
Ashvin Goel, Ding Yuan

ECE Dept, University of Toronto

ECE 454

Computer Systems

Programming

Memory Hierarchy

Content

• Cache basics and organization

• Understanding/Profiling Memory

• Optimizing for caches (later)

• Loop reordering

• Tiling/blocking

2

Matrix Multiply

3

double a[4][4];
double b[4][4];
double c[4][4]; // assume already set to zero

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 // actual work
 c[i][j] += a[i][k] * b[k][j];
}

How much performance improvement can we get by

optimizing this code?

A 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

B 17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

c[0][0] = 1 * 17 +
 2 * 21 +
 3 * 25 +
 4 * 29

MMM Performance

• Standard desktop computer

• Both versions compiled using optimization flags

• Both implementations have exactly the same # of operations (2n3)

• What is going on? 4

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s (giga floating point operations per second)

160x

Triple loop

Best code

Problem: Processor-Memory Bottleneck

• L1 cache reference time = 1-4 ns

• However, L1 cache size <= 64 KB

• Main memory reference time = 100 ns, 100X slower!

• However, memory size >= GBs

• Some data:

• 1 ns = 1/1,000,000,000 second

• For a 2.5 GHz CPU (my laptop), 1 cycle = 0.4 ns

5

Memory Hierarchy

6

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, web servers)

Local disks hold files retrieved from
disks on remote network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines
retrieved from L2 cache

CPU registers hold words retrieved
from L1 cache

L2 cache holds cache lines
retrieved from main memory

Smaller,
faster,
costlier
per byte

Cache Basics

(Review Hopefully!)

7

General Cache Mechanics

8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Larger, slower, cheaper memory
viewed as partitioned into
fixed size “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of the blocks

4

4

4

10

10

10

General Cache Concepts: Hit

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block 14 is neededRequest: 14

14 Block 14 is in cache: Hit!

General Cache Concepts: Miss

10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block 12 is needed

Request: 12
Block 12 is not in cache: Miss!

Block 12 is fetched from
memory

Request: 12

12

12

12

Block 12 is stored in cache:

•Placement policy:
Chooses a set of blocks
where 12 goes in cache

•Replacement policy:
Determines which block in
set gets evicted (victim)

Cache Performance Metrics

• Miss Rate

• Fraction of memory references not found in cache

• miss rate = misses / accesses = 1 – hit rate

• 3-10% for L1, small (e.g., < 1%) for L2, depending on size, etc.

• Hit Time

• Time to deliver a line in the cache to the processor

• Includes time to determine whether the line is in the cache

• 1-4 clock cycles for L1, 5-20 clock cycles for L2

• Miss Penalty

• Additional time required due to a miss

• Typically 50-400 cycles for main memory 11

Let’s Think About Those Numbers

• Huge difference between a hit and a miss

• 100x between L1 and main memory

• Performance with 99% hit rate doubles compared to 97%!

• Say cache hit time = 1 cycle, miss penalty of 100 cycles

• Average access time:

• 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

• 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

• This is why miss (instead of hit) rate is used to think about

cache performance

• 3% is much worse than 1% miss rate 12

Types of Cache Misses (1)

• Three types

• Cold (compulsory) miss

• Occurs on first access to a block

• Can’t do too much about these (except prefetching---more later)

13

Types of Cache Misses (2)

• Conflict miss

• Placement policy of most hardware caches limit blocks to a small

subset (sometimes a singleton) of the available cache slots

• e.g., block i must be placed in slot (i mod 8)

• Conflict misses occur when the cache is large enough, but multiple

data objects all map to the same slot

• e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

• Conflict misses are less of a problem today (more later)

• Capacity miss

• Occurs when the set of active cache blocks is larger than the cache

• Working set is larger than cache size

• This is the most significant problem today 14

Why Caches Work

• Locality: Programs tend to use data and instructions with

addresses equal or near to those they have used recently

• Temporal locality:

• Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:

• Items with nearby addresses tend

to be referenced close together in time
15

block

block

Example: Locality?

