Preprint DRAFT

Effective use of sleep states with context-aware selective resume

Eric J. Wright, Nilton Bila, Eyal de Lara, Ashvin Goel

University of Toronto

Abstract

In response to increasing power costs and the social impor-
tance of improving energy efficiency, there has been signif-
icant work on taking advantage of a computer’s ability to
enter low-power sleep states. However, current approaches
do not allow fine-grained control of the transition process,
so times between the power states are long. This limits the
usefulness of these states, especially when computers are ac-
cessed sporadically.

We introduce a context-aware selective resume frame-
work that selectively resumes a system, with only the mini-
mal set of devices needed for the waking task, to save power
and shorten transition times. In this paper, we discuss the
classes of applications that would benefit from selective re-
sume, describe the design and implementation of CAESAR,
our selective resume framework, and evaluate two applica-
tions, a temperature monitoring system and a fast memory
server. Our evaluation demonstrates that context-aware se-
lective resume can improve resume latency by 3.9X and en-
ergy savings over 5X compared to traditional approaches.

Categories and Subject Descriptors D.4.0 [Software]: OP-
ERATING SYSTEMS—General; C.0 [Computer Systems
Organization]: GENERAL—System architectures; Hard-
ware/software interfaces

General Terms Design, Experimentation, Measurement,
Performance

Keywords Power Management, Selective Resume, Sus-
pend, CAESAR
1. Introduction

Low-power states in PCs are designed to handle traditional
PC usage, where the PC is on when the user is actively
engaging it in an interactive task, and asleep when the user
is away. In this context, low power ACPI modes [1], such as

[Copyright notice will appear here once ’preprint’ option is removed.]

CAESAR, Effective use of sleep states with context-aware selective resume

S3 (Suspend-to-RAM), provide a good tradeoff between low
energy consumption when sleeping and moderate resume
latencies that are within human tolerance.

The problem is that these low power states are not a good
match for usage scenarios that involve sporadic computation
without user involvement. Consider, for example, a desktop
with network presence. The system may be configured to
sleep when idle while remaining network accessible for re-
mote administration, file access, or to maintain existing con-
nections. The result is a system that needs to resume from
sleep often and inspect packets destined to it. A large por-
tion of this traffic constitutes network noise, and because re-
sume and suspend cycles are slow, it prevents the desktop
from sleeping for much of the time [15]. Similarly, a mem-
ory server that supports partial consolidation of idle desktop
VMs to save energy, as proposed in [9], requires the desk-
top to resume quickly to satisfy page faults from the con-
solidated VM and quickly return to sleep. Finally, remote
sensing applications that periodically aggregate sensor read-
ings from a cluster of hosts also require these hosts to wake
up to provide a sensor reading and quickly return to sleep.
For these sporadic usage scenarios, the current approach of
waking up the full system is too slow and energy inefficient.

There are fundamental differences between the interac-
tive and sporadic usage scenarios. Interactive resume as-
sumes that the PC will stay on for minutes or hours; sporadic
resume assumes the PC will stay on for seconds. Interactive
resume assumes the user will require all the PC’s resources;
sporadic scenarios needs only specific resources, such as the
NIC and a sensor. Interactive resume cares about minimizing
the time before the system becomes responsive to user 10;
sporadic resume cares about minimizing the time it takes to
complete the resume— perform task—suspend cycle and en-
ergy consumption during that cycle. This paper introduces
the concept of context-aware selective resume which ad-
dresses these issues and improves the usability of low power
states for sporadic access scenarios.

Currently, when a system enters (suspends) or exits (re-
sumes) from a low power state, both the BIOS and the OS
must iterate through all devices on the system for the sus-
pend and resume operations. A suspend places all devices
in low-power state, a resume returns all devices to their pre-
sleep state. Additionally, the systems do not know why re-

2013/4/20

sume requests were made, i.e., they are not aware of their
resume context. As such, they are unable to adapt the tran-
sition process to its intended use. This approach is inflexible
and causes long resume latencies. For example, it can still
take up to 30 seconds to fully resume from S3 sleep [5].
While some vendors are claiming improved resume transi-
tion times [7], the approach is still "all or nothing".

