ECE 454

Computer Systems
Programming

CPU Architectures

Ashvin Goel, Ding Yuan
ECE Dept, University of Toronto




Content

» Examine the tricks CPUs play for efficient execution
* History of CPU architectures

» Basics of modern CPU architectures

e More details are covered in ECE 552




Before we Start...

* Isn’t the CPU speed merely driven by transistor density?

* Transistor density increase =2 clock cycle increase = faster CPU

I I

True True, but
there is more...

» A faster CPU requires
 Faster clock cycle

» Smaller cycles per instruction (CPI)
» CPI is the focus of this lecture!




In the Beginning...

1961:
 First commercially-available integrated circuits
* By Fairchild Semiconductor and Texas Instruments

1965:
* Gordon Moore's observation: (director of Fairchild research)
* Number of transistors on chips was doubling every two years




1971: Intel Releases the 4004

=

» First commercially available, stand-alone microprocessor
* 4-bit processor; 108KHz; 2300 transistors

 For use in calculators
4 chips: 4004 CPU, 4001 ROM, 4002 RAM, I/0 registers




Designed by
Federico Faggin

\\\ -




Intel 4004 (first microprocessor)
* 4-bit processor, but 4KB ROM (how)?
» 3 Stack registers (what does this mean)?
* No Virtual Memory support
No Interrupt
No pipeline

$ 3

Temp.
Register

Instruction
Register

] | LI =l
Flip Flops

Instruction Program Counter
Decoder and
MWachine
Cycle
Encoding

Accumulator

Level Mo. 1

Level Mo. 2

Stack Pointer

Level Mo. 3

Index Register Select

Address
Stack

Decimal
Adjust

ChW RAM 0-3 Test Sync Phl Ph2




The 1970’s (Intel): Increased Integration

1971: 108KHz; 2300 trans.;

* 4-bit processor for use in calculators

1972: 500KHz; 3500 trans.; 20 support chips

» 8-bit general-purpose processor

1974. 2MHz; 6k trans.; 6 support chips
 16-bit addr space, 8-bit registers, used in ‘Altair

b

1978: 10MHz; 29k trans.;
» Full 16-bit processor, start of x86




Intel 8085

- NTA  RS5T65  TRAP SID 50D
The architecture INTR T RST 5.3 l RST 7.5 1 l T

of the 5083 MPU

lnterrupt control Serial J43 conrrol

EES ﬁ T <t

|il¢ﬂumulamr Trstrucricn
8} (&1 Flag (3) register (R} . (8]

flip-fiops

il {zl’ . _(8)
Instruceion

decoder

and

{5}

{8}

T
Arithmens:

Register | (8} (8

lopic _ rray

machine Stack paifler
cycle
(ALY (8) _ encoding Program covnter

1)
Pooaar | —= &5 Walty Inerermentidecremenier
iupply | —= GND address lawch {16}

1
. Timing and canrol h
L fp— ;
CLK

X Datufaddress
T apN CONTROL  STATUS  DMa RESET Address bulfer (3)

l F-EI-DYIl l 11 lHE}LDlR_EJ—Eml J\L

! H Als~A AD; = AD
CLK OUT EDWR ALE 8, 5, 10/ HLDA RESETOUT i L ﬂdd,f; g tus

Lnit

(16}




The 1980’s: RISC and Pipelining

1980: Patterson (Berkeley) coins term RISC
» 1982: Makes RISC-I pipelined processors (only 32 instructions)

RISC design simplifies implementation
» Small number of instruction formats
+ Simple instruction processing

1981: Hennessy (Stanford) develops MIPS
* 1984: Forms MIPS computers

RISC leads naturally to pipelined implementation
- Partition activities into stages
- Each stage has simple computation




RISC Pipeline

Instruction execution in 5-5tage pipeline
Execution

clock . . ] ] ]
| & B & =y

Instruction 1

[hstruction 2

ay JITTT0999900 .t

Instruction 4

[nstruction 7

Reduce CPI from 5 2 1 (ideally)




1985: Pipelining: Intel 386

SEOMENTATION UNITT PAGING UNIT BUS CONTROL

ALV
CONTROL

AL

TORATE AU B0 v
Figure 1-1. 386DX™ Microprocessor Pipelined 32-Bit Microarchitecture

33MHz, 32-bit processor




Pipelines and Branch Prediction

Instruction execution in 5-stage pipeline
Execution

clock | |
_1 {1 &

Instruction 1 IF O

[nstruction 2 IF

Instruction 5 IF

Instruction B MEMI-
Ingtruction 7 IF I D | Ex I MEMI-

* Must wait/stall fetching until branch direction known?

