ECE 454 Computer Systems Programming

CPU Architectures

Ashvin Goel, Ding Yuan ECE Dept, University of Toronto

Content

- Examine the tricks CPUs play for efficient execution
 - History of CPU architectures
 - Basics of modern CPU architectures

• More details are covered in ECE 552

Before we Start...

- Isn't the CPU speed merely driven by transistor density?
 - Transistor density increase → clock cycle increase → faster CPU

- A faster CPU requires
 - Faster clock cycle
 - Smaller cycles per instruction (CPI)
 - CPI is the focus of this lecture!

In the Beginning...

- 1961:
 - First commercially-available integrated circuits
 - By Fairchild Semiconductor and Texas Instruments
- 1965:
 - Gordon Moore's observation: (director of Fairchild research)
 - Number of transistors on chips was doubling every two years

1971: Intel Releases the 4004

- First commercially available, stand-alone microprocessor
- 4-bit processor; 108KHz; 2300 transistors
- For use in calculators
 - 4 chips: 4004 CPU, 4001 ROM, 4002 RAM, I/O registers

Designed by Federico Faggin

Intel 4004 (first microprocessor)

- 4-bit processor, but 4KB ROM (how)?
- 3 Stack registers (what does this mean)?
- No Virtual Memory support
- No Interrupt
- No pipeline

The 1970's (Intel): Increased Integration

- 4004
- 1971: 108KHz; 2300 trans.;
 - 4-bit processor for use in calculators

- 1972: 500KHz; 3500 trans.; 20 support chips
 - 8-bit general-purpose processor

- 8080
- 1974: 2MHz; 6k trans.; 6 support chips
 - 16-bit addr space, 8-bit registers, used in 'Altair'

- - 8086
- 1978: 10MHz; 29k trans.;
 - Full 16-bit processor, start of x86

Intel 8085

The 1980's: RISC and Pipelining

- 1980: Patterson (Berkeley) coins term RISC
 - 1982: Makes RISC-I pipelined processors (only 32 instructions)
- RISC design simplifies implementation
 - Small number of instruction formats
 - Simple instruction processing
- 1981: Hennessy (Stanford) develops MIPS
 - 1984: Forms MIPS computers
- RISC leads naturally to pipelined implementation
 - Partition activities into stages
 - Each stage has simple computation

RISC Pipeline

Reduce CPI from $5 \rightarrow 1$ (ideally)

1985: Pipelining: Intel 386

Figure 1-1. 386DX™ Microprocessor Pipelined 32-Bit Microarchitecture

33MHz, 32-bit processor

Pipelines and Branch Prediction

- Must wait/stall fetching until branch direction known?
- Solutions?

Pipelines and Branch Prediction

- How bad is the problem? (isn't it just one cycle?)
 - Branch instructions: 15% 25%
 - Making pipeline deeper
 - Cycles are smaller but branch not resolved until much later
 - => Misprediction penalty larger
 - Superscalar architecture
 - Multiple instructions issued simultaneously
 - => Requires flushing and refetching more instructions
 - Object-oriented programming
 - => More indirect branches, making it harder to predict

CPU Pipeline

Instructions Branch directions fetched computed

Branch Prediction: Solution

- Solution: predict branch directions:
 - Intuition: predict the *future* based on *history*
 - Use a table to remember outcomes of previous branches

BP is important: prediction tables uses about 30K bits on Intel P4!

What Do We Have So Far?

- CPI:
 - Pipeline: reduce CPI from *n* to 1 (ideal case)
 - Branch instruction will cause stalls: *effective CPI* > 1
 - Branch prediction
- But can we reduce CPI to <1?

Instruction-Level Parallelism

1993: Intel Pentium

Data Hazard: Obstacle to Perfect Pipelining

Out-of-order Execution: Solving Data-Hazard

Out-of-Order Execution to Mask Cache Miss Delay

IN-ORDER:

inst1

inst2

inst3

inst4

load (misses cache)

Cache miss latency

inst5 (must wait for load value)

inst6

OUT-OF-ORDER:

inst1

load (misses cache)

inst2

inst3

Cache miss latency

inst4

inst5 (must wait for load value)

inst6

Instruction-level Parallelism + Out-of-Order Execution

Out-of-Order Execution

- In practice, much more complicated since we need to detect and stall for all dependencies or else program will execute incorrectly
 - E.g., what if I write to a register too early?
 - E.g., what if interrupts and exceptions occurs in between

1995: Intel PentiumPro

1999: Pentium III

The Limits of Instruction-Level Parallelism

Diminishing returns for wider superscalar

Multithreading The "Old Fashioned" Way

Simultaneous Multithreading (SMT) (aka Hyperthreading)

switching

hyperthreading

SMT: 20-30% faster than context switching

2000: Pentium IV

Putting it All Together: Intel

Year	Processor	Tech.	CPI
1971	4004	No pipeline	n
1985	386	Pipelining Branch prediction	close to 1 closer to 1
1993 1995	Pentium PentiumPro	Superscalar Out-of-order exec.	< 1 << 1
1999	Pentium III	Deep pipeline	shorter cycle
, 2000	Pentium IV	SMT	<<<1

32-bit to 64-bit Computing

- Why 64 bit?
 - 32b addr space: 4GB; 64b addr space: 4GB * 4GB = 16M TB
 - Benefits large databases and media processing
 - OSs and counters
 - 64bit counter will not overflow (if doing ++)
 - Math and cryptography
 - Better performance for large/precise value math
- Drawbacks:
 - Pointers now take 64 bits instead of 32
 - I.e., code size increases
 - Unlikely to go to 128 bits