This paper introduces CAESAR' a framework for context-
aware selective resume. The CAESAR framework reduces
resume and suspend latencies, increases energy efficiency,
and improves throughput by enabling systems to only re-
sume hardware that is specifically needed to complete a
task. Additionally, we have built two prototype applications
using CAESAR, a temperature monitoring system and a fast
memory server. The temperature monitoring application en-
ables a sleeping system to provide remote access to the am-
bient temperature sensor on a machine. The fast memory
server enables a sleeping system to provide access to sys-
tem memory for on-demand memory operations useful for
applications utilizing virtual machine migration [9, 13]. In
both cases, these applications were implemented at the OS
level to demonstrate their value. However, we believe further
gains are possible through firmware level implementations.

To evaluate the benefits of the context-aware selective
resume functionality provided by CAESAR, we conducted
experiments to compare the resume latencies, energy sav-
ings and throughput of our two applications in comparison to
non-selective resume versions of the application. Our results
demonstrate that compared to current resume approaches, a
selective resume can improve resume latencies by over 3.9X.
Additionally, our results demonstrate that selective resume
can improve energy savings by over 5X. We also show the
ability of a selective resume approach to realize energy sav-
ings in cases where they are not attainable with current ap-
proaches. Finally we review related work and discuss how
selective resume can improve upon their effectiveness.

2. Motivation

Selective resume provides benefits to applications that want
sporadic access to only a part of a system, such as just
CPU and memory, quickly and efficiently. Below, we briefly
describe a normal and selective resume operation, and then
present various scenarios that would benefit from selective
resume.

2.1 Resume Operations

The normal resume process begins when the system receives
a power management event (PME) triggered by a device,
such as the NIC or the CMOS timer. In the normal resume
process, the hardware initialization powers on the devices,
then the BIOS code performs low-level initialization of the
CPU, chipsets and other devices on the system. It then passes
control to the OS, which in turn iterates through all devices

! The name CAeSaR is a play on context-aware selective resume.

CAESAR, Effective use of sleep states with context-aware selective resume

to reinitialize them to their pre-sleep state, and starts threads
that were previously suspended. The BIOS and OS follow a
predetermined order of events during every resume.

In contrast, with selective resume, after the hardware
initialization, the BIOS initializes only the CPU, then de-
termines its resume context by reading the source of the
PME. For example, if the resume was caused by a network
packet, the firmware reads the resume context embedded
in the packet from the NIC. Based on the resume context,
which specifies the required application, the system selec-
tively initializes any required devices and then jumps to one
of several selective resume vectors. For example, a selective
resume vector could be a memory address that transfers con-
trol back to 1) the OS, which then continues the selective re-
sume process, or 2) a special in-memory user-code segment
designed to operate without the OS, or 3) to a firmware code
segment.

2.2 Selective Resume Scenarios

The ability to provide context to a sleeping system upon
resume allows fine-grained control over device use, enabling
the various scenarios that we describe below.

Remote Desktop Access: A common scenario is a user
wishing to conserve power while still having their system
available for remote access and maintaining existing con-
nections. In this case, users can configure the system to ei-
ther wake up whenever it receives any network packet des-
tined to it (wake on directed packet) or to wake up only on
reception of special Wake-on-LAN packets. To use Wake-
on-LAN packets, all applications that communicate with the
system need to be modified so they precede normal traffic
with Wake-on-LAN requests, which limits the number of ap-
plications that will work. As a result, allowing the system to
wake up on directed packet is the most readily deployable
solution. Unfortunately, this leads to very little actual system
sleep as the machine is woken up by a steady stream of net-
work traffic arriving in intervals that are much smaller than
the time it takes for the machine to complete a resume and
suspend cycle [15]. While many solutions have been pro-
posed to address this issue [4, 5, 8, 11, 15], the fundamental
limitation is that the system lacks an awareness of its re-
sume context and the cycle time is too long, which limits the
benefits of sleep. With selective resume, the resume context
would be specified in the packet triggering the Wake-On-
LAN. Upon receiving this packet the firmware would wake
the system but initialize only the CPU, skipping the mem-
ory controller initialization (since it could use the CPU’s L2
cache as working memory[14]) and all other devices, and
then transfer control to the selective resume vector. The sys-
tem would then read the packet from the Wake-Up Packet
Memory, a set of registers in the NIC that store the Wake-on-
LAN packet, and examine the resume context to determine
if a full resume is really needed and if not, return to sleep.
However, if a resume was needed, it would continue and
complete the previously skipped BIOS initialization, such

2013/4/20

as the memory controller, then transfer control back to the
OS by calling the normal resume vector. As shown in Sec-
tion 3.3, selective resume and sleep could be performed in
sub-second time, and so the system would be able to spend
the majority of its time asleep, eliminating the need for net-
work proxies [15], additional servers [5] or device augmen-
tation [4].

