
Ashvin Goel, Ding Yuan

ECE Dept, University of Toronto

ECE 454

Computer Systems

Programming

Compiler Optimizations

Content

• History and overview of compilers

• Basic compiler optimizations

• Program optimizations

• Advanced optimizations

• Parallel unrolling

• Profile-directed feedback

2

A Brief History of

Compilation

3

In the Beginning…

4

ProcessorProgrammer

1010010010

0101101010

1010010100

1010001010

…

Programmers wrote machine instructions

Then Came the Assembler

5

ProcessorProgrammer

add r3,r3,r1
cmp r3,r1
bge 0x3340a
mulu r3,r5,r2
sub r1,r3,r4
…

1010010010
0101101010
1010010100
1010001010
…

Assembler

Machine Instructions

Programmers wrote human-readable assembly

Then Came the Compiler

6

Processor

Programmer

int
Foo(int x){
 return x+5;
}
…

Assembly

add r3,r3,r1
cmp r3,r1
bge 0x3340a
mulu r3,r5,r2
sub r1,r3,r4
…

Compiler

1010010010

0101101010

1010010100

1010001010

…

Machine Instructions

Programmers wrote high-level language (HLL)

Overview of Compilers

7

Goals of a Compiler

• Correct program executes correctly

• Provide support for debugging incorrect programs

• Program executes fast

• Compilation is fast?

• Small code size?

• More energy efficient program?

8

Inside a Basic Compiler

9

Front

End

High-level

language

(C, C++, Java)

Low-level

language

(IA64)

HLL IR

Code

Generator

LLL

Intermediate

Representation

(similar to assembly)

CSC488 Compilers and Interpreters

Control Flow Graph:
(how a compiler sees your program)

add …
L1: add …
 add …
 branch L2
 add …
L2: add …
 branch L1
 return …

Example IR: Basic Blocks:

Basic Block: a group of consecutive

instructions with a single entry point

and a single exit point

add …

L1: add …
 add …
 branch L2

add …

L2: add …
 branch L1

return …

10

Data Flow Analysis

• Many compiler optimizations (discussed later) use a technique

called data flow analysis

• Basic idea

• Analyse and summarize the effects of instructions in a basic block

• Use CFG to propagate these effects to succeeding basic blocks

• E.g., reaching definition data flow analysis

• Calculates for each program point

the set of definitions (program

points) that may potentially

reach this program point

11

1: if b==4 then // BB1

2: a = 5; // BB2

3:else

4: a = 3; // BB3

5:endif

6:if a < 4 then ... // BB4

Inside an Optimizing Compiler

Optimizer

IR

(Improved)

CSCD70/ ECE540 Optimizing Compilers

12

Front

End

High-level

language

(C, C++, Java)

HLL IR

Low-level

language

(IA64)

Code

Generator

LLL

Performance Optimization:

3 Requirements

• Preserve correctness

• The speed of an incorrect program is irrelevant

• Improve performance of average case

• Optimized program may be worse than original if unlucky

• Be “worth the effort”

• Is this example worth it?

• 1 person-year of work to implement compiler optimization

• 2x increase in compilation time

• 0.1% improvement in speed

13

How do Optimizations Improve

Performance?

• Recall

Execution_time = num_instructions * CPI * time/cycle

• Fewer instructions

• Use optimized sequence of instructions

• Use new instructions

• Fewer cycles per instruction

• Schedule instructions to avoid hazards

• Improve cache/memory behavior

• E.g., prefetching, code and data locality
14

Role of Optimizing Compilers

• Provide efficient mapping of program to machine instructions

• Eliminate minor inefficiencies

• Register allocation

• Instruction selection

• Instruction scheduling

• Don’t (usually) improve asymptotic efficiency

• Up to programmer to select best overall algorithm

• Big-O savings are (often) more important than constant factors

• But constant factors also matter

15

Limitations of Optimizing Compilers

• Operate under fundamental constraints

• Must not cause any change in program behavior under any

possible condition

• Most analysis is performed only within procedures

• Inter-procedural analysis is too expensive in most cases

• Most analysis is based only on static information

• Compiler has difficulty anticipating run-time inputs

• When in doubt, the compiler must always be conservative

16

Role of the Programmer

• How should I write my programs, given that I have a good,

optimizing compiler?

