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“It is a capital mistake to theorize

before one has data. Insensibly one

begins to twist facts to suit theories

instead of theories to suit facts.”

Sherlock Holmes



Measuring Programs and 

Computers
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Why Measure a Program/Computer?

• To compare two computers/processors

• Which one is better/faster? Which one should I buy?

• To optimize a program, e.g., improve algorithm

• Which part of  the program should I focus my effort on?

• To compare program implementations

• Which one is better/faster?  Did my optimization work?

• To find a bug

• Why is it running much more slowly than expected?
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Basic Measurements

• IPS: instructions per second

• MIPS: millions of  IPS, BIPS: billions of  IPS

• FLOPS: floating point operations per second

• megaFLOPS: 106 FLOPS

• gigaFLOPS: 109 FLOPS, Playstation3 capable of  20 GFLOPS

• IPC: instructions per processor-cycle

• Another measure of  throughput

• CPI: cycles per instruction, CPI = 1 / IPC

• Measure of  the reciprocal of  throughput

• Makes it easier to compare with latency of  instructions
5



How Not to Compare Processors

• Clock frequency (MHz)?

• IPC for the two processors could be radically different

• Megahertz myth

• Started from 1984
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Apple II

CPU: MOS Technology 6503@1MHz

LD: 2 cycles (2 microseconds)

IBM PC

CPU: Intel 8088@4.77MHz

LD: 25 cycles  (5.24 microseconds)



How Not to Compare Processors

• Clock frequency (MHz)?

• IPC for the two processors could be radically different

• CPI/IPC?

• Dependent on instruction sets used

• Dependent on efficiency of  code generated by compiler

• FLOPS?

• Only if  FLOPS are important for the expected applications

• Also dependent on instruction set used
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How to Measure a Processor

• Use wall-clock time (seconds)

time = IC x CPI x ClockPeriod

• IC = instruction count (total instructions executed)

• CPI = cycles per instruction

• ClockPeriod = seconds/cycle

                         =  1 / ClockFrequency = (1 / MHz)
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Amdahl’s Law: Optimizing Part of  a 

Program

• E.g., my program used to take 10 minutes

• Now it only takes 5 minutes after optimization

• speedup = 10min/5min = 2.0   i.e., 2x faster

• If  only optimizing part of  a program (on following slide):

• Let f be the fraction of  execution time that the optimization 

applies to (0 < f < 1)

• Let s be the improvement factor (speedup of  the optimization)
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speedup = OldTime / NewTime



Amdhal’s Law Visualized
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Amdahl’s Law: Equations

• Let f be the fraction of  execution time that the optimization 

applies to (0 < f < 1)

• Let s be the improvement factor (speedup of  the optimization)

NewTime = OldTime x [(1-f) + f/s]

speedup = OldTime / NewTime

speedup = 1 / (1 – f + f/s)

11



Example 1: Amdahl’s Law

• If  an optimization makes loops go 3 times faster, and my 

program spends 70% of  its time in loops, how much faster will 

my program go?

• My program will go 1.875 times faster
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speedup = 1 / (1 – f + f/s)

= 1 / (1 – 0.7 + 0.7/3.0)

= 1/(0.533333)

= 1.875



Example 2: Amdahl’s Law

• If  an optimization makes loops go 4 times faster, and applying 

the optimization to my program makes it go twice as fast, 

what fraction of  my program is loops?
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Implications of  Amdahl’s Law
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Optimization

When you optimize the common case, 

the common case may change!