Partial Desktop Migration: A partial desktop VM mi-
gration scheme would also benefit from selective resume [8].
In this approach, a minimal working set of memory from an
idle virtualized desktop is migrated to a consolidation server
to enable it to remain active while the host machine is put
to sleep. However, if an activity occurs on the migrated VM
that triggers a page fault, the system must wake up the origi-
nal system and fetch a page of memory. This incurs a signif-
icant delay as the system completes a full resume, enabling
all devices and loading the OS, only to fetch a 4KB page.
With selective resume, a Wake-On-LAN packet with a mem-
ory page address would be sent, and it would selectively re-
sume only the CPU, memory, and NIC, skipping the disk,
graphics cards, and other devices, and transfer control to the
selective resume vector. This operation would not require re-
suming the entire OS as the firmware would have direct ac-
cess to memory, be able to read the page, and return the page
by constructing and sending the packet directly via the NIC.
This approach allows the migrated VM to quickly fetch the
page and respond within application timeout limits.

Computational Offloading: In cloudlet scenarios [16]

mobile systems take advantage of low-latency, high-bandwidth

connections to a nearby cloud environment running virtual
machines to offload computationally complex tasks.

In this approach, a mobile device sends a VM overlay (the
state difference between a base VM stored on the server and
the instance on the device) to a cloudlet server that merges it
with the base image, performs the computation, and returns
the residual VM difference back to the device when com-
plete. A selective resume approach would enable the size of
a VM overlay to be reduced as certain components, for ex-
ample data files, could be left on the device but would still
be accessible using a pull-based approach if needed. This
smaller VM overlay means that only the minimal set of data
is transferred to a cloudlet, saving both transmission energy
usage and device energy usage, as the device can be put
to sleep sooner. Additionally, the ability to rapidly resume
the device means more opportunities for putting it to sleep
can be exploited since we can take advantage of using the
cloudlet for shorter tasks that would not be worth offloading
with longer resume times.

Power Efficient Data Transfers: A selective resume sys-
tem would also enable energy savings and quick response
times in scenarios that wish to transfer data to or from a
sleeping machine. For example in CatNap [12], the authors
present a system that exploits the bandwidth differential be-
tween LAN and WAN links. Transfer data is buffered at a

CAESAR, Effective use of sleep states with context-aware selective resume

proxy device connected to the system by a fast LAN link
(e.g. a 100Mb Ethernet). The system is put to sleep while the
data is sent over a slow WAN link (e.g. a IMb ADSL). The
data received from the WAN is buffered on the proxy device,
and the system is only woken up once the proxy cache is
full. With selective resume, transition times would be much
shorter and this would maximize the sleep time and reduce
the power consumption while awake, lowering the overall
energy usage of the system.

Remote Sensing: Applications that remotely access sen-
sor devices on idle systems can also benefit from selective
resume. One such application is a data center temperature
monitor which periodically aggregates temperature readings
from hosts throughout the data center. Because the readings
are only periodic, hosts that are idle can go to sleep and wake
up quickly only when readings are required.

In Section 3 we demonstrate the potential for improve-
ments in the suspend/resume cycles times of modern hard-
ware, and in Section 4, we show how our implementation of
selective resume meets the requirements of the applications
we described.

3. Profiling Sleep Transitions

In this section, we describe a set of experiments we con-
ducted to better understand sleep transition times in existing
systems, including the asleep—awake—asleep cycle times.

