ECE 454

Computer Systems
Programming

Memory Hierarchy

Ashvin Goel, Ding Yuan
ECE Dept, University of Toronto

Content

* (Cache basics and organization

* Understanding/Profiling Memory

* Optimizing for caches (later)

* Loop reordering
 Tiling/blocking

Matrix Multiply

double af[4][4];
double b[4][4];
double c[4][4]; // assume already set to zero

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) { B
int i, j, k;
for (i = 0; 1 < n; i++)
for (j = 0; j < n; Jj++)
for (k = 0; k < n; k++)
// actual work
c[i][j] += a[i][k] * b[k][J];

How much performance improvement can we get by
optimizing this code?

MMM Pertformance

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s (giga floating point operations per second)
50

45
———

Best code

40
35
30
25
20
15

Triple loop

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
matrix size

Standard desktop computer
Both versions compiled using optimization flags
Both implementations have exactly the same # of operations (2n?)

What is going on?

Problem: Processor-Memory Bottleneck

L1 cache reference time = 1-4 ns
+ However, L1 cache size <= 64 KB

* Main memory reference time = 100 ns, 100X slower!
- However, memory size >= (GBs

* Some data:
* 1 ns=1/1,000,000,000 second
* For a 2.5 GHz CPU (my laptop), 1 cycle = 0.4 ns

Smaller,
faster,
costlier
per byte

Larger,
slower,
cheaper
per byte

Memory Hierarchy

CPU registers hold words retrieved

) from L1 cache
registers

on-chip L1 L1 cache holds cache lines
cache (SRAM)\ retrieved from L2 cache

on-chip L2 L2 cache holds cache lines
cache (SRAM) retrieved from main memory

main memory Main memory holds disk blocks
(DRAM) retrieved from local disks

local secondary storage Local disks hold files retrieved from
(local disks) disks on remote network servers

remote secondary storage
(tapes, distributed file systems, web servers)

Cache Basics
(Review Hopefully!)

General Cache Mechanics

Smaller, faster, more expensive
memory caches a subset of the blocks

Data is copied in block-sized
transfer units

0 1 2 3

4 5 6 7 Larger, slower, cheaper memory
viewed as partitioned into
fixed size “blocks”

8 9 10 11
12 13 14 15

General Cache Concepts: Hit

Request: 14 Data in block 14 is needed

Block 14 is in cache: Hit!

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

General Cache Concepts: Miss

Request: 12

Request: 12

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in block 12 is needed
Block 12 is not in cache: Miss!

Block 12 is fetched from
memory

Block 12 is stored in cache:

* Placement policy:
Chooses a set of blocks
where 12 goes in cache

*Replacement policy:
Determines which block in
set gets evicted (victim)

Cache Pertformance Metrics

Miss Rate

 Fraction of memory references not found in cache
* miss rate = misses / accesses = 1 — hit rate

* 3-10% for L1, small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
* Time to deliver a line in the cache to the processor

e Includes time to determine whether the line 1s in the cache
+ 1-4 clock cycles for L1, 5-20 clock cycles for L2

Miss Penalty

- Additional time required due to a miss

» Typically 50-400 cycles for main memory

Let’s Think About Those Numbers

Huge difference between a hit and a miss
» 100x between L1 and main memory

Performance with 99% hit rate doubles compared to 97%!
Say cache hit time = 1 cycle, miss penalty of 100 cycles
Average access time:

97% hits: 1 cycle + .03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

This 1s why miss (instead of hit) rate 1s used to think about
cache performance

* 3% 1s much worse than 1% muiss rate

Types of Cache Misses (1)

* Three types

e Cold (compulsory) miss
* Occurs on first access to a block

» Can’t do too much about these (except prefetching---more later)

Types of Cache Misses (2)

Conflict miss

* Placement policy of most hardware caches limit blocks to a small
subset (sometimes a singleton) of the available cache slots

* e.g., block 1 must be placed in slot (i mod 8)

