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Content

• Examine the tricks CPUs play for efficient execution

• History of  CPU architectures

• Basics of  modern CPU architectures

• More details are covered in ECE 552
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Before we Start…

• Isn’t the CPU speed merely driven by transistor density?

• Transistor density increase → clock cycle increase → faster CPU

• A faster CPU requires 

• Faster clock cycle 

• Smaller cycles per instruction (CPI)

• CPI is the focus of  this lecture!
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True True, but 
there is more…



In the Beginning…

• 1961: 

• First commercially-available integrated circuits

• By Fairchild Semiconductor and Texas Instruments

• 1965: 

• Gordon Moore's observation: (director of  Fairchild research)

• Number of  transistors on chips was doubling every two years
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1971: Intel Releases the 4004 

• First commercially available, stand-alone microprocessor 

• 4-bit processor; 108KHz; 2300 transistors

• For use in calculators

• 4 chips: 4004 CPU, 4001 ROM, 4002 RAM, I/O registers 5
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Designed by 

Federico Faggin
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Intel 4004 (first microprocessor)

• 4-bit processor, but 4KB ROM (how)?

• 3 Stack registers (what does this mean)?

• No Virtual Memory support

• No Interrupt

• No pipeline



The 1970’s (Intel): Increased Integration

• 1971: 108KHz; 2300 trans.;

• 4-bit processor for use in calculators

• 1972: 500KHz; 3500 trans.; 20 support chips

• 8-bit general-purpose processor

• 1974: 2MHz; 6k trans.; 6 support chips

• 16-bit addr space, 8-bit registers, used in ‘Altair’

• 1978: 10MHz; 29k trans.; 

• Full 16-bit processor, start of  x86
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Intel 8085



The 1980’s: RISC and Pipelining

• 1980: Patterson (Berkeley) coins term RISC

• 1982: Makes RISC-I pipelined processors (only 32 instructions)

• RISC design simplifies implementation

• Small number of  instruction formats

• Simple instruction processing

• 1981: Hennessy (Stanford) develops MIPS

• 1984: Forms MIPS computers

• RISC leads naturally to pipelined implementation

• Partition activities into stages

• Each stage has simple computation
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RISC Pipeline
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Reduce CPI from 5 → 1 (ideally)



12

33MHz, 32-bit processor

1985: Pipelining: Intel 386 



Pipelines and Branch Prediction

• Must wait/stall fetching until branch direction known?

• Solutions?
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BNEZ R3, L1

Which instr. should we fetch here?



Pipelines and Branch Prediction

• How bad is the problem? (isn’t it just one cycle?)

• Branch instructions: 15% - 25%

• Making pipeline deeper

• Cycles are smaller but 

branch not resolved until much later

• => Misprediction penalty larger

• Superscalar architecture

• Multiple instructions issued simultaneously

• => Requires flushing and refetching more instructions

• Object-oriented programming

• => More indirect branches, making it harder to predict
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CPU Pipeline
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Branch Prediction: Solution

• Solution: predict branch directions: 

• Intuition: predict the future based on history

• Use a table to remember outcomes of  previous branches 
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BP is important:  prediction tables uses about 30K bits on Intel P4!



What Do We Have So Far?

• CPI:

• Pipeline: reduce CPI from n to 1 (ideal case)

• Branch instruction will cause stalls: effective CPI > 1

• Branch prediction

• But can we reduce CPI to <1?
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Instruction-Level Parallelism
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1993: Intel Pentium



Data Hazard: Obstacle to Perfect 

Pipelining
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DIV  F0, F2, F4 // F0 = F2/F4
ADD F10, F0, F8 // F10 = F0 + F8
SUB F12, F8, F14 // F12 = F8 – F14

DIV F0,F2,F4

STALL: Waiting for F0 to be written

ADD F10,F0,F8

STALL: Waiting for F0 to be written

SUB F12,F8,F14
Necessary?



Out-of-order Execution: Solving Data-

Hazard
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DIV  F0, F2, F4 // F0 = F2/F4
ADD F10, F0, F8 // F10 = F0 + F8
SUB F12, F8, F14 // F12 = F8 – F14

DIV F0,F2,F4

ADD F10,F0,F8

STALL: Waiting for F0 to be written

SUB F12,F8,F14

Don’t need to

wait (as long 

as it’s safe)



Out-of-Order Execution to Mask Cache 

Miss Delay
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Instruction-level Parallelism + 

Out-of-Order Execution
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Out-of-Order Execution

• In practice, much more complicated since we need to detect 

and stall for all dependencies or else program will execute 

incorrectly

• E.g., what if  I write to a register too early?

• E.g., what if  interrupts and exceptions occurs in between
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1995: Intel PentiumPro



1999: Pentium III
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The Limits of  Instruction-Level 

Parallelism
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Multithreading The “Old Fashioned” 

Way
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Simultaneous Multithreading (SMT) 

(aka Hyperthreading)
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 SMT: 20-30% faster than context switching
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2000: Pentium IV



Putting it All Together: Intel
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Year CPI

1971

Processor Tech.

4004 No pipeline n

1985 386 Pipelining close to 1

Branch prediction closer to 1

1993 Pentium Superscalar < 1

1995 PentiumPro Out-of-order exec. << 1

1999 Pentium III Deep pipeline shorter cycle

2000 Pentium IV SMT <<<1



32-bit to 64-bit Computing

• Why 64 bit?

• 32b addr space: 4GB; 64b addr space: 4GB * 4GB = 16M TB

• Benefits large databases and media processing

• OSs and counters

• 64bit counter will not overflow (if  doing ++)

• Math and cryptography

• Better performance for large/precise value math

• Drawbacks:

• Pointers now take 64 bits instead of  32

• I.e., code size increases

• Unlikely to go to 128 bits
31
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