Component Component System Integrated System

CPU Dual-core 2.4GHz Intel, Dual-core 2.6GHz Intel,
1066Mhz FSB, 4MB L2 800Mhz FSB, 2MB L2

Memory 4GB 2GB

Hard Drive 74G SATA 74G SATA

Graphics EVGA 8800 GTX Intel X4500, integrated

Sound Sound Blaster Extreme Realtek, integrated

NIC NVIDIA, integrated Realtek, integrated

Optical DVD-R/W <none>

Power 650 Watt PSU 200 Watt PSU

Table 1. Experimental Systems

3.1 Profiling Setup

Since power consumption, BIOS and hardware latency times
are hardware specific, we conducted experiments on two dif-
ferent systems, a component system, representing a higher-
end machine, and an integrated system, representing an of-
fice PC, as shown in Table 1. We used the same hard drive in
both systems, configured with Debian Linux and the 2.6.18.8
kernel. Our experiments utilize the ACPI S3 sleep state.

3.2 System Transition Times

The SO—S3 sleep transition shows the OS time from issuing
a pm-suspend command from the shell until the final call
to suspend the hardware. The BIOS is not involved in this
transition. The S3—S0 (user) resume transition shows both
the BIOS and OS time until control was returned to the shell.
The S3—S0 (net) resume transition shows both the BIOS
and OS time until a connection was established to a remote

2013/4/20

u30—S3

= S3— S0 (user)

5|2 S3— 90 (net)
0S3—S0—-S3

il

Intearated Svstem

=

Component Svstem

Figure 1. Suspend & Resume Times (w/o Hardware)

server. In all these cases, the systems were given at least 30
seconds to stabilize before another transition was initiated.
The S3—S0—S3 case shows a complete cycle, consisting
of resuming the system, then suspending it, but without
any time to stabilize between transitions. These results do
not include hardware latencies, which we show later. We
conducted multiple runs and the average values shown have
a standard deviation of less than 0.01.

Our findings, shown in Figure 1, demonstrate that the re-
sume operations typically take considerably longer than the
suspend operation, 1.48s vs. 0.42s, for the component sys-
tem, and 1.53s vs. 0.66s, for the integrated system. More
interesting was the impact of calling a suspend directly af-
ter a resume. The cycle times were 5.95s, for the component
system, and 4.64s, for the integrated system, which are sig-
nificantly larger than, 1.9s and 2.19s, the respective sums
of the S3—S0 and SO—S3 times. This large increase was
a result of the systems having to complete the background
device resume operations, prior to beginning the subsequent
suspend operation.

3.3 System Resume Profiling

To evaluate the potential benefits of selective resume, we
profiled the systems by analyzing where and how time was
spent during a resume operation. The test systems were
connected to a server on the same subnet. The server issued a
Wake-On-LAN packet to initiate a resume, and we measured
how long it took before a response was received from the
test systems by the server. We instrumented the kernel to log
key events, then conducted multiple runs and used average
times based on the timestamps found in the system log
(/var/log/syslog). Hardware initialization time was inferred
by subtracting the BIOS and OS time accounted for in the
system logs from the total time taken to open a connection
to the remote server (measured on the server).

As shown in Figure 2, the activities and time spent ini-
tializing the hardware and executing the BIOS code is spe-
cific to each system, but the majority of the resume time is
spent in software, either the BIOS or the OS. Comparing
the two systems, the time spent in the OS is roughly 3.7s
and 3.8s respectively. We can also see how quickly the hard-
ware responds, indicating that sub-second response times are
achievable. For example, our integrated system completes its

CAESAR, Effective use of sleep states with context-aware selective resume

— PME Wake-Up Event (0s)
H/W Initialization Complete (1.18s)

BIOS Routine Complete (1.90s)
Kernel Level Resume Complete (2.65s)
NIC back to Pre-sleep State (4.49s)
r — Connection to Remote Host (5.70) -
T T T T T T -
0 1 2 3 4 5 6 7 8 9 10

Component System - Resume Timeline (seconds)

— PME Wake-Up Event (0s)
H/W Initialization Complete (0.44s)
BIOS Routine Complete (1.25s)
Kernel Level Resume Complete (1.91s)
NIC back to Pre-Sleep State (4.26s)
” Hard Drive Back to Pre-Sleep State (4.45s)
Connectlon lo Remote Host (4 95)
T

T T
) 1 2 3 8 9 10

Integrated System - Resume Timeline (seconds)

Figure 2. System Resume Timelines

hardware initialization in 0.44s, so a selective resume that
does not waste any time initializing unused devices (e.g.,
with a BIOS implementation) could complete a memory
page fetch or packet inspection operation without running
the full BIOS code or starting the OS and return to sleep in
under one second.

