
Using Feedback Control for a Network and CPU Resource
Management Application✝✝✝✝

Ashvin Goel℘ , Molly H. ShorΨ, Jonathan Walpole℘ , David Steere℘ , Calton Pu⊗

✝ This work was supported in part by DARPA/ITO under the Information Technology Expeditions, Ubiquitous
Computing, Quorum, and PCES programs, and in part by NSF Grant CCR-9988440, NSF Grant ECS-9988435, and by
Intel Corporation.
℘ Dept. of Computer Science and Engineering, Oregon Graduate Institute, Beaverton, Oregon 97921-1000 USA.
Ψ Dept. of Electrical and Computer Engineering, Oregon State University, Corvallis, Oregon 97331-3211 USA.
⊗ College of Computing, CCB Room 261, Georgia Institute of Technology, Atlanta, Georgia 30332-0280 USA

Abstract:
Interactive multimedia and sensor-based real-time
applications on the Internet must be delivered to the
receiver at the sender’s transmission rate and have
bounded end-to-end delay requirements. We call such
flows real-rate flows. The resource requirements of such
flows can not be met in many environments. Researchers
have proposed selectively dropping data in the flow so
that the data rate matches available resource capacity (i.e.,
QoS adaptive, real-rate flows). Application-level QoS
adaptation is not well integrated with network scheduling
mechanisms and resource management, resulting in slow
and inaccurate QoS adaptation, poor flow quality, and
unpredictable interactions between adaptive mechanisms.

Our proposed resource management service integrates
QoS adaptation and network/CpU scheduling mechanisms
to offer support for QoS adaptive, real-rate flows. Its goal
is to deliver the highest quality flow to the receiver within
a bounded delay at the sender’s real rate. This service
combines two techniques – both based on feedback –
real-rate scheduling and QoS adaptation. Real-rate
scheduling uses packet time-stamps to schedule flows
along the flow path at the sender’s real rate. QoS
adaptation drops data at a node when the node’s resources
are limited, in application-specified priority order. System
modeling issues are discussed and a controller structure is
proposed.

1 Overview, Modeling Issues, and System Architecture
The advent of high-speed networks and processors has led
to a shift from desktop computing to a “networked-
device” computing environment, where desktop
computers are inter-networked with real-time devices
such as sensors, cameras and displays. These devices
stream data that must be delivered and processed in real-
time with bounded end-to-end delay. To achieve this goal,
network nodes (such as routers) may manage the flow
delay by dynamically adjusting the flow rate. These nodes
may also automatically adapt flow quality when resources
are fully utilized. A feedback-based resource management
approach is well suited for performing these functions.

This work proposes a feedback-based resource manager
that ensures real-rate delivery of flows within delay
bounds without requiring reservations.

Multimedia and sensor-based real-time applications use a
pipeline abstraction and stream information in real time
from sources to sinks via intermediate stages. These real-
rate flows consume CPU, network and other resources at
each pipeline stage. (Figure 1)

Figure 1. Pipeline configuration

The resources allocated to the flow at each stage of the
pipeline are regulated using a feedback mechanism, based
on local measurements. Since both length and
configuration of pipelines change dynamically, it is
desirable to create local resource managers (controllers)
along the pipeline that can be cascaded safely. (Figure 2)

Figure 2. Single stage of pipeline

A means of measuring, locally, how far ahead or behind a
flow is from achieving the sender’s real rate, is necessary
to achieve control. One means of measuring this can be
achieved by marking packets with time stamps, with the
delivery time offset from first packet in flow. (Figure 3)
This information allows the resource manager locally to
track the flow’s rate and determine how it differs from its
rate bound. The resource manager can adjust resources

allocated to each flow based on whether it is running
ahead or behind.

Packets of QoS adaptive, real-rate flows are marked
with a logical time-stamp and a priority field. Real-
rate scheduler uses time-stamp field to deliver flows at
sender’s real rate. QoS adaptation mechanism uses
priority field to adapt flows by dropping lower priority
data when resources are limited.

