ECE 454

Computer Systems
Programming

Dynamic Memory

Ashvin Goel, Ding Yuan
ECE Dept, University of Toronto

Contents

* Introduction to dynamic memory management
- Alignment
* Memory management API
* Constraints, goals
* Fragmentation

* Basic dynamic memory allocation
» Implicit free list
- Explicit free list
» Segregated free lists
* Buddy allocation

 Other memory management considerations

Why Dynamic Memory Allocation?

* Some data structure sizes are not known in advance
> Read and store n values from file, where n 1s user specified

 Even today DRAM (main memory) is precious

* Would like programs to request more memory when needed and
give it back when no longer needed, to be re-used!

Aside: When to Use Stack vs. Heap

Stack used to allocate
Kernel space

* Local variables

Stack
* Parameters n

* Return values

Heap used for dynamically
allocate memory

Memory Mapping Region

* Memory allocated using 17
malloc() -

BSS segment

Why can’t we always use the Data Segment

Text Segment (ELF)

stack to allocate memory?

Why Learn about
Dynamic Memory Allocation?

Performance of dynamic memory allocation can significantly
impact overall program performance

* Programming guru: “don’t use malloc, manage memory yourself!”
* Today, many smart malloc implementations available

* You should know how to use them effectively (or build one yourself ...)

Dynamic memory allocation is challenging/interesting
* Good memory allocation algorithms are quite involved
* Scalable memory allocation 1s essential for multi-core performance

Gain a full understanding of systems “under-the-hood”

Think you know pointers? Well, you'll learn pointers ©

Dynamic Memory Allocators

* Provide an abstraction of memory as a set of blocks
A block 1s variable sized, contiguous memory

Provide free memory blocks to application

* Explicit: application allocates and frees space
* E.g., malloc and free in C, new and delete in C++

* Implicit: application allocates, but does not free space
* E.g., garbage collection in Java, ML or Lisp

Typical Process Memory Image

Allocators request additional
heap memory from the
operating system by using the
sbrk or memory mapping <~ x
system calls.

kernel virtual memory

stack

'
f

Memory mapped region for
shared libraries

I

memory invisible
to user code

run-time heap (via malloc)

uninitialized data (.bss)

initialized data (.data)

program text (.text)

<«—the “brk” ptr

Background: Alignment

What 1s Alignment?

« Starting address of object must be multiple of K
» K 1s typically a multiple of WORD size
* 32-bit system
* Word is 4 bytes, malloc returns objects with 8-byte alignment
* 64-bit system

* Word is 8 bytes, malloc returns objects with 16-byte alignment

Why Alignment?

* Let’s assume there 1s no alignment requirement
1.e., a data structure can start at any address

* E.g., suppose 4-byte integer starts at address 0x923d3f
Assume each cache block can hold 64 bytes
How many cache blocks do we need to read for this integer?

addr (binary, Data
last 8 bits) (binary)

©x923d3c ..0011 1100 XXXX XXXX
0x923d3d ..0011 1101 XXXX XXXX
0x923d3e ..0011 1110 XXXX XXXX
0x923d3f .0011 1111 0000 0000
0x923d40 ..0100 0000 0000 0000
0x923d41 ..0100 0001 0000 0000 :
0x923d42 .0100 oolo | 0000 eeee|) variable
©x923d43 ..0100 0011 XXXX XXXX

addr (hex)

4 byte
integer

Why Alignment? (Cont.)

e 2 cache blocks!

A cache block contains data aligned at cache block size
So, starting address of a block has 0 in lower 6 bits (64 bytes)
Avoid crossing cache block boundaries for better performance

addr (binary, Data
last 8 bits) (binary)

0x923d3c .0011 1100 [XXX XXXX
0x923d3d .0011 1101 | XXXX XXXX
0x923d3e .0011 1110 | XXXX XXXX
0x923d3f .@011 1111 | 0008 0000
0x923d40 ..0100 o000 | 0000 eeee| | 4 byte
0x923d41 .0l100 o001 | 0000 eoee| (inteser
0x923d42 .0100 oolo | 0000 eeee|) variable
©x923d43 ..0100 0011 XXXX XXXX

addr (hex)

Why Alignment? (Cont.)