Our resume times are comparable to previous work, al-
though our suspend times are lower [4, 5]. However, it is
hard to compare these times because the hardware is dif-
ferent and their methodology for collecting timing was not
fully specified. We plan to run these experiments on other
hardware to get a more comprehensive set of results.

34 Cycle Time

Our next experiment demonstrates the potential cycle time
improvement possible with selective resume. Cycle time im-
provement will benefit applications that require sporadic ac-
cess to system resources, such as the remote access scenario,
described in Section 2. In this scenario, if we find that the in-
coming packet is not worth waking the system, then we put
the system to sleep as quickly as possible without initializing
additional devices in the BIOS or the OS.

This experiment uses a modified version of the Linux ker-
nel. After the first suspend, the subsequent resumes and sus-
pends take a highly optimized kernel path designed to re-
sume and suspend the system as quickly as possible. To mea-
sure the total cycle times, including hardware initialization
times accurately, we used a digital oscilloscope and current
probe connected to the common ground of the motherboard
power supply. We conducted multiple runs and used average
times based on the oscilloscope readings. In these experi-
ments, the unmodified BIOS transfers control back to the
kernel via the normal ACPI resume vector. We do not return
control to the user space, and instead put the system to sleep
as quickly as possible in the kernel.

Figure 3 shows the complete cycle times, including hard-
ware suspend and resume latencies. Compared to the results
in Figure 1 that show only BIOS and OS time, we see that
the cycle time increases from 5.95s to 6.7s (0.75s) for the

2013/4/20

o Non-Selective Cycle
o Selective Cycle

Seconds
o = N w £ [, (=] ~ © o

Comnonent Svstem Intearated Svstem

Figure 3. System Cycle Times (w/ Hardware)

component system, which is reasonable based on observed
hardware initialization times, but for the integrated system
the increase from 4.64s to 8.06s (3.42s) is higher than ex-
pected. Examining the oscilloscope readings, we found that
for roughly 3s of the 3.42s, the hardware is not powered up.
We believe that the hardware is in some transient shutdown
state and does not respond to Wake-On-LAN packets during
the 3s.

Our results also demonstrate that the opportunity for re-
ducing cycle times is high, with our streamlined kernel being
able to reduce the overall cycle time from 6.7s to 1.51s for
the component system, a 77% reduction, and from 8.06s to
1.33s for our integrated system, an 83% reduction. Based
on the oscilloscope readings, the 3s delay described above
does not occur with selective resume, but unfortunately, we
cannot pinpoint the reason for this difference, without more
control over the BIOS. We believe that BIOS programming
will also allow cycle times to be reduced much closer to the
hardware times.

4. Prototype Implementation

Ideally, a context-aware selective resume implementation
would enable both the firmware and OS to work together
and ensure that the required devices are available and no
other devices are activated. In most cases, firmware already
has NIC support for the network boot (BOOTP) protocol
so it could resume in response to Wake-On-LAN packets
and read in the resume context information embedded within
them. The firmware could determine if it should call the OS
resume vector at all, as there may be cases where the context
specifies a firmware application (e.g., a hard reboot or full
power down) where all the processing happens without the
OS being required. The firmware would also need to pass
context information to the OS to inform the OS of which
devices it has enabled, so that the OS knows which devices
are available for its use. Otherwise, the OS may attempt to
use uninitialized devices or mistakenly believe that a device
has been removed from the system.

System firmware code has historically been closed source,
but recently open-source alternatives such as the Coreboot
BIOS [2] and Intel’s TianoCore UEFI [3] will make it eas-
ier and more practical to modify firmware. Unfortunately,
both of these initiatives are still in the developmental state,

CAESAR, Effective use of sleep states with context-aware selective resume

with limited support for modern hardware platforms and/or
limited documentation. Instead, we have chosen to develop
CAESAR, our context-aware selective resume prototype, in
Xen. Xen provides us with a stable development environ-
ment and allows us to develop our applications, as described
in Section 5, without modifying the OS. For CAESAR, the
normal firmware routines run during resume before transfer-
ring control back to Xen and CAESAR. We hope to explore
a firmware based selective resume implementation in the fu-
ture and expect it to yield faster transition times and lower
energy use.