• Data:

• Temporal: i, n, sum are referenced in each iteration

• Spatial: close by elements of array a accessed (in stride-1 pattern)

• Instructions:

• Temporal: cycle through loop instructions repeatedly

• Spatial: reference close by instructions in sequence

• Important to be able to assess the locality in your code! 16

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Cache Organization

17

General Cache Organization

(S, E, B)

18

E = 2e blocks per set

S = 2s sets

set

block (or cache line)

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

cache size:

S x E x B data bytes

Direct Mapped Cache (E = 1)

• Direct mapped: one block per set

19

S = 64 sets
0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

Direct Mapped Cache

• Incoming memory address divided into

tag, index and offset bits

• Index determines set

• Tag is used for matching

• Offset determines starting byte within block

20

011…1 0…01 100

Address (32 bits)

offset

[2:0]

3 bits

index

[8:3]

6 bits

tag

[31:9]

23 bits

S = 64 sets
0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

Direct Mapped Cache:

Index Lookup

21

S = 64 sets
0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

index lookup

011…1 0…01 100

offset

[2:0]

3 bits

index

[8:3]

6 bits

tag

[31:9]

23 bits

Direct Mapped Cache:

Match Tag

22

S = 64 sets
0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

011…1 0…01 100

check valid, match tag

offset

[2:0]

3 bits

index

[8:3]

6 bits

tag

[31:9]

23 bits

Direct Mapped Cache:

Lookup Bytes

• Assume address being looked up is for a short int (2 bytes)

• If the tag doesn’t match, old block is evicted and replaced with

entire new block (i.e., 8 bytes are loaded from memory) 23

S = 64 sets
0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

011…1 0…01 100

lookup bytes (e.g., short int)

offset

[2:0]

3 bits

index

[8:3]

6 bits

tag

[31:9]

23 bits

Direct Mapped Cache Example

24

S
 =

 6
4
 s

et
s

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

011…1 0…01 100

check valid, match tag

offset

[2:0]

3 bits

index

[8:3]

6 bits

tag

[31:9]

23 bits

long a[100]; // each array element is 8 bytes

cache size =

64 * 8 = 512 = 0x200

a[64]: Addr 0x200 = 0b1 000000 000 = (1, 0, 0) maps to Set 0

a[0]: Addr 0x0 = 0b0 000 = (0, 0, 0) maps to Set 0

a[1]: Addr 0x8 = 0b1 000 = (0, 1, 0) maps to Set 1

a[32]: Addr 0x100 = 0b0 100000 000 = (0, 32, 0) maps to Set 32

Two-way Set Associative Cache

(E = 2)

• 2-way set associative: two blocks per set

S = 32 sets
0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

011…1 0…01 100

offset

[2:0]

3 bits

index

[7:3]

5 bits

tag

[31:8]

24 bits
25

• Total cache size is same as

direct mapped cache

• But number of sets is halved

Two-way Set Associative Cache

(E = 2)

26

S = 32 sets
0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

011…1 0…01 100

offset

[2:0]

3 bits

index

[7:3]

5 bits

tag

[31:8]

24 bits

index lookup

Two-way Set Associative Cache

(E = 2)

27

S = 32 sets
0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

011…1 0…01 100

offset

[2:0]

3 bits

index

[7:3]

5 bits

tag

[31:8]

24 bits

check valid,

compare and match

with any one tag

tag

Two-way Set Associative Cache

(E = 2)

28

S = 32 sets
0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

011…1 0…01 100

offset

[2:0]

3 bits

index

[7:3]

5 bits

tag

[31:8]

24 bits

lookup bytes

tag

• If no match then one line in set is

selected for eviction and replacement

• Replacement policies: random, least

recently used (LRU), …

Two-way Cache Example

29

S
 =

 3
2
 s

et
s

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

block size = 8 bytes

011…1 0…01 100

offset

[2:0]

3 bits

index

[7:3]

5 bits

tag

[31:8]

24 bits

cache size =

32 * 2 * 8 = 512 = 0x200

29

long a[100]; // each array element is 8 bytes

a[64]: Addr 0x200 = 0b10 00000 000 = (1, 0, 0) maps to Set 0

a[0]: Addr 0x0 = 0b0 000 = (0, 0, 0) maps to Set 0

a[1]: Addr 0x8 = 0b1 000 = (0, 1, 0) maps to Set 1

a[32]: Addr 0x100 = 0b1 00000 000 = (1, 0, 0) maps to Set 0

Intel Core i7: Cache Associativity

30

Latency: 60-100

cycles

10 cycles4 cycles 10s of

millions

of cycles

Disk

Main

Memo

ry

L2

unified

cache
CPU Reg

256 KB 16 GB > 500 GB

L1/L2 cache have 64 B blocks

8-way

associative!