« Similar to cache accesses at 64B granularity, CPU accesses
data at WORD granularity

When data 1s not aligned at WORD size, reading a simple data
structure (e.g., short, int, pointer, etc.) can take two CPU reads

On 32-bit machine, align integer to 4 bytes for good performance
* I.e., lower 2 bits are 0 (data stored at addresses ...00, ...01, ...10, ...11)

addr (binary, Data

last 8 bits) (binary)
0x923d3c ..0011 1100 XXXX XXXX
0x923d3d ..0011 1101 XXXX XXXX
0x923d3e ..0011 1110 XXXX XXXX
0x923d3f .0011 1111 | 0000 0000
0x923d40 ..0100 0000 0000 0000
0x923d41 ..0100 0001 0000 0000 :
0x923d42 .0100 oolo | 0000 eeee|) variable
©x923d43 ..0100 0011 XXXX XXXX

addr (hex)

4 byte
integer

How to Align?

Compilers

- Insert gaps within structure to ensure correct alignment of fields

Libraries (e.g., malloc)
* Return aligned addresses

Programmer

» Can use compiler provided alignment directive for efficient access
// gcc allocates 6 bytes
struct S { short f[3]; }

// gcc allocates 8 bytes
struct S { short f[3]; } __attribute__ ((aligned (8))); .

Specific Cases of Alignment

By Data Type:
- 1 byte (e.g., char)

* no restrictions on address

2 bytes (e.g., short)
* lowest 1 bit of address is 0, 1.e., 2-byte aligned

4 bytes (e.g., int, float, etc.)
* lowest 2 bits of address are 00,,, i.e., 4-byte aligned

8 bytes (e.g., double)
* lowest 3 bits of address are 000, 1.e., 8-byte aligned

Pointer (e.g., char *, int * void *)

* 4 or 8 bytes depending on 32 or 64 bit architecture

Satisfying Alignment of Structures

 Within structure

* Offsets of elements satisfy element’s alignment requirement

* Structure placement and size

+ Say largest alignment requirement of any element in structure 1s K
* Then starting address and structure length must be multiple of K

Example 1

struct S1 {

char c; 1B

int i[2]; 4B x 2
}*ps

]‘ 9B total

C i[@] i[1]

p+0 p+4 p+8

t t t

Multiple Multiple = Multiple
of 4 of 4 of 4

12B total considering alignment

Largest alignment
K =4

Example 2

struct S1 {
char c; 1B

int i[2]; 4B x 2 17B total
double v; 8B

} *ps

Largest alignment

K =28

C i[@] i[1] [v

p+0 p+4 p+8 p+16

t t t t
Multiple Multiple Multiple Multiple

of 8 of 4 of 4 of 8

24B total considering alignment

p+24

t
Multiple

of 8

Array of Structures

» Arrays of structures are allocated by struct S3 {

repeating allocation for structure type -f'hfz'“t 1;
int v;

short j;
} a[1e];

Saving Space

 Does the order of elements matter?

struct S3 { struct S3 {
short i; short i;
int v; short j;
short j; int v;

} al1e]; } al1e];

a[1].i . [a[1].]

a+12 a+20

a[1].i Jaf1].] afl].v 12 bytes to 8 bytes
a+12 a+16

 Demo of struct-alignment

Memory Management API

#include <stdlib.h>

void *malloc(size t size)

« If successful:
* Returns a pointer to a memory block of at least size bytes
e If size == 0, returns NULL (9)

 If unsuccessful: returns NULL and sets errno

* Note: a well-written program will check for unsuccessful mallocs!