4.1 Initiating the Resume

Our system responds to resume requests in the form of UDP
packets that implement the AMD Magic Packet specification
[6]. These packets are particularly useful as we can embed
our resume context within the packet as described below.
Upon receiving a Magic Packet the NIC triggers a hardware
interrupt that causes the firmware to power up the system.
The firmware then executes its normal resume code that
transfers control back to Xen and our CAESAR selective
resume framework.

It is possible to extend CAESAR to support other meth-
ods of initiating the resume, such as the keyboard or the
CMOS timer event, as new scenarios arise. In the case of
the keyboard, users could map a specific resume context to
a specific keyboard scan code. This would enable a user to
trigger a specific application upon resume based on the key-
board scan code from the wake-up event. In the case of the
CMOS timer, a user would specify the resume context when
setting the CMOS timer alarm prior to suspending.

4.2 Specifying the Resume Context

A fundamental aspect of the selective resume approach is
that a system must have knowledge of the context under
which it is being resumed. CAESAR makes use of a feature
found on many Intel NICs which store the first 128 bytes
of the Wake-On-LAN packet in a series of registers called
the Wake-Up Packet Memory (WUPM) registers. These 128
bytes includes the packet header, giving us up to 108 bytes
after the IP/UDP header data to store the resume context.
The Wake-On-LAN support can be configured to react to
various types of incoming network traffic. We configured the
system to resume upon receipt of a Magic Packet [6]. The
Magic Packet is a normal UDP packet with special header
information at the start of the data segment. To embed the
resume context we place the data after the Magic Packet
header. At a minimum a resume context contains 8 bytes.
The first 4 bytes are a magic number, 0x53524d50, that iden-
tify the Wake-On-LAN packet as context-aware selective re-
sume request. The second 4 bytes are an application specific
context identifier (ID) that specify to CAESAR which ap-
plication is being requested upon resume. Additionally, ap-
plication specific data, such as the page frame number or
sensor ID used in our applications, can also be appended to

2013/4/20

the context after the ID. The embedding of context informa-
tion within a Wake-On-LAN packet enables us to resume the
system and immediately know what type of functionality is
requested.

A production implementation of selective resume should
also include robust security support to prevent exploitation
from unauthorized users. While CAESAR does not currently
implement any security mechanisms, support could be in-
cluded by enabling the encryption and authentication of the
resume requests through the creation of a secure channel like
SSH/SSL.

Begin Xen Suspend Function
Freeze Domains()
Power Down Devices()
sr_presuspend()
While (context = sr_resume())
Do ACPI Suspend()
Switch (context.id)
Case 'App 1’:
ret = appl_resume(context)
Case 'App 2’:
ret = app2_resume(context)
End Switch
if (ret == resume)
Exit While
sr_resuspend()
End While
sr_postsuspend()
Power Up Devices()
Thaw Domains()
End

Figure 4. Xen Suspend Function Modifications

4.3 Xen Modifications

As shown by the pseudo-code in Figure 4, CAESAR modi-
fies the control flow of Xen’s enter_state() suspend function,
located in the power.c file, to allow the evaluation of the re-
sume context and the selection of the appropriate resume
path. The acpi_suspend() function, which handles the low-
level calls to the ACPI interface for sleep and resume oper-
ations, call the sr_resume() function upon return from sleep
to extract the context information specified in the Wake-On-
LAN packet. CAESAR then evaluates the context informa-
tion to determine which applications it should invoke upon
the resume. The applications are then responsible for en-
abling specific device functionality that they may require.
Applications that wish to take advantage of the selective
resume functionality enabled by CAESAR must implement,
at a minimum, an application specific resume() function that
takes as its input a pointer to the context data and returns a
result that indicates if the system should return to sleep or
continue along its normal resume path. Additionally, CAE-
SAR provides a number of function hooks (sr_presuspend(),

