ECE 454 Computer Systems Programming

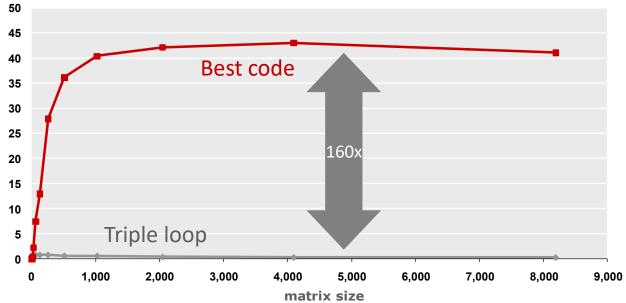
Memory Hierarchy

Ashvin Goel, Ding Yuan ECE Dept, University of Toronto

Content

- Cache basics and organization
- Understanding/Profiling Memory
- Optimizing for caches (later)
 - Loop reordering
 - Tiling/blocking

Matrix Multiply

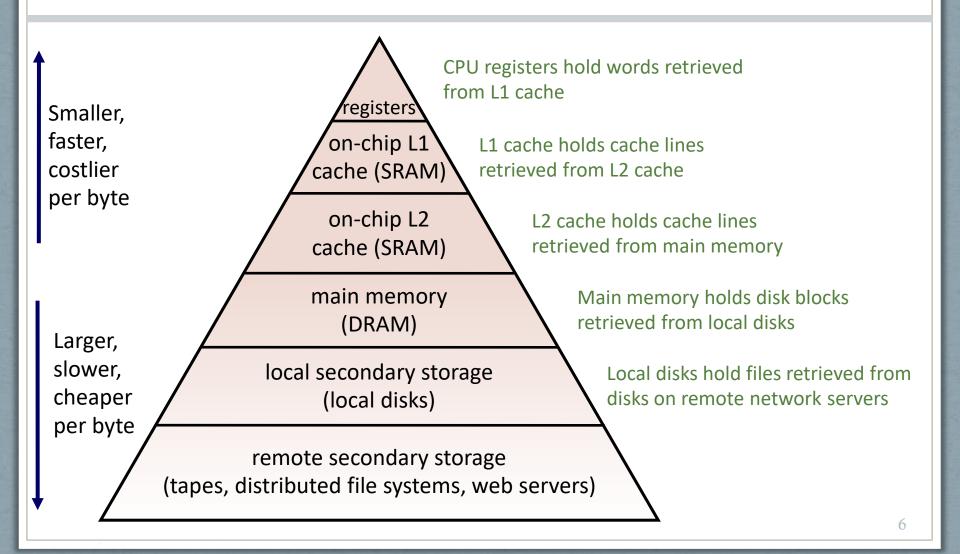

```
double a[4][4];
double b[4][4];
double c[4][4]; // assume already set to zero
                                                             14
                                                                   16
/* Multiply n x n matrices a and b */
                                                             18
void mmm(double *a, double *b, double *c, int n) {
                                                                   20
                                                             22
                                                                  24
    int i, j, k;
                                                             26
    for (i = 0; i < n; i++)
     for (j = 0; j < n; j++)
        for (k = 0; k < n; k++)
                                                 c[0][0] = 1 * 17 +
          // actual work
                                                           2 * 21 +
          c[i][j] += a[i][k] * b[k][j];
                                                            3 * 25 +
                                                            4 * 29
```

How much performance improvement can we get by optimizing this code?

