
Ashvin Goel, Ding Yuan

ECE Dept, University of Toronto

ECE 454

Computer Systems

Programming

Virtual Memory and Prefetching

Contents

• Virtual Memory (review hopefully)

• Prefetching

2

IA32 Linux Memory Layout

• Text

• Executable instructions

• Read-only

• Data

• Statically allocated data

• E.g., arrays & strings in code

• Heap

• Dynamically allocated storage

• malloc(), calloc(), new()

• Stack

• Local variables, parameters, return values
3

Virtual Memory

• Programs access data and instructions using virtual memory

addresses

• Conceptually very large array of bytes

• Each byte has its own address

• 4GB for 32 bit architectures, 16EB (exabytes) for 64 bit architectures

• System provides private address space to each process

• Memory allocation

• Need to decide where different program objects should be stored

• Performed by a combination of compiler and run-time system

• But why virtual memory? Why not physical memory?

4

A System Using Physical Addressing

• Used in “simple” embedded microcontrollers

• Introduces several problems for larger, multi-process systems
5

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: .
.
.

Problem 1: How Does Everything Fit?

6

64-bit addresses:
16 Exabytes (16M TB)

Physical main memory
in BIG server: 1TB

?

And there are many processes ….

Problem 2: Memory Management

7

Physical main memory

What goes
where?

text
data
heap
stack
…
mapped regions

Process 1
Process 2
Process 3
…
Process n

x

Problem 3: Portability

8

Machine 1
Physical main memory

What goes
where

programA:
stack
heap
.text
.data

…

Machine 2
Physical main memory

What goes
where?

Problem 4: Protection

9

Physical main memory

Process i

Process j

Problem 4: Sharing

10

Physical main memory

Process i

Process j

Solution: Add a Level Of Indirection

• Each process gets its own private memory space

• Solves all the previous problems
11

Physical
memory

Virtual memory

Virtual memory

Process 1

Process n

mapping

A System Using Virtual Addressing

• MMU = Memory Management Unit
12

CPU Chip

M-1:

Main memory

Physical
address
(PA)

.
.
.

CPU

0:
1:
2:
3:
4:
5:
6:
7:
8:

MMU

Virtual
address
(VA)

Data word

Virtual Memory Turns

Main Memory into a Cache

• However, miss penalty is large:

• DRAM latency: ~100ns

• Disk latency: 10ms, 100,000x slower than DRAM

• SATA SSD latency: 70us, 700x slower than DRAM

• Recent Intel Optane NVMe SSD latency: 2.8us, 28x slower

• For 4KB read

13

DRAM-Cache Design

• Use paging

• Map virtual to physical address at fixed-size page granularity

• Use large page size to reduce mapping information

• Typically, 4KB page size, matches disk block access granularity

• Use fully associative cache

• Any virtual page can be mapped to any physical frame

• Needs sophisticated mapping function

• E.g., multi-level page table for the mapping information

• Needs sophisticated replacement algorithms

• E.g., LRU, clock/second chance

• Use write-back rather than write-through 14

MMU Needs A Large Table of

Translations

• MMU keeps mapping of VAs -> PAs in page tables
15

Page Table

CPU Chip

Data word

M-1:

Main memory

Physical
address
(PA)

.
.
.

CPU

0:
1:
2:
3:
4:
5:
6:
7:
8:

MMU

Virtual
address
(VA)

Page Table is Stored in Memory

1) Processor sends virtual address (VA) to MMU

2-3) MMU requests page table entry (PTE) from page table

4) MMU sends physical address (PA) to cache/memory

5) Cache/memory sends data word to processor

16

Page
Table

CPU Chip

Data

Main memory

PA

CPU MMU
VA1

PTE
request

PTE

2

3

4

5

Page Not Mapped in

Physical Memory

1) Processor sends virtual address (VA) to MMU

2-3) MMU requests PTE from page table, but PTE is invalid

4) PTE absent so MMU triggers page fault exception

5) Handler chooses victim page (and, if page is dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction 17

Page
Table

CPU Chip

Main memory

CPU MMU
VA1

PTE
request

PTE
invalid

2

3

5

Disk

OS page
fault handler

Victim
page

4 Page fault

6 New
page

7

Speeding up Translation with a TLB

• Page table entries (PTEs) are cached in L1 (like any other

memory word)

• But PTEs may be evicted by other data references

• Even on a cache hit, PTE access requires a 1-cycle delay

• Doubles the cost of accessing physical addresses from cache

• Solution: Translation Lookaside Buffer (TLB)

• Small hardware cache in MMU

• Caches PTEs for a small number of pages (e.g., 256 entries)

18

TLB Hit

• A TLB hit avoids access to page table in memory

19

Page
Table

CPU Chip

Data

Main memory

PA

CPU MMU
VA1

VA PTE2 3

4

5

TLB

TLB Miss

• A TLB miss incurs additional memory access to read PTE

20

Page
Table

CPU Chip

Data

Main memory

PA

CPU MMU
VA1

VA
Invalid
PTE2 3

6

7

TLB

PTE

PTE
request

5

4

How to Program for Virtual Memory

• Programs tend to access a set of active virtual pages at any

point in time called the working set

• Programs with better locality will have smaller working sets

• If (working set size) > main mem size:

• Pages are swapped (copied) in and out continuously

• Called thrashing, leads to performance meltdown

• If (# working set pages) > # TLB entries:

• TLB misses occur

• Not as bad as page thrashing, but still worth avoiding

21

More on TLBs

• Assume a 256-entry TLB, 4kB pages

• 256*4kB = 1MB: can only have TLB hits for 1MB of data

• This is called the TLB reach, i.e., amount of memory TLB covers

• Typical L2 cache is 8MB

• Hence can’t have TLB hits for all L2

• Possibly consider TLB-size before L2 size

• Real CPUs have second-level TLBs

• This is getting complicated to reason about!