Figure 3. Packet format for QoS adaptive,
real-rate flows

The buffer fill levels can be measured in terms of packet
time-stamps. The local resource manager monitors the
packet time-stamps and assigns a proportion of the
resource (e.g., link bandwidth) over a given period of time
to each flow, to adjust a flow’s transmission rate (in terms
of time-stamps) to match the sender’s real rate. The
proportion-period (PP) resource scheduler ensures that
each flow receives its allocated proportion over that
period. The sum of assigned proportions across all flows
is the resource utilization.

The resources available at each stage are bounded, as are
buffer-sizes (both in time and bytes), creating input- and
state-variable constraints throughout the system. Large
buffers and buffer fill levels result in substantial end-to-
end queuing delay, which may violate delay bounds.
Consequently, an important design consideration in this
system is appropriate sizing of the buffers in the pipeline.
Fast rise time and low overshoot of the local feedback
control loops help prevent buffers upstream or down-
stream from a resource manager from overflowing.
(Figure 4)

Service rate response of resource manager to step
change in input rate of data flow into upstream buffer.
Buffer space is required in upstream buffer to hold
data in area A not processed promptly. Buffer space is
required in downstream buffer to hold data in area B
until resource manager downstream responds.

Figure 4. Effect of rise time and overshoot
on buffer fill level variations

For perfect transmission of data from the sender along the
pipeline to the receiver, resource constraints (e.g.,
bandwidth or CPU processing) may have to be violated,
especially in the case of high-bandwidth multimedia
flows. Quality of Service (QoS) adaptation approaches
adapt the flow rate at the sender, or at an intermediate
stage, by selectively dropping data items to ensure that the
data rate matches the available resource capacity. Quality
gradation can be implemented by assigning priority levels
to packets to meet a desired user quality function, then
dropping packets with priorities below a current priority-
drop threshold. (Figure 5).

Resource manager drops packets with priorities below
priority-drop threshold. Mapping from quality to
priority-drop threshold should monotonically decrease

Figure 5. A hypothetical mapping
of flow quality to prioritized data

Data dropping thins the flow and allows its delay
requirements to be met when resources are limited. QoS
adaptation adds a second feedback control mechanism to
the system at each node. (Figures 6 and 7)

Incoming data is stored in priority buffer before
scheduler transmits it. Resource manager implements
real-rate and QoS adaptation controllers. The real-rate
controller adjusts the scheduler’s behavior. The QoS
adaptation controller adjusts priority buffer operation.

Figure 6. Architecture of the resource nodes
along the flow path

Data dropping based on priority is accomplished using a
priority buffer, a bounded circular buffer from which data
is dropped in priority order. This scheme limits the
physical quantity of data in the buffer (in bytes), the
logical time that the data can stay in the buffer (based on
time stamps), and the priorities of the packets in the
buffer. The logical size limit on the buffer is designed to
limit the flow’s queuing delay at each resource node. (The
logical length of data in the buffer is the difference in
time-stamps between the last packet in the buffer and the
first packet.) The physical length of the buffer could also

cause data to be dropped. However, a good combination
of QoS adaptation controller, real-rate controller, and
buffer sizing, will result in data dropped from the buffer
based mainly on priority dropping, not random dropping.

Real-rate mechanism monitors packet time-stamps and
adjusts flow’s proportion so that flow is transmitted at
the sender’s real rate. The QoS adaptation mechanism
monitors resource utilization and adjusts priority drop
threshold to maintain 100 percent resource utilization.

Figure 7. The resource node architecture

The sum of the logical sizes of the priority buffers at
resource nodes along the flow path is the maximum end-
to-end queuing delay experienced by the flows. We size
the buffers appropriately to keep this value less than the
maximum allowable delay bound, and then strive to use
control techniques to keep the buffers from overflowing.