+ Conflict misses occur when the cache is large enough, but multiple
data objects all map to the same slot

» e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

» Conflict misses are less of a problem today (more later)

Capacity miss
* Occurs when the set of active cache blocks 1s larger than the cache

* Working set is larger than cache size
 This is the most significant problem today

Why Caches Work

Locality: Programs tend to use data and instructions with
addresses equal or near to those they have used recently

Temporal locality: C)

* Recently referenced items are likely :-
to be referenced again in the near future

Spatial locality: (‘7

- Items with nearby addresses tend
to be referenced close together in time

Example: Locality?

sum =

for (i = 0; 1 < n; i++)
sum += a[i];

return sum;

e Data:

* Temporal: i, n, sum are referenced in each iteration

 Spatial: close by elements of array a accessed (in stride-1 pattern)

e Instructions:

* Temporal: cycle through loop instructions repeatedly
 Spatial: reference close by instructions in sequence

* Important to be able to assess the locality in your code!

Cache Organization

General Cache Organization
(S, E, B)

E = 2¢ blocks per set

A

N
set

block (or cache line)

SZZSSCtS< ecoo

cache size:
S x E x B data bytes

\Y% B-1

—

B = 2P bytes per cache block (the data)

valid bi

Direct Mapped Cache (E = 1)

* Direct mapped: one block per set

block size = 8 bytes
tag | |0]112]3]14]5]6]7

tag | |0]1]2]1314]5]617

S = 64 sets <

v| [tag | [0]11]2]31415]6]7

v| | tag | |0]1]213]4]5]6

Direct Mapped Cache

* Incoming memory address divided into

' : Add 32 bit
tag, index and offset bits ress (32 bits)

011...1 [0...01] 100

tag index offset

Tag 1s used for matching [31:9] [8:3] [2:0]
23 bits 6 bits 3 bits

Index determines set

Offset determines starting byte within block

block size = 8 bytes

tag | [oT1]2]3]4]5]6]7

tag 011]2]1314]5]617

tag 011]21314]5]617

tag 011§21314]5]617

Direct Mapped Cache:
Index Lookup

block size = 8 bytes
0]11213]14|5]16]7

index lookup
tag 4 |

011...1 10...01| 100

= 64
5= 64 sets < v] | tag | [Of1]2]3]4]5]6 tag index offset
31:9] [8:3] [2:0]
23 bits 6 bits 3 bits

vl | tag | |0]1]2]3]4]5]6

Direct Mapped Cache:
Match Tag

block size = 8 bytes
0]11213]14|5]16]7

check valid, match tag

tag 4
011...1 |0...01| 100

= 64
5= 64 sets < v] | tag | [Of1]2]3]4]5]6 tag index offset
[31:9] [8:3] [2:0]
23 bits 6 bits 3 bits

vl | tag | |0]1]2]3]4]5]6

Direct Mapped Cache:
Lookup Bytes

block size = 8 bytes
\ 0]1)2 7

lookup bytes (e.g., short int)

vl | tag | |0]1]2 7
S = 64 sets < 011...1 |0...01| 100

v] | tag | |0]1]2 / tag index offset
31:9] [8:3] [2:0]
23 bits 6 bits 3 bits

vl | tag | |0]1]2]3]4]5]6]7

\.

* Assume address being looked up 1s for a short int (2 bytes)

» If the tag doesn’t match, old block 1s evicted and replaced with
entire new block (1.e., 8 bytes are loaded from memory)

Direct Mapped Cache Example

64 sets

S =

\

long a[l100]; // each array element

a[0]:
al[l]:
a[32]:
af[64]:

block size = 8 bytes

tag

0

1

21314151617

tag

4

\Y

tag

0

1

213141516

\Y

tag

0

1

21314151617

Addr
Addr
Addr
Addr

0x0
0x8

0x100
0x200

Ob0O 000
Obl 000
Ob0O 100000 000
Obl 000000 000

is 8 bytes

cache size =
64 * 8 =512= 0x200

check valid, match tag

011...1

0...01] 100

tag
[31:9]