• Need to experiment with varying sizes, e.g., find best tile size

22

Prefetching

23

Prefetching

• Basic idea:

• Predict data that might be needed soon (might be wrong)

• Initiate an early request for that data (a load-to-cache)

• If effective, helps tolerate latency to memory
24

load X (misses cache)

inst4

inst3

inst2

inst1

inst6

inst5 (must wait for load value)

Cache miss latency

ORIGINAL CODE:

prefetch X

inst3

inst2

inst4

inst1

inst6

inst5 (load value is ready)

Cache miss latency

CODE WITH PREFETCHING:

load X (hits cache)

Prefetching is Difficult

• Prefetching is effective only if all of these are true:

• There is spare memory bandwidth

• Otherwise prefetching can cause bandwidth bottleneck

• Prefetching is accurate

• Only useful if the prefetched data will be used soon

• Prefetching is timely

• I.e., prefetch the right data, but not enough in advance

• Prefetched data doesn’t displace other in-use data

• E.g., prefetched data should not replace a cache block about to be used

• Latency hidden by prefetching outweighs its cost

• Cost of lots of useless prefetched data can be significant

• Ineffective prefetching can hurt performance! 25

Hardware Prefetching

• A simple hardware prefetcher:

• When one cache block is accessed, prefetch the adjacent block

• I.e., behaves like cache blocks are twice as big

• Helps with unaligned instructions (even when data is aligned)

• A more complex hardware prefetcher:

• Can recognize a “stream”: addresses separated by a “stride”

• Eg1: 0x1, 0x2, 0x3, 0x4, 0x5, 0x6... (stride = 0x1)

• Eg2: 0x100, 0x300, 0x500, 0x700, 0x900… (stride = 0x200)

• Prefetch predicted future addresses

• Eg., cur_addr + stride, cur_addr + 2*stride, cur_addr + 3*stride, …

26

Core 7 Hardware Prefetching

• Includes next-block prefetching

• Includes multiple streaming prefetchers

• Prefetching performed within a page boundary

• Details are kept vague/secret 2727

Latency: 60-100

cycles

10 cycles4 cycles 10s of

millions

of cycles

Disk

Main

Memor

y

L2

unified

cache

CPU Reg

256 KB 16 GB > 500 GB

L1

I-cache

L1

D-cache

32 KB

32 KB

L3

shared

cache

8MB

40-75

cycles
L2->

L1 data prefetching

L2->
L1 inst prefetching

Mem ->
L3 data prefetching

Software Prefetching

• Hardware provides special prefetch instructions:

• Eg., intel’s prefetchnta instruction, __mm_prefetch() intrinsic

• Compiler or programmer can insert them in code

• Can PF (non-strided) patterns that hardware wouldn’t recognize

28

void
process_list(list_t *head){
 list_t *p = head;
 while (p){
 process(p);
 p = p->next;
 }
}

Assume process()
runs long enough to

hide prefetch latency

 list_t *q;

 q = p->next;
 prefetch(q);

 p = q;

void
process_list_PF(list_t *head){
 list_t *p = head;

 while (p){

 process(p);

 }
}

Summary:

Optimizing for a Modern

Memory Hierarchy

29

Memory Optimization: Summary

• Caches

• Conflict misses: less of a concern due to high-associativity

• Modern CPUs have 8-way L1/L2, 16-way L3

• Cache capacity: keep working set within on-chip cache capacity

• Focus on either L1 or L2 depending on required working-set size

• Virtual memory

• Page Misses: keep working set within main memory capacity

• TLB Misses: keep working set #pages < TLB #entries

• Prefetching

• Arrange data structures so access patterns are sequential/strided

• Use compiler or manually-inserted prefetch instructions 30

	Slide 1: ECE 454 Computer Systems Programming Virtual Memory and Prefetching
	Slide 2: Contents
	Slide 3: IA32 Linux Memory Layout
	Slide 4: Virtual Memory
	Slide 5: A System Using Physical Addressing
	Slide 6: Problem 1: How Does Everything Fit?
	Slide 7: Problem 2: Memory Management
	Slide 8: Problem 3: Portability
	Slide 9: Problem 4: Protection
	Slide 10: Problem 4: Sharing
	Slide 11: Solution: Add a Level Of Indirection
	Slide 12: A System Using Virtual Addressing
	Slide 13: Virtual Memory Turns Main Memory into a Cache
	Slide 14: DRAM-Cache Design
	Slide 15: MMU Needs A Large Table of Translations
	Slide 16: Page Table is Stored in Memory
	Slide 17: Page Not Mapped in Physical Memory
	Slide 18: Speeding up Translation with a TLB
	Slide 19: TLB Hit
	Slide 20: TLB Miss
	Slide 21: How to Program for Virtual Memory
	Slide 22: More on TLBs
	Slide 23: Prefetching
	Slide 24: Prefetching
	Slide 25: Prefetching is Difficult
	Slide 26: Hardware Prefetching
	Slide 27: Core 7 Hardware Prefetching
	Slide 28: Software Prefetching
	Slide 29: Summary: Optimizing for a Modern Memory Hierarchy
	Slide 30: Memory Optimization: Summary

