ECE 454

Computer Systems
Programming

Virtual Memory and Prefetching

Ashvin Goel, Ding Yuan
ECE Dept, University of Toronto

Contents

» Virtual Memory (review hopefully)

* Prefetching

[A32 Linux Memory Layout

Text

: : 168

- Read-only o

iy

Data

+ Statically allocated data 17
 E.g., arrays & strings in code Memory Mapping Reglon 6x40000000

368 <
Y]

* Dynamically allocated storage Heap

* malloc(), calloc(), new() BSS segment
Data Segment

Stack Text Segment (ELF) @x088048000
o

Heap

i e
* Local variables, parameters, return values

Virtual Memory

Programs access data and instructions using virtual memory
addresses

* Conceptually very large array of bytes

« Each byte has its own address

» 4GB for 32 bit architectures, 16EB (exabytes) for 64 bit architectures
* System provides private address space to each process

Memory allocation
* Need to decide where different program objects should be stored

* Performed by a combination of compiler and run-time system

But why virtual memory? Why not physical memory?

A System Using Physical Addressing

Main memory
Q:
1:
Physical address 2:

M-1:

Data word

* Used in “simple” embedded microcontrollers

» Introduces several problems for larger, multi-process systems

Problem 1: How Does Everything Fit?

64-bit addresses: Physical main memory
16 Exabytes (16M TB) in BIG server: 1TB

And there are many processes ...

Problem 2: Memory Management

Process
Process
Process

Process

text
data
heap
stack

What goes
where?

mapped regions

Physical main memory

Problem 3: Portability

Machine 1 Machine 2
Physical main memory Physical main memory

programA:
stack
heap what goes What goes
.Text where where?
.data

Problem 4: Protection

Physical main memory

o >—

Process j

Problem 4: Sharing

Physical main memory

o >—

Process j

Solution: Add a Level Of Indirection

Virtual memory

Process 1 Physical

memory

Virtual memory

Process n

» Each process gets its own private memory space

* Solves all the previous problems

A System Using Virtual Addressing

Main memory

Q:
CPU Chip Virtual Physical 1:

address address

o e

Data word

« MMU = Memory Management Unit

Virtual Memory Turns
Main Memory 1nto a Cache

However, miss penalty 1s large:
DRAM latency: ~100ns
Disk latency: 10ms, 100,000x slower than DRAM
SATA SSD latency: 70us, 700x slower than DRAM

Recent Intel Optane NVMe SSD latency: 2.8us, 28x slower
* For 4KB read

DRAM-Cache Design

* Use paging
* Map virtual to physical address at fixed-size page granularity
» Use large page size to reduce mapping information
- Typically, 4KB page size, matches disk block access granularity

« Use fully associative cache
» Any virtual page can be mapped to any physical frame
* Needs sophisticated mapping function
* E.g., multi-level page table for the mapping information

* Needs sophisticated replacement algorithms
* E.g., LRU, clock/second chance

» Use write-back rather than write-through

MMU Needs A Large Table of
Translations

Main memory

0:

CPU Chip Virtual Physical 1:
address address

Page Table

Data word

« MMU keeps mapping of VAs -> PAs in page tables

Page Table 1s Stored in Memory

Main memory

PTE

i t
CPU Chip © request e
o VA QPTE Table
-1
‘ O ra

© pata
1) Processor sends virtual address (VA) to MMU
2-3) MMU requests page table entry (PTE) from page table
4) MMU sends physical address (PA) to cache/memory
5) Cache/memory sends data word to processor

Page Not Mapped in
Physical Memory

Main memory

PTE
CPU Chip ﬁ’r‘equest>

Page

<%

CPU ©rTE
invalid

e Page fault

fault handler
1) Processor sends virtual address (VA) to MMU

2-3) MMU requests PTE from page table, but PTE 1s invalid

4) PTE absent so MMU triggers page fault exception

5) Handler chooses victim page (and, if page is dirty, pages it out to disk)
6) Handler pages in new page and updates PTE 1n memory

7) Handler returns to original process, restarting faulting instruction

Speeding up Translation with a TLB

Page table entries (PTEs) are cached in L1 (like any other
memory word)

* But PTEs may be evicted by other data references
* Even on a cache hit, PTE access requires a 1-cycle delay
* Doubles the cost of accessing physical addresses from cache

Solution: Translation Lookaside Buffer (TLB)
* Small hardware cache in MMU
* Caches PTEs for a small number of pages (e.g., 256 entries)

CPU Chip

@ va

TLB Hit

TLB

O va ©rTE

Main memory

Page
Table

© Dpata

A TLB hit avoids access to page table 1n memory

TLB Miss

LB [

Invalid X
9 VA e Maln memory

CPU Chip

Page
0 VA Table

e A TLB miss incurs additional memory access to read PTE

How to Program for Virtual Memory

Programs tend to access a set of active virtual pages at any
point 1n time called the working set

Programs with better locality will have smaller working sets

If (working set size) > main mem size:

* Pages are swapped (copied) in and out continuously
 (Called thrashing, leads to performance meltdown

If (# working set pages) > # TLB entries:
» TLB misses occur
> Not as bad as page thrashing, but still worth avoiding

More on TLBs

Assume a 256-entry TLB, 4kB pages
* 256*4kB = 1MB: can only have TLB hits for IMB of data
 This 1s called the TLB reach, 1.e., amount of memory TLB covers