Typically, malloc returns double-word aligned address

+ 8-byte boundary on 32 bits machine, 16-byte on 64 bits machine
* Why double word aligned?

Demo of malloc alignment

Memory Management API

 void free(void *p)
* Returns the block pointed at by p to pool of available memory
* p must come from a previous call to malloc or realloc.

 void *realloc(void *p, size t size)
» Changes size of block p and returns pointer to new block

» Contents of new block unchanged up to min of old and new size

Malloc
Sl gy e Example

/* allocate a block of n ints */

if ((p = (int *) malloc(n * sizeof(int))) == NULL) {
perror("malloc");
exit(9);

}

for (i=0; i<n; i++)
p[i] = i;

/* add m bytes to end of p block */

if ((p = (int *) realloc(p, (n+m) * sizeof(int))) == NULL) {
perror("realloc");
exit(9);

}

for (i=n; i < n+m; i++)
p[i] = i;

/* print new array */
for (i=0; i<n+m; i++)
printf("%d\n", p[i]);

free(p); /* return p to available memory pool */

Assumptions

* Assumptions made in this lecture
* Memory 1s word addressable (each word can hold a pointer)

» Malloc returns word-aligned addresses (unless specified otherwise)
 In practice GNU malloc returns double-word aligned address

1§ v) \) i d
Allocated block Free block ree wor
(4 words) (3 words) Allocated word

Allocation Examples

malloc(4

sizeof (void *))

malloc(5

sizeof (void *))

malloc(6

sizeof (void *))

free(p2)

p4 = malloc(2

sizeof (void *))

Constraints

Applications

» Can 1ssue arbitrary sequence of allocation and free requests
- Free requests must correspond to an allocated block

Allocators
* Must respond immediately to all allocation requests
* 1.e., can’t buffer and reorder requests
Must allocate blocks from free memory
Must align blocks so they satisfy all alignment requirements
Can only manipulate and modify free memory
Can’t move the allocated blocks once they are allocated

* 1.e., compaction is not allowed

Goals of Good malloc/free

* Primary goals
* Good throughput

 Ideally, malloc, free should take constant time (not always possible)
* Should certainly not take time that is linear in the number of blocks
* Good memory utilization
« Malloc allocated structures should be a small fraction of the heap
* Minimize fragmentation (defined later)

* One extreme example
- malloc (N): find the next available N free blocks
* free: do nothing

- Great time performance, poor space utilization

Performance Goals: Throughput

Given some sequence of malloc and free requests:
- Ry, Ry, .., Ryy o, R,

Want to maximize throughput and peak memory utilization
* These goals are often conflicting

Throughput:
* Number of completed requests per unit time
- Example:

e 5,000 malloc calls and 5,000 free calls in 10 seconds
e Throughput 1s 1,000 operations/second.

Performance Goals: Peak Memory
Utilization

Aggregate payload 1s denoted by P,
* malloc(p) results in a block with a payload of p bytes

 After request R, has completed, the aggregate payload P, is the
sum of currently allocated payloads

* A free request will decrease the aggregate payload
Current (total) heap size 1s denoted by H,

Definition: Peak memory utilization U,
- After k requests, peak memory utilization 1s defined in terms of
high watermarks (max values) of P, and H, (ranging from 0 to k)

* Uy=maxy_; o (P) / maxy_; .- (H;) (Why use high watermarks?)

* Higher is better N

Fragmentation

Poor memory utilization caused by unusable memory
* Comes 1n two forms: internal and external fragmentation

Internal fragmentation

* Unutilized space within an allocation, i.e., padding

External fragmentation

- Unutilized space in the heap, external to allocations

Internal Fragmentation

Assume word size = sizeof (void *) = 4 bytes
pl = malloc(13)

payload: 13 bytes, returned allocation: 16 bytes, padding = 3

internal fragmentation = internal fragmentation + 3 bytes
- Depends only on the pattern of previous requests, easy to measure

What causes internal fragmentation
* Minimum size for any allocated block, padding for alignment

Note: in-use header space affects heap size and thus peak
memory utilization, but not internal fragmentation

External Fragmentation

* (Occurs when there 1s enough aggregate heap memory, but no
single free block is large enough

malloc(4 * sizeof (void *))

malloc(5 * sizeof (void *))

malloc(6 * sizeof (void *))

free(p2)

p4 = malloc(6 * sizeof (void *)) ... oops!