23 bits

(0,
(0,
(0,
(1,

index offset
[8:3] [2:0]
6 bits 3 bits

0) maps to Set 0
0) maps to Set 1
0) maps to Set 32 |
0) maps to Set: 0

Two-way Set Associative Cache
(E =2)

* 2-way set associative: two blocks per set

block size = 8 bytes block size = 8 bytes
0]1]121314]1516]7 0]1]21314]15]6]7

tag | 10]11]1213]14]15]6]17 tag | 10]111213]14]15]16]7

S = 32 sets <

\ tag 0]112]3]4]5]6 \4 tag 0]1]12]13]4]5]6

\s tag 0111213141516 \4 tag 0]1]1213]14]516

« Total cache size 1s same as 011...1]10...01| 100
direct mapped cache tag index offset
[31:8] [7:3] [2:0]

e But number of sets is halved 24 bits 5 bits 3 bits

Two-way Set Associative Cache
(E =2)

block size = 8 bytes block size = 8 bytes
0]1]121314]1516]7 0]1]21314]15]6]7

tag | 10]11]1213]14]15]6]17 tag | 10]111213]14]15]16]7

S = 32 sets <

\ tag 0]112]3]4]5]6 \4 tag 0]1]12]13]4]5]6

\s tag 0111213141516 \4 tag 0]1]1213]14]516

index lookup

011...1 |10...01] 100
tag index offset
[31:8] [7:3] [2:0]
24 bits 5 bits 3 bits

Two-way Set Associative Cache
(E =2)

block size = 8 bytes block size = 8 bytes

S = 32 sets <

check valid,
compare and match | 011...1 |0...01 | 100

with any one tag tag index offset
[31:8] [7:3] [2:0]
24 bits 5 bits 3 bits

Two-way Set Associative Cache
(E =2)

block size = 8 bytes

block size = 8 bytes

S = 32 sets <

If no match then one line in set 1s
selected for eviction and replacement
Replacement policies: random, least
recently used (LRU), ...

lookup bytes l_

011...1

0...01| 100

tag

131:8]
24 bits

index offset
[7:3] [2:0]
5 bits 3 bits

Two-way Cache Example

block size = 8 bytes

block size = 8 b

01112]3141516]7]

0112131415167

32 sets

011121314]51617]

011121314]51617]

tes cache size =
32*%2*8=512= 0x200

3 NNERAEEN

0112131415167

100

S

01112]3141516]7]

0112131415167

long a[l100]; // each array element

a[0]:
al[l]:

a[32]:
a[64]:

Addr 0x0
Addr 0x8
Addr 0x100
Addr 0x200

Ob0O 000
Obl 000
Obl 00000 000
Obl0 00000 000

index offset

[2:0]

5 bits 3 bits

011...1 {0...01
tag
31:8] [7:3]
24 bits
is 8 bytes
= (0, 0) maps to
= (0, 0) maps to
= (1, 0) maps to
= (1, 0) maps to

Set 0
Set 1
Set 0 |
Set» 0

Intel Core 17: Cache Associativity

L1/L2 cache have 64 B blocks
32 KB 256 KB

> 500 GB

L1

I-cache 1.2 1.3
32 KB unified shared

L1 cache cache

CPU | Reg D-cache

Latency: 4 cycles 10 cycles 60-100
cycles

8-way 8-way 16-way
associative! associative! associative!

Conflict misses are not as much 1ssue today,
Staying within on-chip cache capacity is key

10s of
millions
of cycles

What About Writes?

* Multiple copies of data exist in L1, L2, main memory, disk
* Need to ensure consistency

e What to do on a write-hit?

» Write-through (write to cache and immediately to memory)
» Write-back (defer write to memory until line 1s replaced)
* Need a dirty bit (cache line different from memory or not)

 What to do on a write-miss?
- Write-allocate (load into cache, update line in cache)
* Good if more reads and writes to the location follow
* No-write-allocate (write immediately to memory)

* For streaming writes (write once and then no reads in the near future),

What About Writes?