MMM Performance

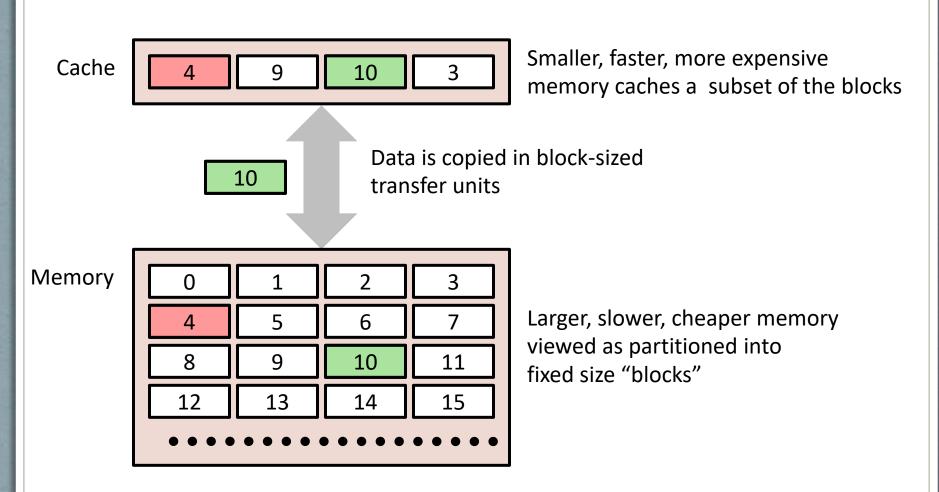
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s (giga floating point operations per second)

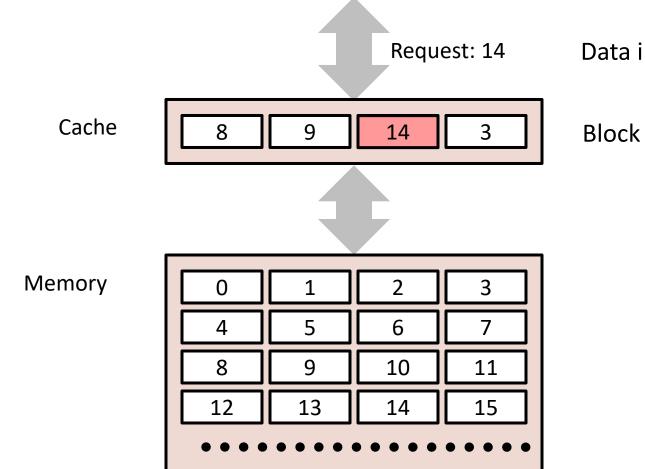

- Standard desktop computer
- Both versions compiled using optimization flags
- Both implementations have exactly the same # of operations (2n³)
- What is going on?

Problem: Processor-Memory Bottleneck

- L1 cache reference time = 1-4 ns
 - However, L1 cache size <= 64 KB
- Main memory reference time = 100 ns, 100X slower!
 - However, memory size >= GBs

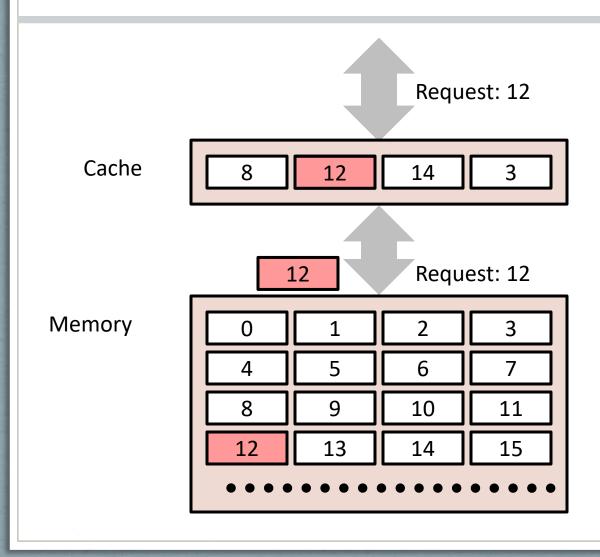

- Some data:
 - 1 ns = 1/1,000,000,000 second
 - For a 2.5 GHz CPU (my laptop), 1 cycle = 0.4 ns

Memory Hierarchy



Cache Basics (Review Hopefully!)

General Cache Mechanics


General Cache Concepts: Hit

Data in block 14 is needed

Block 14 is in cache: Hit!

General Cache Concepts: Miss

Data in block 12 is needed

Block 12 is not in cache: Miss!