CAESAR, Effective use of sleep states with context-aware selective resume

sr_resuspend(), sr_postsuspend()) to the applications, which
they can implement to do any required preparation or clean-
up during the course of the resume and suspend operations.
To enable the use of the Intel NIC and access to the
Wake-Up Packet Memory by CAESAR, we ported the Linux
e1000e network driver to the Xen hypervisor. This repre-
sented the largest and most complex portion of the system’s
development as portions of the PCI device handling func-
tions and other Linux data structures and support routines
had to be ported or reimplemented within Xen. By default,
the Intel 82574L NIC used in our test system, when put into a
low power sleep state, changes the link speed from its normal
1 Gbps to 10 Mbps, which uses less energy. The NIC rene-
gotiates the link upon resume to return to a 1 Gbps speed, a
process that typically takes 4-6 seconds. To prevent this from
happening, CAESAR blocks the NIC from resetting its link
state through the use of a management control register prior
to sleeping. Applications that have little data to transfer may
always decide to keep the NIC at a 10 Mbps link speed or
decide to force a transition to 1 Gbps only when needed.

S. Applications

In this section, we discuss our usage of the CAESAR frame-
work with two applications, a temperature monitoring sys-
tem and a fast memory server application, that benefit from
selective resume.

5.1 Temperature Monitoring Application

The temperature monitoring application provides the ability
to remotely read a system’s temperature sensor. Tempera-
ture monitoring applications are useful in data center envi-
ronment allowing an operator to remotely monitor the tem-
perature in racks without the need for additional sensors.
As laptops, tablets and other PCs continue to include a
variety of sensors (e.g., GPS, camera, microphone) the abil-
ity to sporadically access local sensors in a power efficient
manner becomes increasing important for applications that
want to take advantage of these in-place sensor networks.

5.1.1 Temperature Monitoring Client

Our monitoring client requests temperature readings from
remote systems running a temperature monitoring agent.
Requests are made at a user specified frequency by sending
a UDP Magic Packet [6] to the target machine that contains
context information specifying the that this is a temperature
monitoring request and which sensor to read (e.g., CPU or
on-board). The client continues to send requests until the
next reading interval. If no responses is received from the
agent before the next scheduled reading the client exits with
an error. Since UDP does not guarantee delivery, in addition
to returning the requested temperature, we the agent also
includes a sensor ID in the response. This enables the client
to validate that it has received the appropriate sensor reading.
After receiving a valid result, the client displays the reading
and then waits until it is time for the next reading.

2013/4/20

5.1.2 Temperature Agent - Full Resume Version

The Full Resume temperature agent runs in Dom0, the ad-
ministrative domain of Xen, on a target machine and re-
sponds to incoming temperature requests from a remote
monitoring client. The target machine is configured to re-
spond to Wake-On-LAN requests. If the system is in a sus-
pended power state when the initial request is received from
the client, the target system will conduct a full resume. The
system will then respond to subsequent requests received
while awake. Temperature readings are taken from the moth-
erboard’s hardware monitoring chip, a FinTek f71862fg,
which supports up to three on-board sensors in addition to
the CPU’s temperature sensor. After sending the response
the target then returns into a sleeping suspend-to-RAM (S3)
state by calling the "pm-suspend" function.

5.1.3 Temperature Agent - CAESAR Version

Using CAESAR, we created an agent version in Xen to take
advantage of our selective resume framework. In this ver-
sion, when the initial request packet triggers a resume the
BIOS automatically enables the CPU and memory which
then passes control to CAESAR. CAESAR resumes the NIC
and checks for context information embedded in the initial
request. Since the context information specifies that the re-
quest is for the temperature agent, CAESAR passes control
to the temperature agent code. This code then selectively re-
sumes the FinTek chip, takes a reading of the required sen-
sor (as specified in the context information), and sends a re-
sponse to the monitoring client. After the response is sent
the temperature monitoring agent tells CAESAR to put the
system back into a suspend-to-RAM (S3) state. All of these
operations happen without resuming any Xen functionality
or unfreezing Dom0.