A major challenge for control design is that the amount of
resource required to process a logical (or physical) unit of
data varies dramatically. We found in our earlier work
that the amount of CPU required to decode a MPEG I, P,
or B frame varied depending on the type of data
processed, by a factor of four up and four down. (Figure
8) The link bandwidth to transmit a physical byte of data
varies much less from one type of data to the next. We
expect, however, that the resources required to process a
logical unit of data will vary significantly.

2 Resource Manager Implementation
The resource manager implements real-rate scheduling
and QoS adaptation mechanisms by monitoring and
adjusting the behavior of PP scheduler and priority buffer.
These mechanisms use feedback control techniques. Their
behavior should be modeled and analyzed to ensure that
the service goals of delivering flows with bounded end-to-
end delay at the sender's real rate are met effectively.

2.1 Real-rate control
The real-rate scheduling mechanism aims to transmit data
from each resource node at the sender's real rate. To do
so, the real-rate mechanism monitors the time-stamps of
packets in the priority buffer shown in Figure 7. These
time-stamps represent the application logical time. For
instance, in a video application, the application logical
time progresses at the playback speed of the video. Thus

packets of a frame are marked with the same time-stamp
while packets across consecutive frames have a time-
stamp interval equal to the inter-frame time. The real rate
of a flow is defined as the logical time-stamp interval of
packets at the head of the priority buffer when monitored
one unit time apart. The real-rate mechanism aims to
transmit data at a constant unity real rate rather than at a
constant bit rate. Thus, packet transmission intervals are
matched with packet time-stamp intervals. If this
mechanism is used at all nodes along the flow path, data
will be delivered to the receiver at the sender's rate.

Decoding time per frame and decoding time per byte
were found to vary by factor of at least four up or
down depending on the type of data involved.

Figure 8. Decoding time per byte and
decoding time per frame for a sample MPEG video

To maintain a target unity real rate (of one unit per unit
period), the real-rate mechanism adjusts the flow's
transmission rate periodically by modifying the
proportion parameter of the PP scheduler (see Figure 7).
The real-rate mechanism uses feedback to increase
(decrease) the proportion when the monitored real rate is
less than (greater than) unity.

2.2 Control Mechanism
The real-rate mechanism uses a discrete-time controller
with constant sampling period ∆ to maintain a target unity
real rate. The rather unusual multiplicative update
Equation 2.1 for the controller was motivated in part by
the frequent large (multiplicative) changes in the system
parameters. (Figure 8)

The controller equation in Equation 2.1 is intended to
maintain the unity real rate. The subscript i is the

controller's
thi sampling instant, the sampling interval is

∆, the proportion 1−ip is allocated to the flow between

B

P

I

I

P

B

sampling instants 1−i and i , and the proportion ip is

allocated to the flow between sampling instants i and

1+i .

The time-stamp it is on the packet at the head of the

priority buffer at sampling instant i . Thus, 1−− ii tt is the

logical time-stamp interval between packets that are
transmitted a real-time interval of ∆ apart. The real rate of

the flow at sampling instant i is thus () ∆− −1ii tt . The

error variable ix is the difference between the current

real rate and the target real rate of unity:

1
1

11 where −
∆
−=

+
= −− ii

i
i

i
i

tt
x

x

p
p

α
 (2.1)

The parameter α in Equation 2.1 satisfies 0 < α < 1. This

real-rate control equation shows that proportion ip is

increased (decreased) by a multiplicative factor relative to

previous proportion 1−ip when ix is less than (greater

than) zero, or the real rate is less than (greater than) unity.

The initial proportion 0p is chosen to be a small system-

defined value greater than zero. Parameter α determines
the responsiveness of the controller equation. Section 3
describes how control parameter α can be chosen.
Equation 2.1 adjusts flow proportion by comparing the
current (short-term) value of real rate to the target unity
real rate (similar to a proportion-only controller). This
equation is not designed to respond to long term trends in
real rate (as a PI controller might). This is not adequate
for our application. With this controller, the flow’s
proportion may return (stabilize) to unity real rate after
slowing down temporarily. But the flow would have an
increased end-to-end delay after slowing down. That is
not acceptable performance.