Block 12 is fetched from memory

Block 12 is stored in cache:

- Placement policy:
 Chooses a set of blocks
 where 12 goes in cache
- Replacement policy:
 Determines which block in set gets evicted (victim)

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache
- miss rate = misses / accesses = 1 hit rate
- 3-10% for L1, small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - Includes time to determine whether the line is in the cache
- 1-4 clock cycles for L1, 5-20 clock cycles for L2

• Miss Penalty

- Additional time required due to a miss
 - Typically 50-400 cycles for main memory

Let's Think About Those Numbers

- Huge difference between a hit and a miss
 - 100x between L1 and main memory
- Performance with 99% hit rate doubles compared to 97%!
 - Say cache hit time = 1 cycle, miss penalty of 100 cycles
 - Average access time:
 - 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
 - 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

- This is why miss (instead of hit) rate is used to think about cache performance
 - 3% is much worse than 1% miss rate

Types of Cache Misses (1)

- Three types
- Cold (compulsory) miss
 - Occurs on first access to a block
 - Can't do too much about these (except prefetching---more later)

Types of Cache Misses (2)

Conflict miss

- Placement policy of most hardware caches limit blocks to a small subset (sometimes a singleton) of the available cache slots
 - e.g., block i must be placed in slot (i mod 8)
- Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot
 - e.g., referencing blocks 0, 8, 0, 8, ... would miss every time
- Conflict misses are less of a problem today (more later)

Capacity miss

- Occurs when the set of active cache blocks is larger than the cache
 - Working set is larger than cache size
 - This is the most significant problem today


Why Caches Work

• Locality: Programs tend to use data and instructions with addresses equal or near to those they have used recently

- Temporal locality:
 - Recently referenced items are likely to be referenced again in the near future

- Spatial locality:
 - Items with nearby addresses tend to be referenced close together in time

Example: Locality?

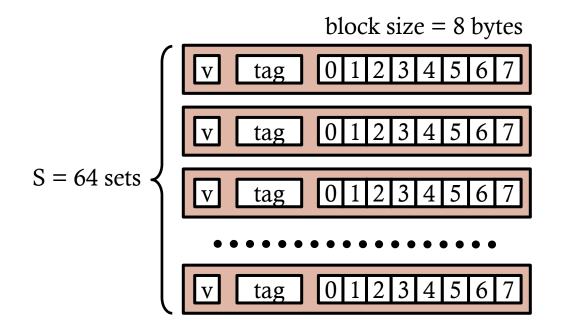
```
sum = 0;
for (i = 0; i < n; i++)
  sum += a[i];
return sum;</pre>
```

• Data:

- Temporal: i, n, sum are referenced in each iteration
- Spatial: close by elements of array a accessed (in stride-1 pattern)

• Instructions:

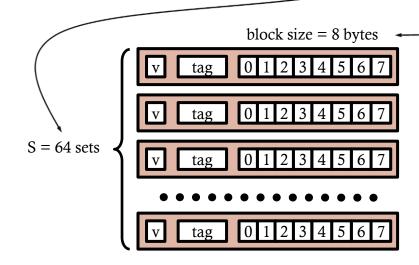
- Temporal: cycle through loop instructions repeatedly
- Spatial: reference close by instructions in sequence
- Important to be able to assess the locality in your code!


Cache Organization

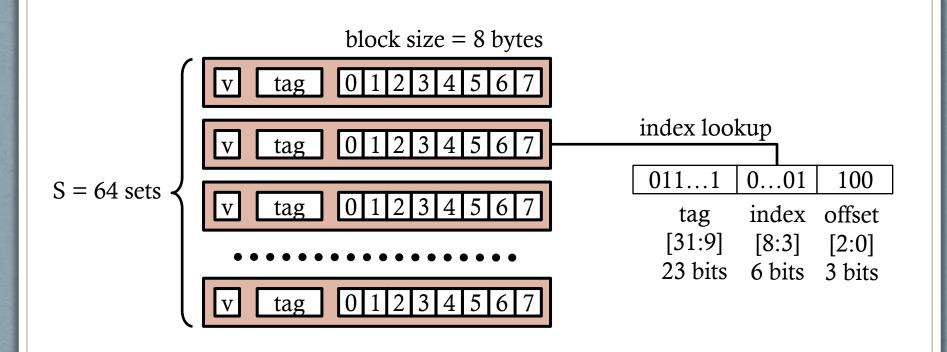
General Cache Organization (S, E, B)

