
Ashvin Goel, Ding Yuan

ECE Dept, University of Toronto

ECE 454

Computer Systems

Programming

CPU Architectures

Content

• Examine the tricks CPUs play for efficient execution

• History of CPU architectures

• Basics of modern CPU architectures

• More details are covered in ECE 552

2

Before we Start…

• Isn’t the CPU speed merely driven by transistor density?

• Transistor density increase → clock cycle increase → faster CPU

• A faster CPU requires

• Faster clock cycle

• Smaller cycles per instruction (CPI)

• CPI is the focus of this lecture!

3

True True, but
there is more…

In the Beginning…

• 1961:

• First commercially-available integrated circuits

• By Fairchild Semiconductor and Texas Instruments

• 1965:

• Gordon Moore's observation: (director of Fairchild research)

• Number of transistors on chips was doubling every two years

4

1971: Intel Releases the 4004

• First commercially available, stand-alone microprocessor

• 4-bit processor; 108KHz; 2300 transistors

• For use in calculators

• 4 chips: 4004 CPU, 4001 ROM, 4002 RAM, I/O registers 5

6

Designed by

Federico Faggin

7

Intel 4004 (first microprocessor)

• 4-bit processor, but 4KB ROM (how)?

• 3 Stack registers (what does this mean)?

• No Virtual Memory support

• No Interrupt

• No pipeline

The 1970’s (Intel): Increased Integration

• 1971: 108KHz; 2300 trans.;

• 4-bit processor for use in calculators

• 1972: 500KHz; 3500 trans.; 20 support chips

• 8-bit general-purpose processor

• 1974: 2MHz; 6k trans.; 6 support chips

• 16-bit addr space, 8-bit registers, used in ‘Altair’

• 1978: 10MHz; 29k trans.;

• Full 16-bit processor, start of x86

8

4004

8008

8080

8086

9

Intel 8085

The 1980’s: RISC and Pipelining

• 1980: Patterson (Berkeley) coins term RISC

• 1982: Makes RISC-I pipelined processors (only 32 instructions)

• RISC design simplifies implementation

• Small number of instruction formats

• Simple instruction processing

• 1981: Hennessy (Stanford) develops MIPS

• 1984: Forms MIPS computers

• RISC leads naturally to pipelined implementation

• Partition activities into stages

• Each stage has simple computation
10

RISC Pipeline

11

Reduce CPI from 5 → 1 (ideally)

12

33MHz, 32-bit processor

1985: Pipelining: Intel 386

Pipelines and Branch Prediction

• Must wait/stall fetching until branch direction known?

• Solutions?
13

BNEZ R3, L1

Which instr. should we fetch here?

Pipelines and Branch Prediction

• How bad is the problem? (isn’t it just one cycle?)

• Branch instructions: 15% - 25%

• Making pipeline deeper

• Cycles are smaller but

branch not resolved until much later

• => Misprediction penalty larger

• Superscalar architecture

• Multiple instructions issued simultaneously

• => Requires flushing and refetching more instructions

• Object-oriented programming

• => More indirect branches, making it harder to predict

14

CPU Pipeline

Instructions

fetched

Branch directions

computed

Wait/stall

Branch Prediction: Solution

• Solution: predict branch directions:

• Intuition: predict the future based on history

• Use a table to remember outcomes of previous branches

15

BP is important: prediction tables uses about 30K bits on Intel P4!

What Do We Have So Far?

• CPI:

• Pipeline: reduce CPI from n to 1 (ideal case)

• Branch instruction will cause stalls: effective CPI > 1

• Branch prediction

• But can we reduce CPI to <1?

16

Instruction-Level Parallelism

17

instructions

1

2

3

4

5

6

7

8

9

Execution

Time

single-issue

1

2

3

4

5

6

7

8

9

a
p

p
li

ca
ti

o
n

1 2

3 4 5

6

7 8

9

superscalar

18

1993: Intel Pentium

Data Hazard: Obstacle to Perfect

Pipelining

19

DIV F0, F2, F4 // F0 = F2/F4
ADD F10, F0, F8 // F10 = F0 + F8
SUB F12, F8, F14 // F12 = F8 – F14

DIV F0,F2,F4

STALL: Waiting for F0 to be written

ADD F10,F0,F8

STALL: Waiting for F0 to be written

SUB F12,F8,F14
Necessary?