• Don’t: smash code into oblivion

• Hard to read, maintain, assure correctness

17

Role of the Programmer

• How should I write my programs, given that I have a good,

optimizing compiler?

• Do:

• Select best algorithm

• Write code that’s readable and maintainable

• Procedures, recursion

• Even though these may slow down code

• Focus on inner loops

• Do detailed optimizations where code will be executed repeatedly

• Will get most performance gain here

• Eliminate optimization blockers

• Allows compiler to do its job! 18

Basic Compiler

Optimizations

19

Compiler Optimizations

• Machine independent (apply equally well to most CPUs)

• Constant propagation

• Constant folding

• Copy propagation

• Common subexpression elimination

• Dead code elimination

• Loop invariant code motion

• Function inlining

20

Compiler Optimizations

• Machine dependent (apply differently to different CPUs)

• Instruction selection and scheduling

• Loop unrolling

• Parallel unrolling

• Possible to do all these optimizations manually, but much

better if compiler does them

• Many optimizations make code less readable/maintainable

21

Constant Propagation (CP)

• Replace variables with constants when possible

22

a = 5;
b = 3;
 :
 :
n = a + b;
for (i = 0 ; i < n ; ++i) {
 :
}

n = 5 + 3

Constant Folding (CF)

• Evaluate expressions containing constants

• Can lead to further optimization

• E.g., another round of constant propagation

23

:
 :
 :
 :
n = 5 + 3;
for (i = 0 ; i < n ; ++i) {
 :
}

n = 8

8

Common Sub-Expression Elimination

(CSE)

• Try to only compute a given expression once

• Need to ensure the variables have not been modified

24

a = c * d;
 :
 :
d = (c * d + t) * u



a = c * d;
 :
 :
d = (a + t) * u

Copy Propagation

• Replace target of assignment with corresponding value

• Often used after common sub-expression elimination and

other optimizations

25

:
 :
 :
 :
y = x;
z = 3 + y;

x

Dead Code Elimination (DCE)

• Compiler can determine if certain code will never execute

• Compiler will remove that code

• You don’t have to worry about such code impacting performance

• Makes it easier to have readable/debugable programs

26

debug = 0; // set to false
 :
if (debug) {
 :
 :
}
a = f(b);



debug = 0;

a = f(b);

Loop Invariant Code Motion (LICM)

• Loop invariant: value does not change across iterations

• LICM: moves invariant code out of the loop

• Leads to significant performance win

27

Loop Invariant Code Motion (LICM)

• Consider this triply nested loop

• In C, a multi-dimensional array is stored in row-major order

28

for (i=0; i < I; ++i) {
 for (j=0; j < J; ++j) {
 for (k=0 ; k < K; ++k) {
 a[i][j][k] = i*j*k;
 }
 }
}

a[0][0][0] a[0][0][1] … a[0][0][K-1] a[0][1][0] … a[I-1][J-1][0] .. a[I-1][J-1][K-1]

char a[I][J][K];

addr of a[i][j][k] = (addr of a) + (i x J x K) + (j x K) + (k)

4 5

6 7
0 1

2 3

k

j

i

Loop Invariant Code Motion (LICM)

29



for (i = 0; i < I; ++i) {
 t1 = a + i * J * K; // t1=a[i];
 for (j = 0; j < J; ++j) {
 t2 = t1 + j * K; // t2=t1[j];
 for (k = 0 ; k < K; ++k) {
 t2[k] = i * j * k;
 }
 }
}

for (i=0; i < I; ++i) {
 for (j=0; j < J; ++j) {
 for (k=0 ; k < K; ++k) {
 a[i][j][k] = i*j*k;
 }
 }
}

addr of a[i][j][k] = (addr of a) + (i x J x K) + (j x K) + (k)

Loop Invariant Code Motion (LICM)