Direct Mapped Cache (E = 1)

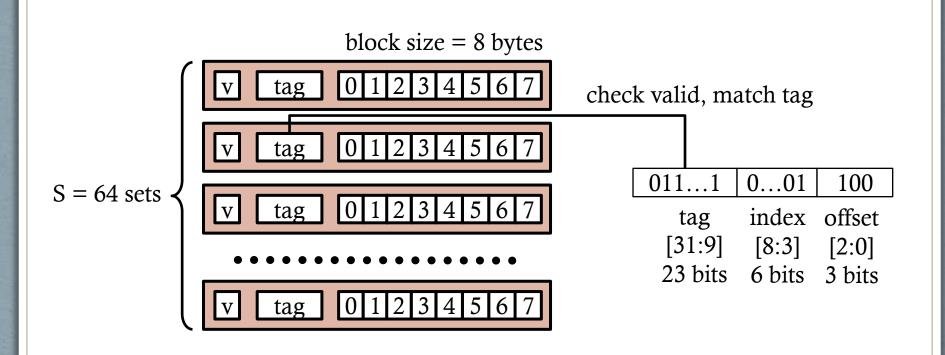
• Direct mapped: one block per set

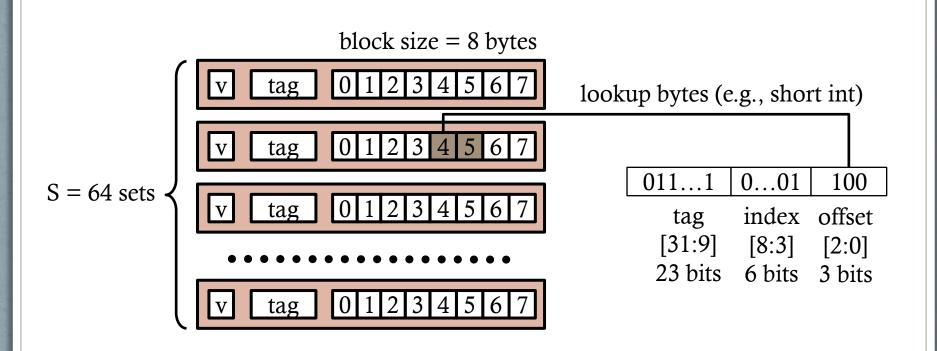


Direct Mapped Cache

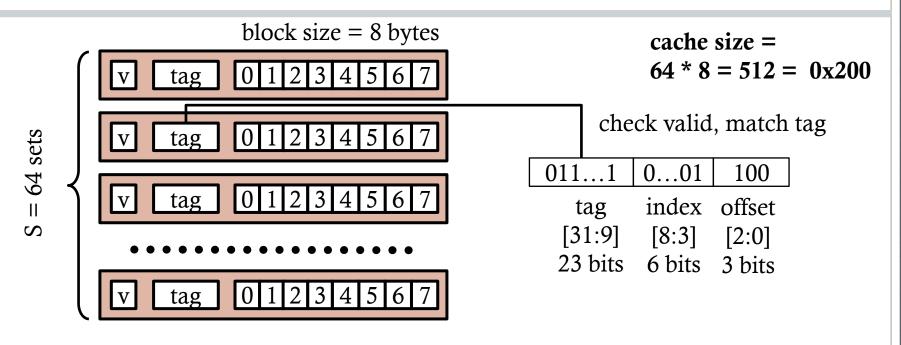

- Incoming memory address divided into tag, index and offset bits
 - Index determines set
 - Tag is used for matching
 - Offset determines starting byte within block

Address (32 bits)


