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Content

» Examine the tricks CPUs play for efficient execution
* History of CPU architectures

» Basics of modern CPU architectures

e More details are covered in ECE 552




Before we Start...

* Isn’t the CPU speed merely driven by transistor density?

* Transistor density increase =2 clock cycle increase = faster CPU

I I

True True, but
there is more...

» A faster CPU requires
 Faster clock cycle

» Smaller cycles per instruction (CPI)
» CPI is the focus of this lecture!




In the Beginning...

1961:
 First commercially-available integrated circuits
* By Fairchild Semiconductor and Texas Instruments

1965:
* Gordon Moore's observation: (director of Fairchild research)
* Number of transistors on chips was doubling every two years




1971: Intel Releases the 4004

=

» First commercially available, stand-alone microprocessor
* 4-bit processor; 108KHz; 2300 transistors

 For use in calculators
4 chips: 4004 CPU, 4001 ROM, 4002 RAM, I/0 registers




Designed by
Federico Faggin

\\\ -




Intel 4004 (first microprocessor)
* 4-bit processor, but 4KB ROM (how)?
» 3 Stack registers (what does this mean)?
* No Virtual Memory support
No Interrupt
No pipeline
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The 1970’s (Intel): Increased Integration

1971: 108KHz; 2300 trans.;

* 4-bit processor for use in calculators

1972: 500KHz; 3500 trans.; 20 support chips

» 8-bit general-purpose processor

1974. 2MHz; 6k trans.; 6 support chips
 16-bit addr space, 8-bit registers, used in ‘Altair

b

1978: 10MHz; 29k trans.;
» Full 16-bit processor, start of x86




Intel 8085
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The 1980’s: RISC and Pipelining

1980: Patterson (Berkeley) coins term RISC
» 1982: Makes RISC-I pipelined processors (only 32 instructions)

RISC design simplifies implementation
» Small number of instruction formats
+ Simple instruction processing

1981: Hennessy (Stanford) develops MIPS
* 1984: Forms MIPS computers

RISC leads naturally to pipelined implementation
- Partition activities into stages
- Each stage has simple computation




RISC Pipeline

Instruction execution in 5-5tage pipeline
Execution
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1985: Pipelining: Intel 386
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Figure 1-1. 386DX™ Microprocessor Pipelined 32-Bit Microarchitecture

33MHz, 32-bit processor




Pipelines and Branch Prediction

Instruction execution in 5-stage pipeline
Execution
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* Must wait/stall fetching until branch direction known?

* Solutions?




Pipelines and Branch Prediction

 How bad 1s the problem? (isn’t it just one cycle?)
 Branch instructions: 15% - 25% CPU Pipeline

* Making pipeline deeper Wait/stall
< >

e Cycles are smaller but
branch not resolved until much later W

* => Misprediction penalty larger Instructions Branch directions
* Superscalar architecture fetched computed

« Multiple instructions issued simultaneously

» => Requires flushing and refetching more instructions
* Object-oriented programming

» => More indirect branches, making it harder to predict




Branch Prediction: Solution

Solution: predict branch directions:
* Intuition: predict the future based on Aistory

» Use a table to remember outcomes of previous branches

BP is important: prediction tables uses about 30K bits on Intel P4/




What Do We Have So Far?

« CPI:

* Pipeline: reduce CPI from 7 to / (ideal case)

* Branch instruction will cause stalls: effective CPI > 1
* Branch prediction

e  But can we reduce CPI to <I?




Instruction-Level Parallelism
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1993: Intel Pentium
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Data Hazard: Obstacle to Perfect
Pipelining

DIV FO, F2, F4 // FO@ = F2/F4
ADD F10, FO, F8 // F10 = FO + F8
SUB F12, F8, F14 // F12 = F8 - F14

Instruction execution in 5-stage pipeline
Execution
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STALL: Waiting for FO to be written
STALL: Waiting for FO to be written




Out-of-order Execution: Solving Data-
Hazard

DIV FO, F2, F4 // FO@ = F2/F4
ADD F10, FO, F8 // F10 = FO + F8
SUB F12, F8, F14 // F12 = F8 - F14

Instruction execution in 5-stage pipeline

Execution

clock _{ l | l |
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wait (as long ADD F10,F0,F8
as it’s safe)




Out-of-Order Execution to Mask Cache
Miss Delay

IN-ORDER: OUT-OF-ORDER:

instl instl
inst2 load (misses cache)
inst3 inst2
inst4 inst3 lCaChe miss latency
load (misses cache) inst4
inst5 (must wait for load value)

Cache miss latency inst6

inst5 (must wait for load value)
nst6




Instruction-level Parallelism +
Out-of-Order Execution
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Out-of-Order Execution

* In practice, much more complicated since we need to detect
and stall for all dependencies or else program will execute
incorrectly

* E.g., what if I write to a register too early?
* E.g., what if interrupts and exceptions occurs in between




1995: Intel PentiumPro |-
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1999: Pentium III

Pentiumi(r) lll Processor Architectural Block Diagram
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The Limits of Instruction-Level
Parallelism
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Multithreading The “Old Fashioned”
Way
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Simultaneous Multithreading (SMT)
(aka Hyperthreading)
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= SMT: 20-30% faster than context switching




2000: Pentium IV

Pentium(r) 4 Processor Architectural Block Diagram
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Putting 1t All Together: Intel

Year Processor Tech. CPI
1971 4004 No pipeline n

1985 386 Pipelining close to 1
Branch prediction closer to 1

1993  Pentium Superscalar <I

1995 PentiumPro Out-of-order exec. <<]

1999  Pentium III  Deep pipeline  shorter cycle

2000 Pentium IV SMT <<<]

v




32-bit to 64-bit Computing

. Why 64 bit?
* 32b addr space: 4GB; 64b addr space: 4GB * 4GB = 16M TB
* Benefits large databases and media processing
* OSs and counters
* 64bit counter will not overflow (if doing ++)
* Math and cryptography

 Better performance for large/precise value math

 Drawbacks:

* Pointers now take 64 bits instead of 32

* I.e., code size increases

» Unlikely to go to 128 bits
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