« External fragmentation depends on the pattern of future
requests, and is thus more difficult to measure

Basic Dynamic Memory

Allocation

Implementation Issues

* Free:

* When given a pointer, how much memory to free?
- How do we keep track of the free blocks?

free(po)
 How do we insert a freed block?

 Allocation:

* How do we pick a block to use for allocation?
* Many free blocks might fit

po

"

pl = malloc(1)

Knowing How Much to Free

* Simplest method

Keep the size of a block in the word preceding the block
* This word is often called the header field or header

Requires an extra word for every allocated block

po
p@ = malloc(4)

5

[N/

Block size data

Keeping Track of Free Blocks

* Method 1: Implicit list using size field to links all blocks

 Method 2: Explicit list among the free blocks using separate
pointers within the free blocks

 Method 3: Segregated free list
- Keep different free lists for different size classes

Method 1: Implicit List

* Need to identify whether each block is free or allocated

Use a bit, which can be put in the same word as the size field if
block sizes are always multiples of two

Mask out low order bit when reading size
» size = sizeword & ~0x1; // sizeword & Ob1111...1110

«—] word —p))
size: block size

Format of size a a = 1: allocated block
allocated and a = 0: free block
free blocks

load :
payies payload: application data

1n an allocated block

optional
padding

Implicit List: Finding a Free Block

o First fit

 Search list from beginning, choose first free block that fits
+ Takes linear time 1n total number of blocks (allocated and free)
- In practice, may cause “splinters” at beginning of list

* Next fit
» Like first-fit, but search list from end of previous search
* Research suggests that fragmentation i1s worse

* Best fit
* Search the list, choose the free block with the closest size that fits
* Keeps fragments small, so usually helps with fragmentation
* Will typically run slower than first-fit, next fit

Implicit List: Allocation from
Free Block

* Allocate a block from a free block

- Since allocated space might be smaller than free space, we may
choose to split the free block

next fit

Implicit List: Freeing a Block

Simplest implementation
* Only need to clear allocated flag

malloc(5 * sizeof (void *)) Oops!

Can lead to false external fragmentation
- There 1s enough free space, but the allocator can’t find it

Implicit List: Coalescing

» Join (coelesce) with next and/or previous block if they are free

* (Coalescing with next block

* But how do we coalesce with previous block?

Implicit List: Bidirectional Coalescing

* Boundary tags [Knuth73]
Replicate size/allocated word at bottom of free blocks

Allows us to traverse “list” backwards, but requires extra space

Important and general technique!

Format of

<] word —p

Header =

size

| 2

allocated and

free blocks

payload
and
padding

Boundary tag

(footer)

size: total block size
a = 1: allocated block
a = 0: free block

Constant Time Coalescing

block being
freed

Case 1

Case 2

Case 3

Case 4

allocated

allocated

free

free

allocated

free

allocated

free

Constant Time Coalescing (Case 1)

Constant Time Coalescing (Case 1)

Check if allocated

/ .

Constant Time Coalescing (Case 2)

Constant Time Coalescing (Case 2)

Check if allocated

/ .

Constant Time Coalescing (Case 3)

Constant Time Coalescing (Case 3)

Check if allocated

/ .

Constant Time Coalescing (Case 4)

Constant Time Coalescing (Case 4)

Check if allocated

/ —

n+ml+m?2

Summary of Key Allocator Policies

Placement policy (how to find a free block during allocation):
 First fit, next fit, best fit, etc.