0111	001	100
tag	index	offset
[31:9]	[8:3]	[2:0]
23 bits	6 bits	3 hits

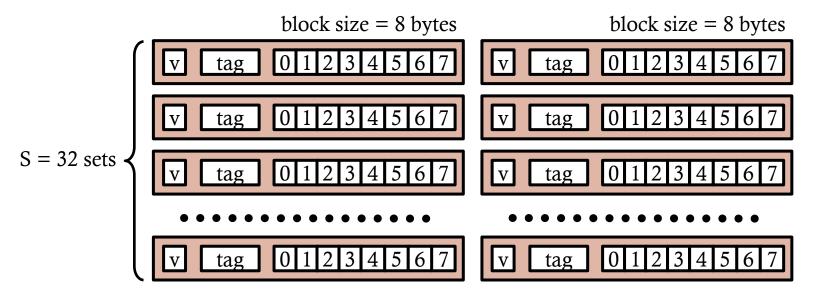

Direct Mapped Cache: Index Lookup

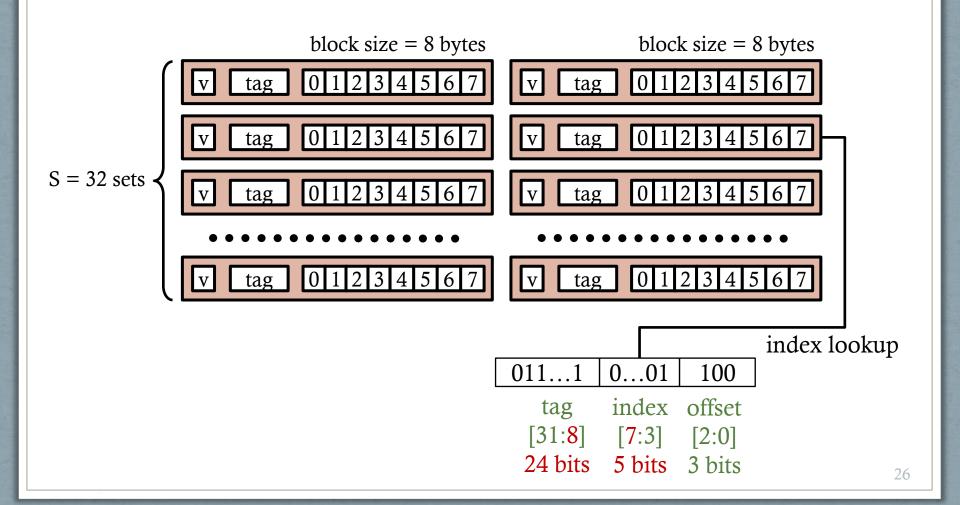
Direct Mapped Cache: Match Tag

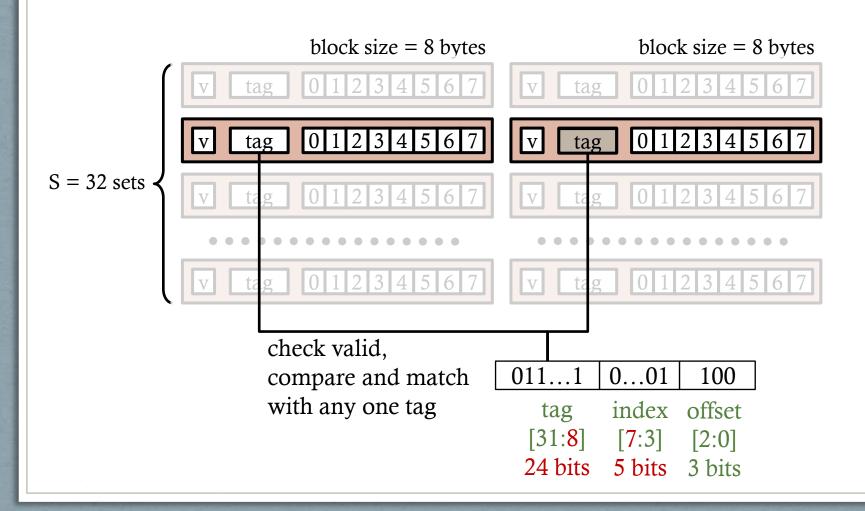


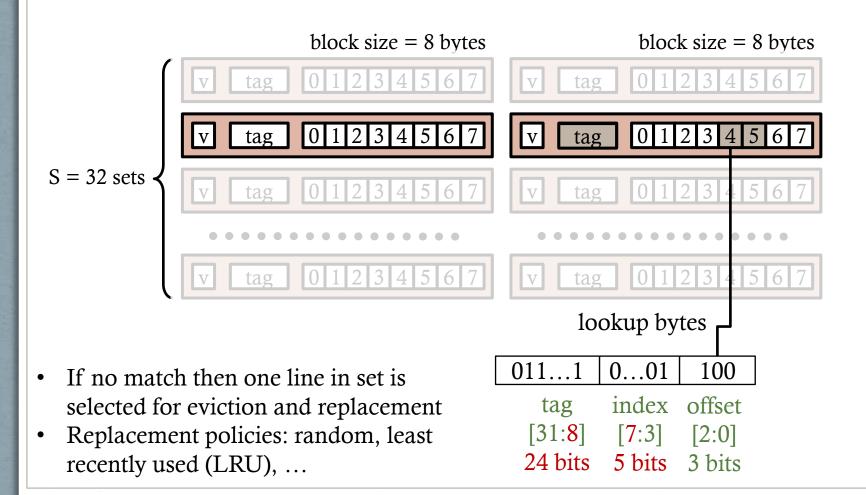
Direct Mapped Cache: Lookup Bytes

- Assume address being looked up is for a short int (2 bytes)