Multiple copies of data exist in L1, L2, main memory, disk

What to do on a write-hit?
Write-through (write immediately to memory)

Write-back (defer write to memory until replacement of line)

* Need a dirty bit (cache line different from memory or not)

What to do on a write-miss?

Wirite-allocate (load into cache, update line in cache)
* Good if more reads and writes to the location follow
No-write-allocate (write immediately to memory)

* For streaming writes (write once and then no reads in the near future)

Typically:
* Write-through + No-write-allocate
- Write-back + Write-allocate

Understanding/Profiling

Memory

UG Machines

Processor Chip

1 CPU — Intel Core i7-4790, 3.6 GHz, with 4 HT cores

32KB, 8-way L1 data cache
Run 1scpu on 32KB, 8-way L1 inst cache

UG machine shows: 256KB, 8-way L2 cache

8M, 16-way L3 cache

Get Memory Hierarchy Details: 1stopo

* Running 1stopo on UG machine shows:

Machine (16GB)

Package L#0 + L3 L#0 (8192KB)

L2 L#0 (256KB) +
L2 L#1 (256KB) +
L2 L#2 (256KB) +
L2 L#3 (256KB) +

4 cores per CPU

L1d L#0 (32KB)
L1d L#1 (32KB)
L1d L#2 (32KB)
L1d L#3 (32KB)

+
+
+
+

L1i
L1i
L1i
L1i

"””__,,——-Shared L3

L#0 (32KB)
L#1 (32KB)
L#2 (32KB)
L#3 (32KB)

PU L#0 (P#0)
PU L#1 (P#1)
PU L#2 (P#2)
PU L#3 (P#3)

Get More Cache Details: L1 dcache

Is /sys/devices/system/cpu/cpul/cache/index0
coherency_line_size: 64 // 64B cache lines

level: 1 // L1 cache
number_of_sets: 64

physical_line_partition

shared_cpu_list: 0 // shared by cpu(Q only
shared_cpu_map

size: 32K

type: data // data cache
ways_of_associativity: 8 // 8-way set associative

Get More Cache Details: 1.2

Is /sys/devices/system/cpu/cpul/cache/index2
coherency_line_size: 64 // 64B cache lines

level: 2 // L2 cache

number_of_sets: 512

physical_line_partition

shared_cpu_list

shared_cpu_map

size: 256K

type: Unified // unified cache, means instructions and data
ways_of_associativity: 8 // 8-way set associative

Access Hardware Counters: perf

The perf tool allows you to access performance counters

To measure L1 data cache load misses for program pi, run:
perf stat -e Ll-dcache-load-misses pi
7803 Ll-dcache-load-misses # 0.000 M/sec
To see a list of all events you can measure:
perf list

Note: you can measure multiple events at once

BST and Hash Table Comparison

A binary search tree (BST) and a hash table store 100 million
items (~2"26)

How much faster will a hash table be versus BST?
« BST: Number of pointer traversals: log(226) = ~26

* However, the number is smaller for internal nodes
» Hash Table: Number of pointer traversals: ~2

* One to access hash table entry

* One to access data item

* Based on running code, BST traverses pointers 8 times more than
hash table (expected 1s 26/2 = 13)

* So we expect hash table to be roughly 8 times faster ...

BST and Hash Table Comparison

* A binary search tree (BST) and a hash table store 100 million
items (~2"26)

e How much faster will a hash table be versus BST?

Time (seconds)

Word Count Run Time vs File Size

'BST ———
227 HashTable
220 HashTable

File Size (log scale)

Average word len ~= 5,
when file size = 2% (~500M),
number of unique words is ~100M

40

Analysis

While the hash table beats BST, the performance improvement
1s not what 1s expected from analysis of data accesses (8x
improvement)

* Hash table performance is only 2.5-2.8x better

Why 1s that the case? Let’s look at it in more detail.