Tools for Measuring and 

Understanding Software
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Tools for Measuring/Understanding

• Software timers

• C library and OS-level timers

• Hardware timers and performance counters

• Built into the processor chip

• Instrumentation

• Decorates your program with code that counts & measures

• gprof  – profiling tool, outputs where time is spent in program

• gcov –  coverage tool, outputs how many times each line executed

• Used together to find commonly executed code where time should 

be spent on optimization
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Software Timers: Command Line

• Example: /usr/bin/time

• Measures the time spent in user code and OS code

• Measures entire program (can’t measure a specific function)

• Not super-accurate, but good enough for many uses

• real – Wall clock time

• user & sys --- CPU time in user mode, kernel mode
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$ time ls

Used in Lab 1



Software Timers: Library: Example

• Used to measure time within parts of  a program
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#include <sys/times.h>      // C library functions for time

unsigned get_time() {
    struct tms t;
    times(&t);  // fills the struct
    // user CPU time (as opposed to OS CPU time)
    return t.tms_utime;
}

unsigned start_time, end_time, elapsed_time;
start_time = get_time();
do_work(); // function to measure
end_time = get_time();
elapsed_time = end_time ‐ start_time;

Used in Lab 2



Hardware: Cycle Timers

• Programmer can access on-chip cycle counter

• E.g., via the x86 instruction: rdtsc (read time stamp counter)

• We use this in Lab 2 in clock.c to time your solutions, e.g.

• Can be used to compute #cycles required to execute code

• Can be more accurate than library (when used correctly)

• Watch out for multi-threaded programs! 19

Used in Lab 2

start_cycles = get_tsc(); // executes rdtsc

do_work();

end_cycles = get_tsc();

total_cycles = end_cycles – start_cycles;



Hardware: Performance Counters

• Special on-chip event counters

• Can be programmed to count low-level architectural events

• Eg., cache misses, branch mispredictions, etc.

• Previously, difficult to use

• Full OS support was missing

• Counters can overflow

• Must be sampled carefully

• Today, software packages can make them easier to use

• E.g.: Intel’s VTUNE, Linux perf

• We use perf  in Lab 2
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Instrumentation

• Compiler/tool inserts new code & data-structures

• Can count/measure anything visible to software

• E.g., instrument every load instruction to record load address

• E.g., instrument every function to count #times it is called

• Observer effect

• Can’t measure system without disturbing it

• Instrumentation code can slow down execution

• Example instrumentors (open/freeware):

• Intel’s PIN: general purpose tool for x86

• Valgrind: tool for finding bugs and memory leaks

• gprof: counts & measures where time is spent via sampling 21



Instrumentation: Using gprof

• gprof

• Uses sampling to approximate time spent in each function and 

#of  calls to each function

• Periodically interrupts program, e.g., roughly every 10ms

• Determines what function is currently executing

• Increments the time counter for that function by interval (10ms)

• Usage: compile with -pg

gcc –O2 –pg prog.c –o prog
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./prog

Executes normally, but also 

generates file gmon.out

gprof prog

Uses gmon.out to show 

profiling information

Used in Lab 1



Instrumentation: Using gcov

• Gives a profile of  execution within a function

• E.g., how many times each line of  C code was executed

• Helps decide which loops are most important

• Helps decide which part of  if/else is most important

• Usage: compile with -g -fprofile-arcs -ftest-coverage

gcc -g -fprofile-arcs -ftest-coverage file.c –o file.o
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./prog

Executes normally, but also 

generates files file.gcda and 

file.gcno for each file.o

gcov -b prog

Generates profile output in 

file.c.gcov
Used in Lab 1



Emulation/Instrumentation: valgrind

• Primarily used to find/track memory leaks

• Eg., if  you malloc() an item but forget to free it

• Many other uses for it today

• valgrind adds instrumentation to the binary dynamically

• So gcc doesn’t need to be rerun

• Execution time is 4-5x slower than native execution

• Usage: (available on ug machines)

• valgrind myprogram
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== LEAK SUMMARY:
== definitely lost: 0 bytes in 0 blocks
== indirectly lost: 0 bytes in 0 blocks
== possibly lost: 0 bytes in 0 blocks
== still reachable: 330,372 bytes in 11,148 blocks



Demo: Using gprof
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Demo: Using gcov
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