
Ashvin Goel, Ding Yuan

ECE Dept, University of Toronto

ECE 454

Computer Systems

Programming

Measuring and Profiling

2

“It is a capital mistake to theorize

before one has data. Insensibly one

begins to twist facts to suit theories

instead of theories to suit facts.”

Sherlock Holmes

Measuring Programs and

Computers

3

Why Measure a Program/Computer?

• To compare two computers/processors

• Which one is better/faster? Which one should I buy?

• To optimize a program, e.g., improve algorithm

• Which part of the program should I focus my effort on?

• To compare program implementations

• Which one is better/faster? Did my optimization work?

• To find a bug

• Why is it running much more slowly than expected?

4

Basic Measurements

• IPS: instructions per second

• MIPS: millions of IPS, BIPS: billions of IPS

• FLOPS: floating point operations per second

• megaFLOPS: 106 FLOPS

• gigaFLOPS: 109 FLOPS, Playstation3 capable of 20 GFLOPS

• IPC: instructions per processor-cycle

• Another measure of throughput

• CPI: cycles per instruction, CPI = 1 / IPC

• Measure of the reciprocal of throughput

• Makes it easier to compare with latency of instructions
5

How Not to Compare Processors

• Clock frequency (MHz)?

• IPC for the two processors could be radically different

• Megahertz myth

• Started from 1984

6

Apple II

CPU: MOS Technology 6503@1MHz

LD: 2 cycles (2 microseconds)

IBM PC

CPU: Intel 8088@4.77MHz

LD: 25 cycles (5.24 microseconds)

How Not to Compare Processors

• Clock frequency (MHz)?

• IPC for the two processors could be radically different

• CPI/IPC?

• Dependent on instruction sets used

• Dependent on efficiency of code generated by compiler

• FLOPS?

• Only if FLOPS are important for the expected applications

• Also dependent on instruction set used

7

How to Measure a Processor

• Use wall-clock time (seconds)

time = IC x CPI x ClockPeriod

• IC = instruction count (total instructions executed)

• CPI = cycles per instruction

• ClockPeriod = seconds/cycle

 = 1 / ClockFrequency = (1 / MHz)

8

Amdahl’s Law: Optimizing Part of a

Program

• E.g., my program used to take 10 minutes

• Now it only takes 5 minutes after optimization

• speedup = 10min/5min = 2.0 i.e., 2x faster

• If only optimizing part of a program (on following slide):

• Let f be the fraction of execution time that the optimization

applies to (0 < f < 1)

• Let s be the improvement factor (speedup of the optimization)

9

speedup = OldTime / NewTime

Amdhal’s Law Visualized

10

f

1-f

f/s

1-f

Optimization

O
ld

T
im

e

N
ew

T
im

e

 the best you can do is eliminate f; 1-f remains

Amdahl’s Law: Equations

• Let f be the fraction of execution time that the optimization

applies to (0 < f < 1)

• Let s be the improvement factor (speedup of the optimization)

NewTime = OldTime x [(1-f) + f/s]

speedup = OldTime / NewTime

speedup = 1 / (1 – f + f/s)

11

Example 1: Amdahl’s Law

• If an optimization makes loops go 3 times faster, and my

program spends 70% of its time in loops, how much faster will

my program go?

• My program will go 1.875 times faster
12

speedup = 1 / (1 – f + f/s)

= 1 / (1 – 0.7 + 0.7/3.0)

= 1/(0.533333)

= 1.875

Example 2: Amdahl’s Law

• If an optimization makes loops go 4 times faster, and applying

the optimization to my program makes it go twice as fast,

what fraction of my program is loops?

13

Implications of Amdahl’s Law

14

Uncommon

Common

Uncommon
Common

Optimization

When you optimize the common case,

the common case may change!

Tools for Measuring and

Understanding Software

15

Tools for Measuring/Understanding

• Software timers

• C library and OS-level timers

• Hardware timers and performance counters

• Built into the processor chip

• Instrumentation

• Decorates your program with code that counts & measures

• gprof – profiling tool, outputs where time is spent in program

• gcov – coverage tool, outputs how many times each line executed

• Used together to find commonly executed code where time should

be spent on optimization

16

Software Timers: Command Line

• Example: /usr/bin/time

• Measures the time spent in user code and OS code

• Measures entire program (can’t measure a specific function)

• Not super-accurate, but good enough for many uses

• real – Wall clock time

• user & sys --- CPU time in user mode, kernel mode
17

$ time ls

Used in Lab 1

Software Timers: Library: Example

• Used to measure time within parts of a program

18

#include <sys/times.h> // C library functions for time

unsigned get_time() {
 struct tms t;
 times(&t); // fills the struct
 // user CPU time (as opposed to OS CPU time)
 return t.tms_utime;
}

unsigned start_time, end_time, elapsed_time;
start_time = get_time();
do_work(); // function to measure
end_time = get_time();
elapsed_time = end_time ‐ start_time;

Used in Lab 2

Hardware: Cycle Timers

• Programmer can access on-chip cycle counter

• E.g., via the x86 instruction: rdtsc (read time stamp counter)

• We use this in Lab 2 in clock.c to time your solutions, e.g.