Conflict misses are not as much issue today,

Staying within on-chip cache capacity is key

L1

I-cache

L1

D-cache

32 KB

8-way

associative!

32 KB

L3

shared

cache

8MB

40-75

cycles

16-way

associative!

What About Writes?

• Multiple copies of data exist in L1, L2, main memory, disk

• Need to ensure consistency

• What to do on a write-hit?

• Write-through (write to cache and immediately to memory)

• Write-back (defer write to memory until line is replaced)

• Need a dirty bit (cache line different from memory or not)

• What to do on a write-miss?

• Write-allocate (load into cache, update line in cache)

• Good if more reads and writes to the location follow

• No-write-allocate (write immediately to memory)

• For streaming writes (write once and then no reads in the near future)31

What About Writes?

• Multiple copies of data exist in L1, L2, main memory, disk

• What to do on a write-hit?

• Write-through (write immediately to memory)

• Write-back (defer write to memory until replacement of line)

• Need a dirty bit (cache line different from memory or not)

• What to do on a write-miss?

• Write-allocate (load into cache, update line in cache)

• Good if more reads and writes to the location follow

• No-write-allocate (write immediately to memory)

• For streaming writes (write once and then no reads in the near future)

• Typically:

• Write-through + No-write-allocate

• Write-back + Write-allocate 32

Understanding/Profiling

Memory

33

UG Machines

34

Processor Chip

L3 Cache

L2
Cache

L1 inst
Cache

L1 data
Cache

C1

L2
Cache

L1 inst
Cache

L1 data
Cache

C1

L2
Cache

L1 inst
Cache

L1 data
Cache

C1

L2
Cache

L1 inst
Cache

L1 data
Cache

C1

1 CPU – Intel Core i7-4790, 3.6 GHz, with 4 HT cores

32KB, 8-way L1 data cache
32KB, 8-way L1 inst cache

256KB, 8-way L2 cache
8M, 16-way L3 cache

Run lscpu on

UG machine shows:

Get Memory Hierarchy Details: lstopo

• Running lstopo on UG machine shows:

35

Machine (16GB)
 Package L#0 + L3 L#0 (8192KB)
 L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0 + PU L#0 (P#0)
 L2 L#1 (256KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1 + PU L#1 (P#1)
 L2 L#2 (256KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2 + PU L#2 (P#2)
 L2 L#3 (256KB) + L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3 + PU L#3 (P#3)

4 cores per CPU

Shared L3

Get More Cache Details: L1 dcache

• ls /sys/devices/system/cpu/cpu0/cache/index0

coherency_line_size: 64 // 64B cache lines

level: 1 // L1 cache

number_of_sets: 64

physical_line_partition

shared_cpu_list: 0 // shared by cpu0 only

shared_cpu_map

size: 32K

type: data // data cache

ways_of_associativity: 8 // 8-way set associative

36

Get More Cache Details: L2

• ls /sys/devices/system/cpu/cpu0/cache/index2

coherency_line_size: 64 // 64B cache lines

level: 2 // L2 cache

number_of_sets: 512

physical_line_partition

shared_cpu_list

shared_cpu_map

size: 256K

type: Unified // unified cache, means instructions and data

ways_of_associativity: 8 // 8-way set associative

37

Access Hardware Counters: perf

• The perf tool allows you to access performance counters

•

• To measure L1 data cache load misses for program pi, run:

 perf stat -e L1-dcache-load-misses pi

 7803 L1-dcache-load-misses # 0.000 M/sec

• To see a list of all events you can measure:

 perf list

• Note: you can measure multiple events at once
38

BST and Hash Table Comparison

• A binary search tree (BST) and a hash table store 100 million

items (~2^26)

• How much faster will a hash table be versus BST?

• BST: Number of pointer traversals: log(226) = ~26

• However, the number is smaller for internal nodes

• Hash Table: Number of pointer traversals: ~2

• One to access hash table entry

• One to access data item

• Based on running code, BST traverses pointers 8 times more than

hash table (expected is 26/2 = 13)

• So we expect hash table to be roughly 8 times faster …

39

BST and Hash Table Comparison

• A binary search tree (BST) and a hash table store 100 million

items (~2^26)

• How much faster will a hash table be versus BST?