Equation 2.2 calculates proportion while taking the long

term real rate into account. When iy is less than zero, the

flow is being delivered late and the flow's proportion is
increased to speed up the flow to “catch up” with the real
rate, measured based on the first packet in the flow, rather

than just between neighboring packets). If iy is greater

than zero, the flow is being delivered early and the flow's
proportion is decreased to slow down the flow to match
the real rate. The flow's proportion stabilizes when the

short-term and long-term rate mismatch variables ix and

iy are both zero. The choices of α and β parameters are

discussed in Section 3.

∑
−

=

−

−

=−
∆
−=

++
=

1

0

1

1

 1

1

and

where

i

j
ji

ii
i

ii

i
i

xy
tt

x

yx

p
p

βα
 (2.2)

2.3 Control Mechanism during Overload
Equation 2.2 updates a flow's proportion to maintain a
target unity real rate. Resource utilization at a resource

node is the sum of calculated proportions ip of all flows.

When this calculated resource utilization is greater than
available resources, or greater than 100 percent, the
resource is overloaded and all flows cannot be assigned
their calculated proportions.

The resource manager handles resource overloading with
two mechanisms that can operate simultaneously. First, it
performs proportion squishing, where the real-rate of
flows is reduced by assigning proportions that are less
than their calculated proportions (similar in effect to
saturation in a standard control system). However, this
real-rate reduction leads to increasing flow delay as
measured by an increase in the priority buffer's logical
length. Thus, if overload occurs for an extended period of
time, the flow's delay will exceed its delay bound (logical
length exceeding logical buffer size). Second, the
resource manager uses QoS adaptation to drop lower
priority data. Data dropping reduces the resource needs of
flows so that a unity real rate can be sustained in the long
run and buffers that accumulated data due to proportion
squishing can be drained. Section 2.4 describes the QoS
adaptation mechanism for dropping lower priority data.

During proportion squishing, the real-rate control assigns
proportions to flows that are less than their calculated
proportion and sum up to 100 percent. A “fair” method to

do this is to assign to flow i the proportion ∑ ki pp

whenever ∑ > %100kp . This policy ensures that all

flows achieve the same real rate (which is less than unity),
but does not allow prioritizing flows. The next section
describes a procedure for prioritizing flows using QoS
adaptation.

2.4 QoS Adaptation Control
The QoS adaptation mechanism’s goal is to transmit the
highest quality data within a delay bound at each resource
node. The delay bound is the logical size of the priority
buffer, which is the maximum amount of queuing delay
that can be introduced at the associated resource node (see
Section 1). Thus, when the logical sizes are appropriately
set at the nodes along the flow path, QoS adaptation aims
to deliver flows within their end-to-end delay. To achieve
the maximum quality within the delay bound goal, the
QoS adaptation mechanism adjusts the quality of the flow

by adjusting the priority buffer's drop threshold variable.
Increasing the priority threshold drops lower priority
packets and helps in transmitting higher priority packets
within the delay bound when resources are limited.
Decreasing the priority threshold allows more packets to
be transmitted, thus increasing the flow quality.

The goal of QoS adaptation mechanism can be alternately
stated as delivery of highest quality data while ensuring
the real-rate mechanism can deliver data at its target unity
real rate. At unity real rate, flow delay will be bounded
(see Equation 2.2); thus these two goals are compatible.
The alternate definition leads to an obvious QoS
adaptation mechanism. The real-rate mechanism delivers
data at less than its target unity real rate during overload,
i.e., when resource utilization (the sum of the calculated

proportions ip across all flows) is greater than 100%.

The priority threshold should then be increased to reduce
the amount of data transmitted and the resource needs of
the flow. Conversely, when resources are available, the
priority threshold can be decreased to improve flow
quality while increasing resource utilization.