* Solutions?




Pipelines and Branch Prediction

 How bad 1s the problem? (isn’t it just one cycle?)
 Branch instructions: 15% - 25% CPU Pipeline

* Making pipeline deeper Wait/stall
< >

e Cycles are smaller but
branch not resolved until much later W

* => Misprediction penalty larger Instructions Branch directions
* Superscalar architecture fetched computed

« Multiple instructions issued simultaneously

» => Requires flushing and refetching more instructions
* Object-oriented programming

» => More indirect branches, making it harder to predict




Branch Prediction: Solution

Solution: predict branch directions:
* Intuition: predict the future based on Aistory

» Use a table to remember outcomes of previous branches

BP is important: prediction tables uses about 30K bits on Intel P4/




What Do We Have So Far?

« CPI:

* Pipeline: reduce CPI from 7 to / (ideal case)

* Branch instruction will cause stalls: effective CPI > 1
* Branch prediction

e  But can we reduce CPI to <I?




Instruction-Level Parallelism

0,

nstructions

©,

@

Execution
Time

=y

-
o
'8
A
Q
:
o
Q
<

0N
%/
@
®
®
®
®

PRI

\4

single-issue superscalar




1993: Intel Pentium

CLOCK DRIVER

INSTRUCTION BU
CODE | FETCH

CACHE "

L1 Instruction Cachea

BRANCH
PREDICTION
LOGIC

-:E cope INSTRUCTION
. TLB i DECODE

BUS INTERFACE INSTRUCTION

LOGIC ' SUPPORT

/| SUPERSCALER |——

INTEGER
TLB .

EXECUTION
DS -

PIPELINED
FLOATING Execution Core
i1 ;POINT '

MP LOGIC




Data Hazard: Obstacle to Perfect
Pipelining

DIV FO, F2, F4 // FO@ = F2/F4
ADD F10, FO, F8 // F10 = FO + F8
SUB F12, F8, F14 // F12 = F8 - F14

Instruction execution in 5-stage pipeline
Execution

clock _1 | | | | | |
@ e @ E & @ &

STALL: Waiting for FO to be written
STALL: Waiting for FO to be written




Out-of-order Execution: Solving Data-
Hazard

DIV FO, F2, F4 // FO@ = F2/F4
ADD F10, FO, F8 // F10 = FO + F8
SUB F12, F8, F14 // F12 = F8 - F14

Instruction execution in 5-stage pipeline

Execution

clock _{ l | l |
D 2 ey {E B &

wait (as long ADD F10,F0,F8
as it’s safe)




Out-of-Order Execution to Mask Cache
Miss Delay

IN-ORDER: OUT-OF-ORDER:

instl instl
inst2 load (misses cache)
inst3 inst2
inst4 inst3 lCaChe miss latency
load (misses cache) inst4
inst5 (must wait for load value)

Cache miss latency inst6

inst5 (must wait for load value)
nst6




Instruction-level Parallelism +
Out-of-Order Execution

A A

nstructions

O,

Execution
Time

=Y

-
o
=
S
=
—ly
&
<

oN
%/
®
®
®
O
®

CELRLEEEE

\4

out-of-order

single-issue superscalar
super-scalar




Out-of-Order Execution

* In practice, much more complicated since we need to detect
and stall for all dependencies or else program will execute
incorrectly

* E.g., what if I write to a register too early?
* E.g., what if interrupts and exceptions occurs in between




1995: Intel PentiumPro |-

Instruction Fetch

Translate xB6/
Decode

Reorder Buffer (ROB)

Reservation Station (RS)