Coalescing policy (how to insert a block during free):
- Immediate coalescing: coalesce adjacent blocks when free 1s called

* Deferred coalescing: try to improve performance of free by
deferring coalescing until needed

* Coalesce as you scan the free list for malloc
* Coalesce when external fragmentation reaches some threshold
 Why might deferred coalescing be beneficial?

Implicit Lists: Summary

Implementation: very simple
Allocation: linear time in # of free and allocated blocks
Free: constant time 1n all cases -- even with coalescing

Memory usage: will depend on placement policy
 First fit, next fit or best fit

In practice:
* Not used by modern allocators because of linear time allocation

* However, splitting and boundary tag coalescing operations are
used by many allocators

Method 2: Explicit List

» Explicit list among the free blocks using pointers within the

free blocks

A/QS

B

uccessor 1links

G

N

6

4

4

4

b

4

C ~~

Use space 1n free regions for link pointers

* Typically, doubly linked

Predecessor 1links

p—

A

1 B

1C

e

 Links can point anywhere, not necessarily to adjacent block

Use boundary tags for constant-time coalescing of free blocks

Allocating From Explicit Free List

Initial; free block

After allocating X:

free block
(with splitting) ree bloc

Allocation time is linear in the number of free blocks instead of total blocks

Freeing With Explicit Free List

Where should a freed block be inserted in free list?
* LIFO (last-in-first-out) policy
* Insert freed block at the beginning of the free list
* 1e., Latest block to be freed may be next one to be allocated
* Pros: simple and constant time
* Cons: studies suggest fragmentation 1s worse than address ordered

» Address-ordered policy

 Insert freed blocks so that free list blocks are always in address order
* 1.e. addr(pred) < addr(curr) < addr(succ)

* Con: requires search for insertion
* Pro: studies suggest fragmentation 1s better than LIFO

Freeing With a LIFO Policy

e Details: free_list, _ _
NULL

a=allocated, f=freed
Assume free(self) in each example

Initially:
e free list = x, x.pred = NULL

 Connect to head of free list:
self.succ = free list;
free list.pred = self
free list = self;
self.pred = NULL;

free_list,
NULL

« How to coalesce?

LIFO: Coalescing

e Case 2: a-self-f free_list,
NULL

* Splice out next,
coalesce self and next,
add to beginning of free list

free_list,
NULL

LIFO: Coalescing

e Case 2: f-self-a free_list,
NULL

* Splice out prey,
coalesce self and prey,
add to beginning of free list

free_list,
NULL

LIFO: Coalescing

e (Case 2: f-self-f free_list, |
NULL

 Splice out prev and next,
coalesce self with both,

add to beginning of free list self

free_list,
NULL

Explicit List Summary

* Comparison with implicit list
 Allocation takes linear time 1n number of free blocks instead of
total blocks
* Much faster allocation when most of the memory is full

+ Slightly more complicated allocation and free since blocks need to
be spliced 1in and out of the free list

« Main use of linked lists 1s with segregated free lists

- Keep multiple linked lists of different size classes, or possibly for
different types of objects (discussed next)

Method 3: Segregated Free List

 FEach size class has its own collection of blocks

S

9-16

* Often create a separate size class for every small size (2,3,4,...)