2.5 Control Mechanism
The QoS adaptation mechanism monitors the calculated
resource utilization and adjusts the priority threshold
variable to keep the resource utilization close to 100%, as
shown in Figure 7. The QoS adaptation feedback equation
for maintaining 100% target utilization is Equation 2.3:

()
1

flows all

11

 where −


 ∑=

+−+= −−

j
p

i
x

xIxxPprpr iiiii

 (2.3)

In Equation 2.3, i is the discrete-time controller's

sampling instant, 1−ipr is the flow's priority threshold

between sampling instants 1−i and i and ipr is the

flow’s priority threshold between sampling instants i and

1+i . Proportion jp is the proportion allocated to the

thj flow. Error variable ix is the difference between

calculated resource utilization ∑ jp and target 100%

resource utilization.

Equation 2.3 is the PI control equation used in classic
feedback control systems. Parameters P and I determine
damping and responsiveness of the control equation.
Larger values of P and I increase control responsiveness
by adjusting priority threshold faster in response to
changes in utilization, thus potentially avoiding buffer
overflow. However, then the flow quality varies more
over time. In addition, increasing the parameters beyond a
limit causes instability in the assignment of the threshold

values. Selection and tuning of these parameters is
discussed in Section 3.

3 Tuning Feedback Controls
The goal of QoS adaptive, real-rate service is to transmit
the highest quality data within a delay bound at each
resource node. This section describes qualitatively how
real-rate and QoS adaptation controls are tuned to achieve
these goals. Section 3.1 describes real-rate control tuning,
and Section 3.2 describes QoS adaptation control tuning.

3.1 Tuning Real-Rate Control
In real-rate control, the measured variable is the real rate
of the flow and the performance goal is unity real rate. In
QoS adaptation control, the measured variable is resource
utilization and the performance goal is 100% utilization.

The real-rate scheduler aims to transmit flows at unity
real rate, i.e., packet transmission intervals matched with
packet time-stamp intervals. Our goal of control tuning is
to tune the real-rate mechanism so its response to step
changes in transmission rate meets various criteria such as
limited overshoot and limited additional buffering needs.

A step change in input rate may occur due to an increase
in the bandwidth needs of the flow. If the proportion
allotted to the flow is kept constant, it will take longer to

transmit packets and real rate () ∆− −1ii tt will decrease

below unity. Equation 2.2 will eventually increase the
flow's proportion so that the real rate reaches its unity
target. Choice of α and β parameters (Equation 2.2)
affects proportion overshoot and additional delay
experienced by the flow after a step input. Larger
overshoot will cause faster resource overloading
downstream than needed, thus causing QoS adaptation to
decrease flow quality. Thus the tuning goal is to reduce
overshoot. In addition, the additional delay experienced

by the head packet in the priority buffer is iy in Equation

2.2, shown by shaded area A in Figure 4. The tuning goal
is to reduce this delay so that the priority buffer can
handle changes in the real rate. Otherwise, random
dropping will significantly decrease flow quality.

Our experience with the system indicates that we can deal
with large step changes in the processing requirements,
but that there is a delicate balance between selecting good
controller gains for step and good controller gains for
impulse changes. We are able to determine
experimentally the buffering requirements for various
controller gains, for both steps and impulses. Future work
includes analysis of conditions for closed-loop stability,
robustness, and optimization methods for the design of
controllers that provide limited delay and buffering
requirements and unity rate tracking in the presence of
these large changes.

3.2 Tuning QoS Adaptation Control
The QoS adaptation mechanism adapts flow quality by
adjusting priority-dropping threshold to keep resource
utilization close to 100%. The design and tuning of the PI
control in Equation 2.3 depends on the following factors:

Logical Queue Size: A smaller logical queue size will
require a more responsive control mechanism to
handle variations in the flow's real rate or variations
in resource availability.