- If the tag doesn't match, old block is evicted and replaced with entire new block (i.e., 8 bytes are loaded from memory)


Direct Mapped Cache Example

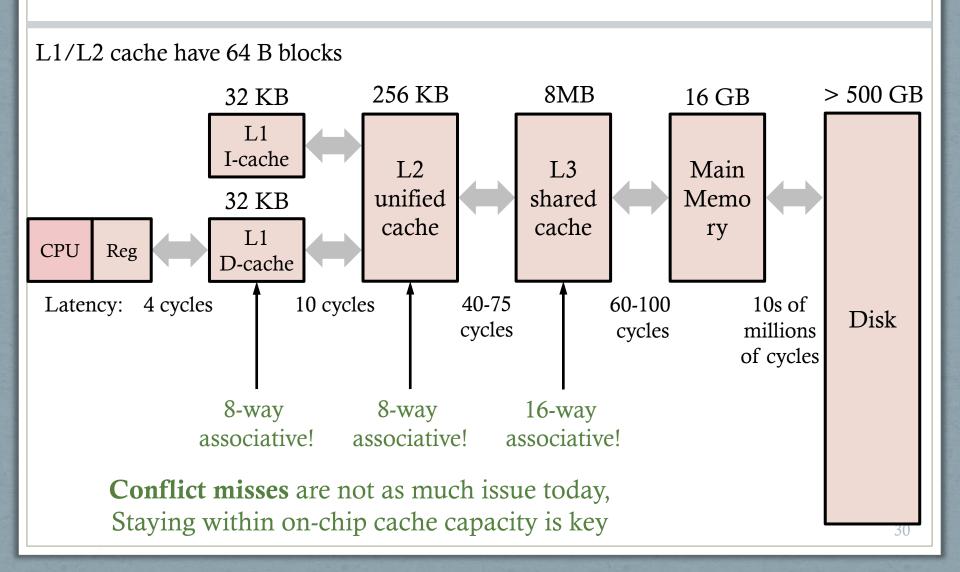

long a[100]; // each array element is 8 bytes


```
a[0]: Addr 0x0 = 0b0 000 = (0, 0, 0) maps to Set 0
a[1]: Addr 0x8 = 0b1 000 = (0, 1, 0) maps to Set 1
a[32]: Addr 0x100 = 0b0 100000 000 = (0, 32, 0) maps to Set 32
a[64]: Addr 0x200 = 0b1 000000 000 = (1, 0, 0) maps to Set40
```