Typical L2 cache 1s SMB
* Hence can’t have TLB hits for all L2
* Possibly consider TLB-size before L2 size

Real CPUs have second-level TLBs
* This 1s getting complicated to reason about!
* Need to experiment with varying sizes, €.g., find best tile size

Prefetching

Prefetching

ORIGINAL CODE: CODE WITH PREFETCHING:

instl instl
inst2 prefetch X
inst3 inst2
inst4 inst3
load X (misses cache) inst4
load X (hits cache)

inst5 (load value is ready)

inst5 (must wait for load value) inst6
inst6

Cache miss latency

Cache miss latency

* Basic idea:
 Predict data that might be needed soon (might be wrong)
* Initiate an early request for that data (a load-to-cache)
- If effective, helps tolerate latency to memory

Prefetching 1s Difficult

Prefetching is effective only if all of these are true:
* There 1s spare memory bandwidth
* Otherwise prefetching can cause bandwidth bottleneck
Prefetching 1s accurate
* Only useful if the prefetched data will be used soon
Prefetching 1s timely
 I.e., prefetch the right data, but not enough in advance
Prefetched data doesn’t displace other in-use data
* E.g., prefetched data should not replace a cache block about to be used
Latency hidden by prefetching outweighs its cost
» Cost of lots of useless prefetched data can be significant

Ineffective prefetching can hurt performance!

Hardware Prefetching

* A simple hardware prefetcher:
* When one cache block 1s accessed, prefetch the adjacent block
- I.e., behaves like cache blocks are twice as big
* Helps with unaligned instructions (even when data 1s aligned)

* A more complex hardware prefetcher:
» Can recognize a “stream”: addresses separated by a “stride”
- Egl: 0x1, 0x2, 0x3, 0x4, 0x5, 0x6... (stride = 0x1)
+ Eg2: 0x100, 0x300, 0x500, 0x700, 0x900... (stride = 0x200)

* Prefetch predicted future addresses
* Eg., cur_addr + stride, cur_addr + 2*stride, cur_addr + 3*stride, ...

Core 7 Hardware Prefetching

L2->
L1 inst prefetching
32 KB 1 256 KB > 500 GB

L1

I-cache
L2

32 KB unified
cache

CPU | Reg L1

D-cache
Latency: 4 cycles 10 ctcles 40-75 60-100 10s of

cycles cy¢les millions
of cycles

L2->
L1 data prefetching

Mem ->

. L3 data prefetchi
Includes next-block prefetching ata prefetching

Includes multiple streaming prefetchers
Prefetching performed within a page boundary
Details are kept vague/secret

Software Prefetching

Hardware provides special prefetch instructions:

- Eg., intel’s prefetchnta instruction, _ mm_prefetch() intrinsic

Compiler or programmer can insert them in code

* Can PF (non-strided) patterns that hardware wouldn’t recognize

void void

process_list(list t *head){ process_list PF(list t *head){
list t *p = head; list t *p = head;
while (p){ list_t *q;

process(p);
p = p->next; while (p){
} q = p->next;
}

prefetch(q);
Assume process() process(p);

runs long enough to) P =4;
hide prefetch latency }

Summary:
Optimizing for a Modern

Memory Hierarchy

Memory Optimization: Summary

 (Caches

» Conflict misses: less of a concern due to high-associativity
* Modern CPUs have 8-way L1/L2, 16-way L3

* Cache capacity: keep working set within on-chip cache capacity
* Focus on either L1 or L2 depending on required working-set size

* Virtual memory

- Page Misses: keep working set within main memory capacity
- TLB Misses: keep working set #pages < TLB #entries

* Prefetching

» Arrange data structures so access patterns are sequential/strided
» Use compiler or manually-inserted prefetch instructions 30

	Slide 1: ECE 454 Computer Systems Programming Virtual Memory and Prefetching
	Slide 2: Contents
	Slide 3: IA32 Linux Memory Layout
	Slide 4: Virtual Memory
	Slide 5: A System Using Physical Addressing
	Slide 6: Problem 1: How Does Everything Fit?
	Slide 7: Problem 2: Memory Management
	Slide 8: Problem 3: Portability
	Slide 9: Problem 4: Protection
	Slide 10: Problem 4: Sharing
	Slide 11: Solution: Add a Level Of Indirection
	Slide 12: A System Using Virtual Addressing
	Slide 13: Virtual Memory Turns Main Memory into a Cache
	Slide 14: DRAM-Cache Design
	Slide 15: MMU Needs A Large Table of Translations
	Slide 16: Page Table is Stored in Memory
	Slide 17: Page Not Mapped in Physical Memory
	Slide 18: Speeding up Translation with a TLB
	Slide 19: TLB Hit
	Slide 20: TLB Miss
	Slide 21: How to Program for Virtual Memory
	Slide 22: More on TLBs
	Slide 23: Prefetching
	Slide 24: Prefetching
	Slide 25: Prefetching is Difficult
	Slide 26: Hardware Prefetching
	Slide 27: Core 7 Hardware Prefetching
	Slide 28: Software Prefetching
	Slide 29: Summary: Optimizing for a Modern Memory Hierarchy
	Slide 30: Memory Optimization: Summary