Change in Resource Needs: The adaptation mechanism
must take into account the change in resource needs
when the threshold is adjusted. This change directly
affects parameters in the system model. If resource
utilization increases, the priority threshold may have
to be increased by several units if each unit threshold
change leads only to a small change in resource need.
Conversely, if each change in priority threshold leads
to a large change in resource needs, then the
granularity, or quantization, of that relationship may
lead to behavior typical of systems with friction and
other non-smooth nonlinearities. If certain properties
of this relationship create fundamental limitations in
controller design, the priority marking algorithms can
be modified. While we may not be able to use a
particular model (based on one application’s priority
markings) for system-level controller design, it is
useful to derive general guidelines for properties of
priority threshold marking.

4 Composition of Feedback Controls
The QoS adaptive, real-rate service is composed of
multiple feedback mechanisms that are operating
simultaneously. For instance, a separate real-rate control
mechanism operates to maintain unity real rate for each
flow. In addition, the QoS adaptation mechanism operates
across flows to maintain 100% resource utilization.

There are two types of interactions among the feedback
mechanisms that implement the QoS adaptive, real-rate
service. First, the real-rate control interacts with the QoS
adaptation control at each resource node. Second, the
controls at each resource node affect the behavior of the
rest of the resource nodes along the flow path. These
interactions must be analyzed to determine their impact
and any lessons for design.

4.1 Real-Rate & QoS Adaptation Control Interaction
The real-rate and QoS adaptation controls operate
simultaneously on flows at each resource node and
interact with each other. During overload, the real-rate
controls for each flow cannot directly assign the
calculated proportions. Instead, each flow is assigned a
smaller proportion so that all flows achieve the same (less
than unity) real rate. This policy during overload
increases the delay experienced by all flows. To counter

increased delay, the QoS adaptation policy increases the
priority threshold of flows to reduce flow quality and
resource utilization. When the resource utilization reaches
below 100 percent, flows can be transmitted at unity real
rate. However, now the QoS adaptation decreases the
priority threshold of flows to increase resource utilization
again. This interaction is shown in Figure 9.

In underload, flows are transmitted at unity real rate
and QoS adaptation increases flow quality. In
allocation overload, flows are transmitted at less than
unity real rate and QoS adaptation decreases flow
quality. When buffer overload occurs, real-rate or QoS
adaptation has failed and data is dropped randomly.

Figure 9. Regions of the resource manager
and their definitions

Figure 9 shows that the resource manager can exist in
three regions. In underload region, resource utilization is
less than 100% and the priority buffer of no flow is
logically full. Flows in this region are delivered at unity
real rate and QoS adaptation increases flow quality by
decreasing the priority threshold. In the allocation
overload region, resources needed are more than 100%.
Thus, QoS adaptation decreases flow quality and resource
utilization. The buffer overload region occurs when the
priority buffer of at least one of the flows fills up and the
flow's data is dropped randomly. The resource manager
reaches this region because either the real-rate or the QoS
adaptation controls are not responsive enough to the
changing bandwidth needs of flows.

We plan to use different time scales for the two controls.
The real-rate control operates in a fast loop and responds
to changes in resource needs quickly. The QoS adaptation
control operates in a slower loop and updates the system
behavior based on observing the performance of the fast
loop feedback system. The fast loop control essentially
does not depend on the behavior of the slower loop
control. This solution allows modeling the two controls in
isolation to analyze system behavior.

4.2 Control Composition across Resources
This section describes the feedback interaction among the
controls of the resource nodes along the flow path. This
interaction occurs because the control response at each
node affects the incoming data rate into the priority buffer
at the next downstream node. For instance, data is

delivered to the next node slower than unity real rate
during the rise time of the response and faster than unity
real rate during the overshoot period (see Figure 4). This
interaction can affect resource consumption, logical and
physical buffer size requirements at downstream nodes.
These are each examined in turn.

Resource Consumption The real-rate and the QoS
adaptation control mechanisms have been designed
so that feedback interaction among the resource
nodes does not directly affect resource consumption.
The input to the real-rate control is the time-stamp of
the packet at the head of the priority buffer (see
Figure 7 and Section 2.2). A change in the incoming
rate does not affect the head of the priority queue.
Thus, as long as the priority buffer does not become
empty, the real-rate control behavior is unchanged.
The case when the priority buffer becomes empty is
treated as a boundary condition and the real-rate
control leaves the proportion unchanged so that when
packets appear in the buffer next time, the flow's
previous cached proportion is used. This policy
reduces the ramp up time for the real-rate control
when packets become available, but wastes resources
when packets are not available.