Re-order Buffer
(ROB])




dini

1999: Pentium III

Pentiumi(r) lll Processor Architectural Block Diagram

Instruction Cache 16 Kbyte. 4-way = Dynamic Branch
32enry TLB Predictor: 512 entnes

. FetchDeccde
l Control :

Micro Code ROM /| ™ . : _
Micro Instruction Architectural

I / I
Sequencer :ﬂeoﬂ F: :;?l.::t:r Register File

Reservation Station (20 Entries)

Memory Crder Buffer
12 enfry stors, 16 antry load

‘Data Cache 16 KByte, 4-way {40 entnas)




The Limits of Instruction-Level
Parallelism

4 @ 4 @
Execution @ @

Time

'8 o

out-of-order wider OOO
super-scalar super-scalar

& Diminishing returns for wider superscalar




Multithreading The “Old Fashioned”
Way

A

Execution
Time

OOOOLOOOOO

0
®
Alo
o
1le
2l
d
®

Fast context
switching




Simultaneous Multithreading (SMT)
(aka Hyperthreading)

4

A

Execution
Time

Execution
Time

ORLLOEEE

Fast context hyperthreading
switching

= SMT: 20-30% faster than context switching




2000: Pentium IV

Pentium(r) 4 Processor Architectural Block Diagram

: ;‘:_ | Dynamic Branch
\ - {Pradictor: 4096 entries

Micro Code
Execution Trace Cac

ROM / : .
WMicro 12,000 pOPs
Instruction
Sequences

Floating Pol Register ﬂb

FP Store ’mq SSE/
FP Move] FAcdlssea"™X

A R e

ardwara Data Prefet




Putting 1t All Together: Intel

Year Processor Tech. CPI
1971 4004 No pipeline n

1985 386 Pipelining close to 1
Branch prediction closer to 1

1993  Pentium Superscalar <I

1995 PentiumPro Out-of-order exec. <<]

1999  Pentium III  Deep pipeline  shorter cycle

2000 Pentium IV SMT <<<]

v




32-bit to 64-bit Computing

. Why 64 bit?
* 32b addr space: 4GB; 64b addr space: 4GB * 4GB = 16M TB
* Benefits large databases and media processing
* OSs and counters
* 64bit counter will not overflow (if doing ++)
* Math and cryptography

 Better performance for large/precise value math

 Drawbacks:

* Pointers now take 64 bits instead of 32

* I.e., code size increases

» Unlikely to go to 128 bits




	Slide 1: ECE 454  Computer Systems Programming  CPU Architectures
	Slide 2: Content
	Slide 3: Before we Start…
	Slide 4: In the Beginning…
	Slide 5: 1971: Intel Releases the 4004 
	Slide 6: Designed by  Federico Faggin
	Slide 7
	Slide 8: The 1970’s (Intel): Increased Integration
	Slide 9: Intel 8085
	Slide 10: The 1980’s: RISC and Pipelining
	Slide 11: RISC Pipeline
	Slide 12: 1985: Pipelining: Intel 386 
	Slide 13: Pipelines and Branch Prediction
	Slide 14: Pipelines and Branch Prediction
	Slide 15: Branch Prediction: Solution
	Slide 16: What Do We Have So Far?
	Slide 17: Instruction-Level Parallelism
	Slide 18: 1993: Intel Pentium
	Slide 19: Data Hazard: Obstacle to Perfect Pipelining
	Slide 20: Out-of-order Execution: Solving Data-Hazard
	Slide 21: Out-of-Order Execution to Mask Cache Miss Delay
	Slide 22: Instruction-level Parallelism +  Out-of-Order Execution
	Slide 23: Out-of-Order Execution
	Slide 24: 1995: Intel PentiumPro
	Slide 25: 1999: Pentium III
	Slide 26: The Limits of Instruction-Level Parallelism
	Slide 27: Multithreading The “Old Fashioned” Way
	Slide 28: Simultaneous Multithreading (SMT)  (aka Hyperthreading)
	Slide 29: 2000: Pentium IV
	Slide 30: Putting it All Together: Intel
	Slide 31: 32-bit to 64-bit Computing