40

Average word len ~= 5,

when file size = 229 (~500M),

number of unique words is ~100M

Analysis

• While the hash table beats BST, the performance improvement

is not what is expected from analysis of data accesses (8x

improvement)

• Hash table performance is only 2.5-2.8x better

• Why is that the case? Let’s look at it in more detail.

41

Perf on BST and HashTable

• Initial hypothesis: memory hierarchy is the culprit, so run perf

• E.g., Does hash table have a lot more LLC accesses than BST?

perf stat -e instructions -e L1-dcache-loads -e L1-
dcache-misses -e LLC-loads -e LLC-misses {bst,hash}-
program

42

BST HashTable Ratio

Time 13.11 s 4.77 s 2.75

Instructions 50 b 21 b 2.4

L1 hits (4 cycles) 13000 m 4500 m 2.9

L1 misses (10 cycles) 1000 m 214 m 4.7

LLC loads (40-75 cycles) 333 m 101 m 3.3

LLC misses (60-100 cycles) 21 m 18 m 1.2

far lower than 8

(expected value)

Further Analysis

• Number of instructions executed and L1 cache hits is

proportional to runtime

• Need to understand what instructions are being executed

• Need to use gprof to see where time is being spent in code

• Lesson: use code profiling before memory profiling

• Found that hash key calculation takes significant time,

reducing the improvements we expect from the hash table!

• Required disabling the inlining of this function (for gprof)!

• But really, can the hash key calculation slow down expected

improvements by so much?
43

Digging Even Further

• Looking at assembly for each insertion of a word, the number

of load/store operations is as follows:

• BST: 31 (5 initial load/stores + 2 loads per iteration * 13 (roughly,

depth of tree traversal))

• Hash Table: 13 (10 initial load/stores (including hash key

calculation) + 2 loads per iteration * 1.5 (for linked list traversal))

• 13/1.5 ~= 8, which is the extra amount of pointer traversals that we

measured that the BST code does over the hash table code

• Ratio of load/stores of BST to HashTable = 31/13 = 2.38

• Roughly the same as observed performance

• So initialization has a significant impact on speedup!
44

	Slide 1: ECE 454 Computer Systems Programming Memory Hierarchy
	Slide 2: Content
	Slide 3: Matrix Multiply
	Slide 4: MMM Performance
	Slide 5: Problem: Processor-Memory Bottleneck
	Slide 6: Memory Hierarchy
	Slide 7: Cache Basics (Review Hopefully!)
	Slide 8: General Cache Mechanics
	Slide 9: General Cache Concepts: Hit
	Slide 10: General Cache Concepts: Miss
	Slide 11: Cache Performance Metrics
	Slide 12: Let’s Think About Those Numbers
	Slide 13: Types of Cache Misses (1)
	Slide 14: Types of Cache Misses (2)
	Slide 15: Why Caches Work
	Slide 16: Example: Locality?
	Slide 17: Cache Organization
	Slide 18: General Cache Organization (S, E, B)
	Slide 19: Direct Mapped Cache (E = 1)
	Slide 20: Direct Mapped Cache
	Slide 21: Direct Mapped Cache: Index Lookup
	Slide 22: Direct Mapped Cache: Match Tag
	Slide 23: Direct Mapped Cache: Lookup Bytes
	Slide 24: Direct Mapped Cache Example
	Slide 25: Two-way Set Associative Cache (E = 2)
	Slide 26: Two-way Set Associative Cache (E = 2)
	Slide 27: Two-way Set Associative Cache (E = 2)
	Slide 28: Two-way Set Associative Cache (E = 2)
	Slide 29: Two-way Cache Example
	Slide 30: Intel Core i7: Cache Associativity
	Slide 31: What About Writes?
	Slide 32: What About Writes?
	Slide 33: Understanding/Profiling Memory
	Slide 34: UG Machines
	Slide 35: Get Memory Hierarchy Details: lstopo
	Slide 36: Get More Cache Details: L1 dcache
	Slide 37: Get More Cache Details: L2
	Slide 38: Access Hardware Counters: perf
	Slide 39: BST and Hash Table Comparison
	Slide 40: BST and Hash Table Comparison
	Slide 41: Analysis
	Slide 42: Perf on BST and HashTable
	Slide 43: Further Analysis
	Slide 44: Digging Even Further