* For larger sizes, create a size class for each power of 2

Simple Segregated Storage

All blocks 1n a list have the SAME size N

A bloc 1s allocated to a request of size in the range (M, N],
where M 1s the block size in the previous list

To allocate a block of size N
- If free list for size N is not empty:

 Allocate first block on list, no splitting required
« If free list for size N 1s empty:

* Grow heap, create new free blocks of size N from new heap space, add
these blocks to free list, then allocate first block on list

To free a block
* Add the block to its free list

Simple Segregated Storage

* Advantages:
* Constant time allocation and free

» With same-sized blocks in each list:
* No splitting or coalescing required

* Low per-block memory overhead

 Block size need not be maintained in the header (discussed later)

* Disadvantages:
» Can lead to internal fragmentation
 Since allocation 1s rounded up to next size
* Can lead to high external fragmentation

* Free blocks in a list cannot be used for other allocations
* Blocks aren’t coalesced

Segregated Best-Fit

All blocks 1n a list lie within a size range
 Blocks within the list can have different block sizes

To allocate a block of size N
+ Search appropriate free list for block of size M > N

- If an appropriate block 1s found:

* (Optionally) split block and place fragment on appropriate size free list
» If no block is found:

* Try next larger class, repeat until block is found in a larger class

» If block still not found, grow heap

To free a block:

* Coalesce and place on appropriate list for its new size

Segregated Best-Fit

* Advantages

» Controls fragmentation of simple segregated storage
* Mainly due to splitting and coalescing
* Fragmentation similar to best fit

Faster than unsegregated best-fit

* Doesn’t require exhaustive search

e Tradeoffs

- Slower allocation than segregated storage

 Splitting and coalescing can increase search times
* Deferred coalescing can help

Binary Buddy Allocator

Variant of segregated best fit
- Each list has fixed size blocks, block size is a power of 2

void *allocate(size)
* Round up a request size to 2" size

« If free block of that size is not available:

* Find a larger block, recursively split it in half until block 1s available

free(p)

* Find address of buddy block by flipping bit for rounded size in the
returned block address

* Search for buddy in free list of that size, i1f found, coalesce and
recursively repeat

Buddy Allocator Example

initial allocator state 15tep 84K 84K | 84K 64K | B4K | 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K |
21
22

23

. ¢ = allocate(35K); =

3

4
5.1
5.2
6

7.1
7.2
8

9.1
9.2

9.3
9.4
9.5

Finding d’s buddy in Step 7:

addr(d) = 256K Ox100 00O 0000 00O 0O
sizeof(d) 128K Ox010 00O 0000 00O 0O
addr(d’s buddy) 384K 0x110 0000 0000 00O 0O

Other Considerations

» Allocation patterns

o Allocation data structures
» Lists
* Other structures

Allocation Patterns

Block lifetimes are not random

* Ramp — allocations throughout program lifetime without releases
 Plateau — allocations, then lengthy usage, then releases
* Peaks — bursty behavior and short object lifetimes

Block sizes are not random
« Zorn and Grunwald, 1992 study, six allocation-heavy C programs
* Found that 53-93% of requests were for top two sizes

Allocator can attempt to exploit patterns
» Allocate blocks with similar lifetimes contiguously
* Allocate blocks with same/similar object sizes contiguously

Linked Lists for Free Blocks

* We have seen linked list(s) of variable sized free blocks
 Implicit — link allocated and free blocks
* Not used due to linear time allocation

* Explicit — link free blocks, use one or more lists

* More commonly used

 Where is the list stored?
* Integrated: use space within the free blocks to hold the links
* Benefit: no need to separately manage space for links
* Problem: poor locality when traversing the list (discussed later)
- External: use space separate from allocated or free blocks
* Benefit: better locality when traversing the list

* Problem: need to manage this space, how is it grown (discussed later)"

Linked Lists for Free Blocks

What should be the order of free blocks in the list?

LIFO
* Add freed block to beginning of list
* Provides locality

FIFO

* Add freed block to end of list

* Benefits?