• 2-way set associative: two blocks per set

- Total cache size is same as direct mapped cache
- But number of sets is halved

Two-way Cache Example


```
cache size =
             block size = 8 bytes
                                     block size = 8 bytes
                                                      32 * 2 * 8 = 512 = 0 \times 200
                            v tag 0112345617
             01234567
32 sets
            01234567
                                    01234567
                            v tag
                                                               0...01
                                                      011...1
                                                                       100
                            v tag 01234567
            01234567
Ш
                                                               index offset
                                                         tag
S
                                                        [31:8] [7:3] [2:0]
                            v tag
                                                        24 bits 5 bits 3 bits
```

```
a[0]: Addr 0x0 = 0b0 000 = (0, 0, 0) maps to Set 0
a[1]: Addr 0x8 = 0b1 000 = (0, 1, 0) maps to Set 1
a[32]: Addr 0x100 = 0b1 00000 000 = (1, 0, 0) maps to Set 0
```

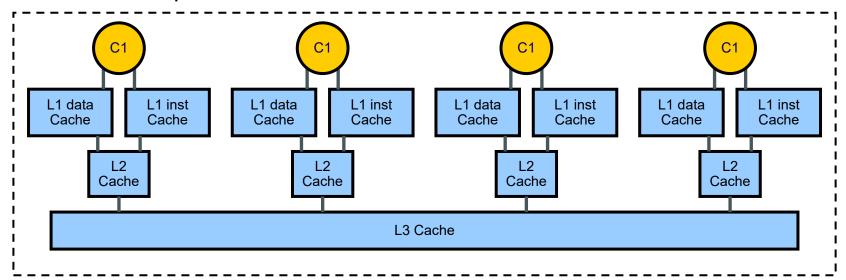
long a[100]; // each array element is 8 bytes

a[64]: Addr 0x200 = 0b10 00000 000 = (1, 0, 0) maps to Set 0

Intel Core i7: Cache Associativity

What About Writes?

- Multiple copies of data exist in L1, L2, main memory, disk
 - Need to ensure consistency
- What to do on a write-hit?
 - Write-through (write to cache and immediately to memory)
 - Write-back (defer write to memory until line is replaced)
 - Need a dirty bit (cache line different from memory or not)
- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more reads and writes to the location follow
 - No-write-allocate (write immediately to memory)
 - For streaming writes (write once and then no reads in the near future).


What About Writes?

- Multiple copies of data exist in L1, L2, main memory, disk
- What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (cache line different from memory or not)
- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more reads and writes to the location follow
 - No-write-allocate (write immediately to memory)
 - For streaming writes (write once and then no reads in the near future)
- Typically:
 - Write-through + No-write-allocate
 - Write-back + Write-allocate

Understanding/Profiling Memory

UG Machines

Processor Chip

1 CPU – Intel Core i7-4790, 3.6 GHz, with 4 HT cores

Run 1scpu on UG machine shows:

32KB, 8-way L1 data cache 32KB, 8-way L1 inst cache

256KB, 8-way L2 cache 8M, 16-way L3 cache

Get Memory Hierarchy Details: 1stopo

• Running 1stopo on UG machine shows:

```
Machine (16GB)

Package L#0 + L3 L#0 (8192KB)

L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0 + PU L#0 (P#0)

L2 L#1 (256KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1 + PU L#1 (P#1)

L2 L#2 (256KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2 + PU L#2 (P#2)

L2 L#3 (256KB) + L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3 + PU L#3 (P#3)

4 cores per CPU
```

Get More Cache Details: L1 dcache

ls /sys/devices/system/cpu/cpu0/cache/index0 coherency_line_size: 64 // 64B cache lines level: 1 // L1 cache number_of_sets: 64 physical_line_partition shared_cpu_list: 0 // shared by cpu0 only shared_cpu_map size: 32K type: data // data cache ways_of_associativity: 8 // 8-way set associative