Out-of-order Execution: Solving Data-

Hazard

20

DIV F0, F2, F4 // F0 = F2/F4
ADD F10, F0, F8 // F10 = F0 + F8
SUB F12, F8, F14 // F12 = F8 – F14

DIV F0,F2,F4

ADD F10,F0,F8

STALL: Waiting for F0 to be written

SUB F12,F8,F14

Don’t need to

wait (as long

as it’s safe)

Out-of-Order Execution to Mask Cache

Miss Delay

21

load (misses cache)

inst4

inst3

inst2

inst1

inst6

inst5 (must wait for load value)

Cache miss latency

IN-ORDER:

load (misses cache)

inst3

inst2

inst4

inst1

inst6

inst5 (must wait for load value)

Cache miss latency

OUT-OF-ORDER:

Instruction-level Parallelism +

Out-of-Order Execution

22

instructions

1

2

3

4

5

6

7

8

9

Execution

Time

single-issue

1

2

3

4

5

6

7

8

9

a
p

p
li

ca
ti

o
n

1 2

3 4 5

6

7 8

9

superscalar

1 2

3 4 5

6

7 8

9

out-of-order

super-scalar

Out-of-Order Execution

• In practice, much more complicated since we need to detect

and stall for all dependencies or else program will execute

incorrectly

• E.g., what if I write to a register too early?

• E.g., what if interrupts and exceptions occurs in between

23

24

1995: Intel PentiumPro

1999: Pentium III

25

The Limits of Instruction-Level

Parallelism

1 2

3 4 5

6

7 8

9

out-of-order

super-scalar

Execution

Time

Diminishing returns for wider superscalar

1 2

3 4 5

6

7 8

9

wider OOO

super-scalar

26

Multithreading The “Old Fashioned”

Way

27

1

2

3

4

5

6

7

8

9

A
p

p
li

ca
ti

o
n

 2

1

2

3

4

5

6

7

8

9

A
p

p
li

ca
ti

o
n

 1

1 2

3 4 5

6

7 8

9

1 2

3 4 5

6

7 8

9

Execution

Time

Fast context

switching

Simultaneous Multithreading (SMT)

(aka Hyperthreading)

28

1 2

3 4 5

6

7 8

9

1 2

3 4 5

6

7 8

9

Execution

Time

Fast context

switching

1 2

3

4

5

6

7 8

9

1

2

3

4 5

6

7

8

9

Execution

Time

hyperthreading

 SMT: 20-30% faster than context switching

29

2000: Pentium IV

Putting it All Together: Intel

30

Year CPI

1971

Processor Tech.

4004 No pipeline n

1985 386 Pipelining close to 1

Branch prediction closer to 1

1993 Pentium Superscalar < 1

1995 PentiumPro Out-of-order exec. << 1

1999 Pentium III Deep pipeline shorter cycle

2000 Pentium IV SMT <<<1

32-bit to 64-bit Computing

• Why 64 bit?

• 32b addr space: 4GB; 64b addr space: 4GB * 4GB = 16M TB

• Benefits large databases and media processing

• OSs and counters

• 64bit counter will not overflow (if doing ++)

• Math and cryptography

• Better performance for large/precise value math

• Drawbacks:

• Pointers now take 64 bits instead of 32

• I.e., code size increases

• Unlikely to go to 128 bits
31

	Slide 1: ECE 454 Computer Systems Programming CPU Architectures
	Slide 2: Content
	Slide 3: Before we Start…
	Slide 4: In the Beginning…
	Slide 5: 1971: Intel Releases the 4004
	Slide 6: Designed by Federico Faggin
	Slide 7
	Slide 8: The 1970’s (Intel): Increased Integration
	Slide 9: Intel 8085
	Slide 10: The 1980’s: RISC and Pipelining
	Slide 11: RISC Pipeline
	Slide 12: 1985: Pipelining: Intel 386
	Slide 13: Pipelines and Branch Prediction
	Slide 14: Pipelines and Branch Prediction
	Slide 15: Branch Prediction: Solution
	Slide 16: What Do We Have So Far?
	Slide 17: Instruction-Level Parallelism
	Slide 18: 1993: Intel Pentium
	Slide 19: Data Hazard: Obstacle to Perfect Pipelining
	Slide 20: Out-of-order Execution: Solving Data-Hazard
	Slide 21: Out-of-Order Execution to Mask Cache Miss Delay
	Slide 22: Instruction-level Parallelism + Out-of-Order Execution
	Slide 23: Out-of-Order Execution
	Slide 24: 1995: Intel PentiumPro
	Slide 25: 1999: Pentium III
	Slide 26: The Limits of Instruction-Level Parallelism
	Slide 27: Multithreading The “Old Fashioned” Way
	Slide 28: Simultaneous Multithreading (SMT) (aka Hyperthreading)
	Slide 29: 2000: Pentium IV
	Slide 30: Putting it All Together: Intel
	Slide 31: 32-bit to 64-bit Computing

