Writing your own memory allocator package

• Understanding dynamic memory allocation (malloc)

38

3) Parallelization

• Topics

• A: Parallel/multicore architectures (high-level understanding)

• Threads and threaded programming

• Synchronization and performance

• B: Parallelization on multiple machines

• Frameworks for big data analytics

• Cloud computing and storage systems

• Assignments

• Lab4: Threads and synchronization methods

• Understanding synchronization and performance

• Lab5: Parallelizing a game simulation program

• Parallelizing and optimizing a program for multicore performance
39

The Big Picture

40

Memory

Cache

Core
Topic 1: code

optimization

Topic 2: mem.

management Memory

Cache

C

Cache

C

Topic 3A: multi-

core parallelization

Topic 3B: parallelization

using the cloud

Homework Schedule

• HW1: 1 weeks 5%

• HW2: 3 weeks 9%

• HW3: 2 weeks 9%

• HW4: 2 weeks 7%

• HW5: 2 weeks 10%

 40% total

41

The Bigger Picture

• Optimization is not the ONLY goal!

42

1) Readability

2) Debugability

3) Reliability

4) Maintainability

5) Scalability

6) Efficiency

More important than performance!!!!

Premature optimization is the root of all evil!

 – Donald Knuth

Example 1

• Premature optimization that causes bugs

• cp /proc/cpuinfo .

• Created an empty file!!!

43

bool copy_reg (..) {
 if (src.st_size != 0) {
 /* Copy the file content */
 }
 else {
 /* skip the copy if the file size = 0 */
 }
}

Premature optimization!!!

Example 2

• Optimization might reduce readability

44

int count(unsigned x) {
 int sum = x;
 while (x != 0) {
 x = x >> 1;
 sum = sum – x;
 }
 return sum;
}

int count(unsigned x) {
 int sum, i;
 sum = x;
 for (i = 1; i < 31; i++) {
 x = rotatel(x, 1);
 sum = sum + x;
 }
 return -sum;
}

They both count the number of ‘1’ bits in ‘x’.

How will someone else maintain this code?

/*
 * When I wrote this, only God and
 * I understood what I was doing.
 * Now, only God knows
 */

45

But how do I know if my optimization is

“premature”?

• Hard to answer…

• “Make it work; Make it right; Make it Fast” --- Butler

Lampson

• Purpose of my program?

• E.g., will it have long lifetime or it’s one time (e.g.,

hackathon or ACM programming contest)

• Am I optimizing for the bottleneck?

• E.g., if the program is doing a lot of I/O, there is no point to

optimize for “count the number of bits in an integer”

46

But how do I know if my optimization is

“premature”?

• Am I optimizing for the common case or special case?

• E.g., the “cp” bug was optimizing for a special case…

• What’s the price I pay?

• E.g., reduced readability, increase program size, etc.

47

Conclusions

• Again, “Premature optimization is the root of all evils”

• If you are only going to remember one thing from ECE 454,

this is it!

• And let the fun begin!

48

	Slide 1: ECE 454 Computer Systems Programming Introduction
	Slide 2: Contents of this Lecture
	Slide 3: Administration
	Slide 4: Personnel
	Slide 5: Recommended Textbook
	Slide 6: Communication
	Slide 7: Grading
	Slide 8: Labs
	Slide 9: Cheating
	Slide 10: How NotTo pass ECE454
	Slide 11: How NotTo pass ECE454 (2)
	Slide 12: Term-Work Petitions
	Slide 13: Before We Start
	Slide 14: Why ECE 454?
	Slide 15: Why Take this Course?
	Slide 16: Why Take this Course?
	Slide 17: Start a Company in your 20’s!
	Slide 18: Founders of Successful Tech Companies Are Mostly Middle-Aged
	Slide 19: Top Women Computer Engineers
	Slide 20: What do Great Programmers Care About?
	Slide 21: Let’s be More Concrete
	Slide 22: Pre 2005
	Slide 23: Transistors vs. Clock Freq.
	Slide 24: Multicores - Present and Future
	Slide 25: Only One Sequential Program to Run?
	Slide 26: Improving Execution Time
	Slide 27
	Slide 28: Punch line: We Must Parallelize All Software!
	Slide 29: But…
	Slide 30: Storage Hierarchy
	Slide 31: Numbers Everyone Should Know
	Slide 32: Performance Optimization is About Finding the bottleneck
	Slide 33: Back to the Facebook Example
	Slide 34: Back to the Facebook Example
	Slide 35: Course Content
	Slide 36: Course Breakdown
	Slide 37: 1) Code Measurement and Optimization
	Slide 38: 2) Memory Management and Opt.
	Slide 39: 3) Parallelization
	Slide 40: The Big Picture
	Slide 41: Homework Schedule
	Slide 42: The Bigger Picture
	Slide 43: Example 1
	Slide 44: Example 2
	Slide 45
	Slide 46: But how do I know if my optimization is “premature”?
	Slide 47: But how do I know if my optimization is “premature”?
	Slide 48: Conclusions