Perf on BST and HashTable

* Initial hypothesis: memory hierarchy 1s the culprit, so run perf
E.g., Does hash table have a lot more LLC accesses than BST?

perf stat -e instructions -e Ll-dcache-loads -e L1-
dcache-misses -e LLC-loads -e LLC-misses {bst,hash}-

program

Time

BST
13.11 s

HashTable
4.77 s

Ratio
2.75

Instructions

50Db

21b

2.4

L1 hits (4 cycles)

13000 m

4500 m

2.9

L1 misses (10 cycles)

1000 m

214 m

4.7

LLC loads (40-75 cycles)

333 m

101 m

3.3

LLC misses (60-100 cycles)

21 m

18 m

1.2

far lower than 8
(expected value)

Further Analysis

Number of instructions executed and LL1 cache hits is
proportional to runtime

Need to understand what instructions are being executed
* Need to use gprof to see where time 1s being spent in code
» Lesson: use code profiling before memory profiling

Found that hash key calculation takes significant time,
reducing the improvements we expect from the hash table!

* Required disabling the inlining of this function (for gprof)!

But really, can the hash key calculation slow down expected
improvements by so much?

Digging Even Further

Looking at assembly for each insertion of a word, the number
of load/store operations 1s as follows:

BST: 31 (5 initial load/stores + 2 loads per iteration * 13 (roughly,
depth of tree traversal))

Hash Table: 13 (10 initial load/stores (including hash key
calculation) + 2 loads per iteration * 1.5 (for linked list traversal))

* 13/1.5 ~= 8, which is the extra amount of pointer traversals that we
measured that the BST code does over the hash table code

Ratio of load/stores of BST to HashTable = 31/13 = 2.38

Roughly the same as observed performance

So initialization has a significant impact on speedup!

	Slide 1: ECE 454 Computer Systems Programming Memory Hierarchy
	Slide 2: Content
	Slide 3: Matrix Multiply
	Slide 4: MMM Performance
	Slide 5: Problem: Processor-Memory Bottleneck
	Slide 6: Memory Hierarchy
	Slide 7: Cache Basics (Review Hopefully!)
	Slide 8: General Cache Mechanics
	Slide 9: General Cache Concepts: Hit
	Slide 10: General Cache Concepts: Miss
	Slide 11: Cache Performance Metrics
	Slide 12: Let’s Think About Those Numbers
	Slide 13: Types of Cache Misses (1)
	Slide 14: Types of Cache Misses (2)
	Slide 15: Why Caches Work
	Slide 16: Example: Locality?
	Slide 17: Cache Organization
	Slide 18: General Cache Organization (S, E, B)
	Slide 19: Direct Mapped Cache (E = 1)
	Slide 20: Direct Mapped Cache
	Slide 21: Direct Mapped Cache: Index Lookup
	Slide 22: Direct Mapped Cache: Match Tag
	Slide 23: Direct Mapped Cache: Lookup Bytes
	Slide 24: Direct Mapped Cache Example
	Slide 25: Two-way Set Associative Cache (E = 2)
	Slide 26: Two-way Set Associative Cache (E = 2)
	Slide 27: Two-way Set Associative Cache (E = 2)
	Slide 28: Two-way Set Associative Cache (E = 2)
	Slide 29: Two-way Cache Example
	Slide 30: Intel Core i7: Cache Associativity
	Slide 31: What About Writes?
	Slide 32: What About Writes?
	Slide 33: Understanding/Profiling Memory
	Slide 34: UG Machines
	Slide 35: Get Memory Hierarchy Details: lstopo
	Slide 36: Get More Cache Details: L1 dcache
	Slide 37: Get More Cache Details: L2
	Slide 38: Access Hardware Counters: perf
	Slide 39: BST and Hash Table Comparison
	Slide 40: BST and Hash Table Comparison
	Slide 41: Analysis
	Slide 42: Perf on BST and HashTable
	Slide 43: Further Analysis
	Slide 44: Digging Even Further