Sorted by block size

« Limits traversal for smaller allocations

Sorted by address

* Reduces heap fragmentation (we will see this later)

Other Data Structures
for Free Blocks

* Single pointer for a region/arena

- When related blocks can be released all at once
- Use mmap to allocate large regions and maintain regions in list

* No need to keep a free list within a region or to use headers in the
allocated/free blocks

 Allocate blocks by incrementing a single pointer
* Release entire region when done

Other Data Structures
for Free Blocks

Bitmap for fixed-size contiguous blocks

» Can be used for segregated storage
e Each list maintains blocks of the same size

* Blocks of the same size must be allocated contiguously

Trees

- Heap requires searching for a free block of a given size

» Use ordered trees to reduce search times compared to linked list

» E.g., use red-black tree to perform best fit in log(n) time, where n is
number of free blocks

	Slide 1: ECE 454 Computer Systems Programming Dynamic Memory
	Slide 2: Contents
	Slide 3: Why Dynamic Memory Allocation?
	Slide 4: Aside: When to Use Stack vs. Heap
	Slide 5: Why Learn about Dynamic Memory Allocation?
	Slide 6: Dynamic Memory Allocators
	Slide 7: Typical Process Memory Image
	Slide 8: Background: Alignment
	Slide 9: What is Alignment?
	Slide 10: Why Alignment?
	Slide 11: Why Alignment? (Cont.)
	Slide 12: Why Alignment? (Cont.)
	Slide 13: How to Align?
	Slide 14: Specific Cases of Alignment
	Slide 15: Satisfying Alignment of Structures
	Slide 16: Example 1
	Slide 17: Example 2
	Slide 18: Array of Structures
	Slide 19: Saving Space
	Slide 20: Memory Management API
	Slide 21: Memory Management API
	Slide 22: Malloc Example
	Slide 23: Assumptions
	Slide 24: Allocation Examples
	Slide 25: Constraints
	Slide 26: Goals of Good malloc/free
	Slide 27: Performance Goals: Throughput
	Slide 28: Performance Goals: Peak Memory Utilization
	Slide 29: Fragmentation
	Slide 30: Internal Fragmentation
	Slide 31: External Fragmentation
	Slide 32: Basic Dynamic Memory Allocation
	Slide 33: Implementation Issues
	Slide 34: Knowing How Much to Free
	Slide 35: Keeping Track of Free Blocks
	Slide 36: Method 1: Implicit List
	Slide 37: Implicit List: Finding a Free Block
	Slide 38: Implicit List: Allocation from Free Block
	Slide 39: Implicit List: Freeing a Block
	Slide 40: Implicit List: Coalescing
	Slide 41: Implicit List: Bidirectional Coalescing
	Slide 42: Constant Time Coalescing
	Slide 43: Constant Time Coalescing (Case 1)
	Slide 44: Constant Time Coalescing (Case 1)
	Slide 45: Constant Time Coalescing (Case 2)
	Slide 46: Constant Time Coalescing (Case 2)
	Slide 47: Constant Time Coalescing (Case 3)
	Slide 48: Constant Time Coalescing (Case 3)
	Slide 49: Constant Time Coalescing (Case 4)
	Slide 50: Constant Time Coalescing (Case 4)
	Slide 51: Summary of Key Allocator Policies
	Slide 52: Implicit Lists: Summary
	Slide 53: Method 2: Explicit List
	Slide 54: Allocating From Explicit Free List
	Slide 55: Freeing With Explicit Free List
	Slide 56: Freeing With a LIFO Policy
	Slide 57: LIFO: Coalescing
	Slide 58: LIFO: Coalescing
	Slide 59: LIFO: Coalescing
	Slide 60: Explicit List Summary
	Slide 61: Method 3: Segregated Free List
	Slide 62: Simple Segregated Storage
	Slide 63: Simple Segregated Storage
	Slide 64: Segregated Best-Fit
	Slide 65: Segregated Best-Fit
	Slide 66: Binary Buddy Allocator
	Slide 67: Buddy Allocator Example
	Slide 68: Other Considerations
	Slide 69: Allocation Patterns
	Slide 70: Linked Lists for Free Blocks
	Slide 71: Linked Lists for Free Blocks
	Slide 72: Other Data Structures for Free Blocks
	Slide 73: Other Data Structures for Free Blocks