• Can be used to compute #cycles required to execute code

• Can be more accurate than library (when used correctly)

• Watch out for multi-threaded programs! 19

Used in Lab 2

start_cycles = get_tsc(); // executes rdtsc

do_work();

end_cycles = get_tsc();

total_cycles = end_cycles – start_cycles;

Hardware: Performance Counters

• Special on-chip event counters

• Can be programmed to count low-level architectural events

• Eg., cache misses, branch mispredictions, etc.

• Previously, difficult to use

• Full OS support was missing

• Counters can overflow

• Must be sampled carefully

• Today, software packages can make them easier to use

• E.g.: Intel’s VTUNE, Linux perf

• We use perf in Lab 2
20

Instrumentation

• Compiler/tool inserts new code & data-structures

• Can count/measure anything visible to software

• E.g., instrument every load instruction to record load address

• E.g., instrument every function to count #times it is called

• Observer effect

• Can’t measure system without disturbing it

• Instrumentation code can slow down execution

• Example instrumentors (open/freeware):

• Intel’s PIN: general purpose tool for x86

• Valgrind: tool for finding bugs and memory leaks

• gprof: counts & measures where time is spent via sampling 21

Instrumentation: Using gprof

• gprof

• Uses sampling to approximate time spent in each function and

#of calls to each function

• Periodically interrupts program, e.g., roughly every 10ms

• Determines what function is currently executing

• Increments the time counter for that function by interval (10ms)

• Usage: compile with -pg

gcc –O2 –pg prog.c –o prog

22

./prog

Executes normally, but also

generates file gmon.out

gprof prog

Uses gmon.out to show

profiling information

Used in Lab 1

Instrumentation: Using gcov

• Gives a profile of execution within a function

• E.g., how many times each line of C code was executed

• Helps decide which loops are most important

• Helps decide which part of if/else is most important

• Usage: compile with -g -fprofile-arcs -ftest-coverage

gcc -g -fprofile-arcs -ftest-coverage file.c –o file.o

23

./prog

Executes normally, but also

generates files file.gcda and

file.gcno for each file.o

gcov -b prog

Generates profile output in

file.c.gcov
Used in Lab 1

Emulation/Instrumentation: valgrind

• Primarily used to find/track memory leaks

• Eg., if you malloc() an item but forget to free it

• Many other uses for it today

• valgrind adds instrumentation to the binary dynamically

• So gcc doesn’t need to be rerun

• Execution time is 4-5x slower than native execution

• Usage: (available on ug machines)

• valgrind myprogram

24

== LEAK SUMMARY:
== definitely lost: 0 bytes in 0 blocks
== indirectly lost: 0 bytes in 0 blocks
== possibly lost: 0 bytes in 0 blocks
== still reachable: 330,372 bytes in 11,148 blocks

Demo: Using gprof

25

Demo: Using gcov

26

	Slide 1: ECE 454 Computer Systems Programming Measuring and Profiling
	Slide 2
	Slide 3: Measuring Programs and Computers
	Slide 4: Why Measure a Program/Computer?
	Slide 5: Basic Measurements
	Slide 6: How Not to Compare Processors
	Slide 7: How Not to Compare Processors
	Slide 8: How to Measure a Processor
	Slide 9: Amdahl’s Law: Optimizing Part of a Program
	Slide 10: Amdhal’s Law Visualized
	Slide 11: Amdahl’s Law: Equations
	Slide 12: Example 1: Amdahl’s Law
	Slide 13: Example 2: Amdahl’s Law
	Slide 14: Implications of Amdahl’s Law
	Slide 15: Tools for Measuring and Understanding Software
	Slide 16: Tools for Measuring/Understanding
	Slide 17: Software Timers: Command Line
	Slide 18: Software Timers: Library: Example
	Slide 19: Hardware: Cycle Timers
	Slide 20: Hardware: Performance Counters
	Slide 21: Instrumentation
	Slide 22: Instrumentation: Using gprof
	Slide 23: Instrumentation: Using gcov
	Slide 24: Emulation/Instrumentation: valgrind
	Slide 25: Demo: Using gprof
	Slide 26: Demo: Using gcov