Get More Cache Details: L2

ls /sys/devices/system/cpu/cpu0/cache/index2 coherency_line_size: 64 // 64B cache lines 1evel: 2 // L2 cache number_of_sets: 512 physical_line_partition shared_cpu_list shared_cpu_map size: 256K type: Unified // unified cache, means instructions and data ways_of_associativity: 8 // 8-way set associative

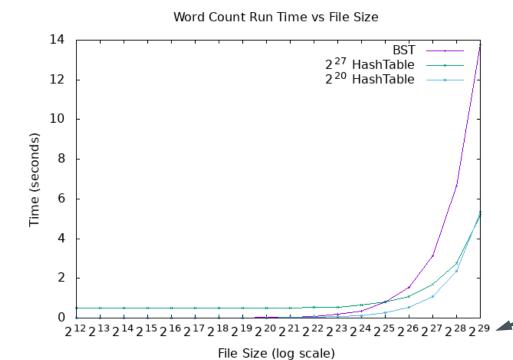
Access Hardware Counters: perf

- The perf tool allows you to access performance counters
- To measure L1 data cache load misses for program pi, run:

```
perf stat -e L1-dcache-load-misses pi
7803 L1-dcache-load-misses # 0.000 M/sec
```

• To see a list of all events you can measure:

```
perf list
```


• Note: you can measure multiple events at once

BST and Hash Table Comparison

- A binary search tree (BST) and a hash table store 100 million items (\sim 2 $^{\circ}$ 26)
- How much faster will a hash table be versus BST?
 - BST: Number of pointer traversals: $log(2^{26}) = \sim 26$
 - However, the number is smaller for internal nodes
 - Hash Table: Number of pointer traversals: ~2
 - One to access hash table entry
 - One to access data item
 - Based on running code, BST traverses pointers 8 times more than hash table (expected is 26/2 = 13)
 - So we expect hash table to be roughly 8 times faster ...

BST and Hash Table Comparison

- A binary search tree (BST) and a hash table store 100 million items (\sim 2 $^{\circ}$ 26)
- How much faster will a hash table be versus BST?

Average word len $\sim= 5$, when file size = 2^{29} (~ 500 M), number of unique words is ~ 100 M

Analysis

- While the hash table beats BST, the performance improvement is not what is expected from analysis of data accesses (8x improvement)
 - Hash table performance is **only** 2.5-2.8x better
- Why is that the case? Let's look at it in more detail.

Perf on BST and HashTable

- Initial hypothesis: memory hierarchy is the culprit, so run perf
 - E.g., Does hash table have a lot more LLC accesses than BST?

perf stat -e instructions -e L1-dcache-loads -e L1dcache-misses -e LLC-loads -e LLC-misses {bst,hash}program

	BST	HashTable	Ratio
Time	13.11 s	4.77 s	2.75
Instructions	50 b	21 b	2.4
L1 hits (4 cycles)	13000 m	4500 m	2.9
L1 misses (10 cycles)	1000 m	214 m	4.7
LLC loads (40-75 cycles)	333 m	101 m	3.3
LLC misses (60-100 cycles)	21 m	18 m	1.2

far lower than 8 (expected value)

Further Analysis

- Number of instructions executed and L1 cache hits is proportional to runtime
- Need to understand what instructions are being executed
 - Need to use gprof to see where time is being spent in code
 - Lesson: use code profiling before memory profiling
- Found that hash key calculation takes significant time, reducing the improvements we expect from the hash table!
 - Required disabling the inlining of this function (for gprof)!
- But really, can the hash key calculation slow down expected improvements by so much?

Digging Even Further

- Looking at assembly for each insertion of a word, the number of load/store operations is as follows:
 - BST: 31 (5 initial load/stores + 2 loads per iteration * 13 (roughly, depth of tree traversal))
 - Hash Table: 13 (10 initial load/stores (including hash key calculation) + 2 loads per iteration * 1.5 (for linked list traversal))
 - $13/1.5 \sim = 8$, which is the extra amount of pointer traversals that we measured that the BST code does over the hash table code
- Ratio of load/stores of BST to HashTable = 31/13 = 2.38
 - Roughly the same as observed performance
- So initialization has a significant impact on speedup!