• When I=J=K=100, inner loop will execute 1,000,000 times

• Many of the computations in the inner loop are moved out

• Improves performance dramatically
30



for (i = 0; i < I; ++i) {
 t1 = a + i * J * K; // t1=a[i];
 for (j = 0; j < J; ++j) {
 t2 = t1 + j * K; // t2=t1[j];
 tmp = i * j;
 for (k = 0 ; k < K; ++k) {
 t2[k] = tmp * k;
 }
 }
}

for (i=0; i < I; ++i) {
 for (j=0; j < J; ++j) {
 for (k=0 ; k < K; ++k) {
 a[i][j][k] = i*j*k;
 }
 }
}

addr of a[i][j][k] = (addr of a) + (i x J x K) + (j x K) + (k)

Function Inlining

• A function call site is replaced with the body of the function

31

main(){
 …
 x = foo(x);
 …
}

foo(int z){
 int m = 5;
 return z + m;
}

main(){
 …
 {
 int foo_z = x;
 int foo_m = 5;
 int foo_return = foo_z + foo_m;
 x = foo_return;
 }
 …
} main(){

 …
 x = x + 5;
 …
}

Function Inlining

• Performance

• Eliminates call/return overhead

• Can expose potential optimizations

• Can be hard on instruction-cache if many copies made

• Code size can increase if large procedure body and many calls

• As a programmer

• A good compiler should inline for best performance

• Feel free to use procedure calls to make your code readable!

32

Loop Unrolling

• Reduces loop overhead, why?

• Fewer adds to update j

• Fewer loop condition tests

• Reduces branch penalties

• Enables more aggressive instruction scheduling

• I.e., more instructions in loop basic block for scheduler to move

around 33

j = 0;
while (j < 100){
 a[j] = b[j+1];
 j += 1;
}

j = 0;
while (j < 99){
 a[j] = b[j+1];
 a[j+1] = b[j+2];
 j += 2;
}

Summary: gcc Optimization Levels

• -g: Include debug information, no optimization

• -O0: Default, no optimization

• -O1: Do optimizations that don’t take too long

• CP, CF, CSE, DCE, LICM, inline functions called once

• -O2: Take longer optimizing, more aggressive scheduling

• E.g., inline small functions

• -O3: Make space/speed trade-offs

• Can increase code size, loop unrolling, more inlining

• -Os: Optimize program size
34

	Slide 1: ECE 454 Computer Systems Programming Compiler Optimizations
	Slide 2: Content
	Slide 3: A Brief History of Compilation
	Slide 4: In the Beginning…
	Slide 5: Then Came the Assembler
	Slide 6: Then Came the Compiler
	Slide 7: Overview of Compilers
	Slide 8: Goals of a Compiler
	Slide 9: Inside a Basic Compiler
	Slide 10: Control Flow Graph: (how a compiler sees your program)
	Slide 11: Data Flow Analysis
	Slide 12: Inside an Optimizing Compiler
	Slide 13: Performance Optimization: 3 Requirements
	Slide 14: How do Optimizations Improve Performance?
	Slide 15: Role of Optimizing Compilers
	Slide 16: Limitations of Optimizing Compilers
	Slide 17: Role of the Programmer
	Slide 18: Role of the Programmer
	Slide 19: Basic Compiler Optimizations
	Slide 20: Compiler Optimizations
	Slide 21: Compiler Optimizations
	Slide 22: Constant Propagation (CP)
	Slide 23: Constant Folding (CF)
	Slide 24: Common Sub-Expression Elimination (CSE)
	Slide 25: Copy Propagation
	Slide 26: Dead Code Elimination (DCE)
	Slide 27: Loop Invariant Code Motion (LICM)
	Slide 28: Loop Invariant Code Motion (LICM)
	Slide 29: Loop Invariant Code Motion (LICM)
	Slide 30: Loop Invariant Code Motion (LICM)
	Slide 31: Function Inlining
	Slide 32: Function Inlining
	Slide 33: Loop Unrolling
	Slide 34: Summary: gcc Optimization Levels