The input to the QoS adaptation mechanism is
resource utilization, an output of the real-rate control
mechanism. Since the real-rate mechanism is
unchanged by the feedback interaction, the input to
the adaptation mechanism is also unchanged. Thus
the QoS adaptation behavior is also not affected.
Since neither of the control mechanisms are affected
by the interaction, resource consumption, which
depends on these mechanisms, is also not affected.
This informal analysis depends on the fact that
packets are not randomly dropped from the priority
buffer, an issue that is discussed next.

Logical Buffer Requirements The control response at
each node (say X) affects the buffer requirements at
the next downstream node (say Y). Note that further
downstream nodes are not affected directly since the
real-rate and QoS adaptation control response at the
next node Y is unchanged, as described above. To
estimate the amount of additional buffer requirements
at node Y due to a step input at the previous node X,
we examine the graph in Figure 4. During the rise
time, real rate of the flow is less than unity (although
more data is being transmitted by node X). Thus
logical buffer length at node X increases and length at
node Y decreases by shaded area A shown in Figure
4. During the time when overshoot occurs, the real
rate of the flow is greater than unity. Logical buffer
length at node X then decreases and length at node Y
increases by shaded area B shown in Figure 4.

 The worst case additional buffer requirements at
node Y due to the control behavior at the node X is
the shaded area B (assuming that node Y's priority
buffer was empty before the step input at node X).
Thus, each node Y must provision for buffering based
on its response (shown by area A) and the response
of the previous node X (shown by area B). With this
amount of buffering, the real-rate scheduler will be
sufficiently responsive that data will not be dropped
from the priority buffers randomly, i.e., underload to
buffer overload transition in Figure 9 will not happen
(however, allocation overload to buffer overload
transition can still occur). Note that the control
response of each node depends on its control
parameters and can be different from the response of
other nodes.

5. Conclusion
Although advanced formal control system design methods
have not been brought to bear on this computer system
design problem, a clear understanding of control issues
and modeling issues, and some very interesting designs,
have been developed. One interesting feature of the
designs is the isolation of the dynamic behavior at one
node from the dynamics of the next node (with the
exception of sizing of buffers to accommodate variations.
This makes the control design problem feasible although
the length of the pipelines, an aspect of the system
structure and order, is not known a priori.

Detailed and patient understanding of the system and
design considerations, and the extra freedom to design the
system as works best, makes it possible to deal with very
complex systems in a simple elegant way.

Future work includes analysis of any shortcomings of the
multiplicative control law in 3.2, improved understanding
of the interactions between the different controllers, and
lessons for the design of good priority marking schemes.

References:
[1] C. Krasic, J. Walpole. QoS scalability for streamed media
delivery. Tech. Report CSE-99-011, Oregon Graduate Institute
of Science and Technology, Sept. 1999.
[2] David Steere, Ashvin Goel, Joshua Gruenberg, Dylan
McNamee, Calton Pu and Jonathan Walpole. A feedback-driven
proportion allocator for real-rate scheduling. Proc. Third
USENIX Symposium Operating Systems Design
Implementation. USENIX, Feb. 1999.
[3] Bernet, Y., Blake, S., Grossman, D., and Smith, A.
An informal management model for diffserv routers.
Work in progress (Internet draft draft-ietf-diffserv-model-04.txt,
exp. Jan. 2001), July 2000.
[4] David Steere, Molly H. Shor, Ashvin Goel, Jonathan
Walpole, Calton Pu, Control and modeling issues in computer
operating systems: resource management for real-rate computer
applications, Proc. 39th IEEE Conf. Decision Contr., Sydney,
Australia, Dec 2000.

Reference