5.2 Fast Memory Server

We utilized the CAESAR framework to enhance the Jettison
partial desktop migration system [9]. Jettison reduces energy
use of idle desktop systems, while supporting user applica-
tions that maintain network presence, by encapsulating user
desktop environments within VMs, consolidating minimal
state of each VM in shared servers, and placing desktops
in sleep mode, whenever the VMs are idle. It consolidates
minimal VM state by migrating only the VM’s execution
state to the server and fetching additional memory pages on-
demand, whenever the consolidated VM’s execution causes
a fault. Jettison runs a memory server on the desktop, wakes
up the desktop when a fault occurs, and subsequently re-
turns the desktop to sleep mode if no additional fault occurs
within a short interval. Because its implementation of the
memory server is in the desktop’s administrative OS, its re-
sume/suspend cycles are slow, limiting the energy savings it
can get. We implemented the memory server using the CAE-
SAR framework to show the benefits of selective resume in
this class of applications. This approach is also applicable to

CAESAR, Effective use of sleep states with context-aware selective resume

systems that implement post-copy VM migration [13] and
want to take advantage of sleep opportunities between page
transfers.

5.2.1 Memory Server - Full Resume Version

Jettison runs the Full Resume version of the memory server
and a sleep daemon in the DomO of the user’s desktop, when-
ever the VM is migrated to the consolidation server. The
memory server maps the VM’s frames with read-only ac-
cess, and responds to network requests from the consolida-
tion server with the corresponding page. The sleep daemon
schedules desktop transitions into sleep mode. It maintains
a sleep timer, used to ensure that the memory server is able
to service bursts of page requests received with low inter-
arrivals, whenever the is desktop awake. The timer speci-
fies the number of seconds in which the desktop remains
awake after serving a page in anticipation of the next re-
quest, and is reset whenever a new page request is received.
Its use reduces the number of energy draining transitions to
and from sleep mode. If no requests arrive before the timeout
is reached, then the daemon puts the system into a suspend-
to-ram (S3) state. In the DomO of the consolidation server,
Jettison runs a memtap process and a wake-up daemon. The
memtap process, maps the memory frames of the consoli-
dated VM with write permissions, and listens for events sent
by the hypervisor whenever the VM faults on access to a
missing page. Memtap notifies the wake-up daemon, which
ensures that the remote desktop hosting the VM’s pages is
awake, before the memtap can issue a request to the mem-
ory server. When the desktop is asleep, the wake-up daemon
sends a Wake-on-LAN packet, in order to wake it up. The
daemon keeps a timestamp of the last page request sent to
the desktop, in order to determine its power state without
sending a network probe. It tests that this timestamp has not
aged by more than the sleep timer of the desktop.

5.2.2 Memory Server - CAESAR Version

The CAESAR version of the memory server runs from
within Xen and is only activated upon completing a selective
resume. After consolidation of the VM to a desktop and prior
to suspending for the first time, the memory server uses the
sr_presuspend() hook to build a memory mapping table that
resolves page references to memory addresses. Upon resume
the server then reads the page reference from the context in-
formation passed to it by CAESAR, looks up corresponding
memory page and sends that page back to the requestor. The
server continues to listen for other memory requests until a
timeout occurs. After the timeout the memory server exits
with a code that tells CAESAR to put the system back into a
suspend-to-ram (S3) state.

5.2.3 Page Request Emulator

For repeatable evaluations we built an emulator that plays
back memory traces captured during real-world usage of the
Jettison system. The memory traces capture the references

2013/4/20

to the memory pages requested by the consolidated VM
with timestamps. The emulator reads in these memory traces
and sends requests to the desktop, replicating the interarrival
times of requests in accordance with the timestamps in the
traces.

Our emulator embeds the page references in UDP request
packets that adhere to the Magic Packet specification [6].
With this approach, if the desktop is sleeping when a request
is made, it triggers a Wake-On-LAN resume. When a re-
sponse is received, the emulator processes the next request
at the time interval specified by the previously captured re-
quest trace.

Because UDP does not guarantee delivery, we ensured
that our emulator could handle requests being lost because
they were sent while the desktop was shutting down. We
used a timeout mechanism to resend the request if no re-
sponse was received within a second and we validated the
page reference on incoming responses to ensure they were
consistent with our original request.

6. Evaluation

In this section we discuss and evaluate the performance of
our two selective resume applications and demonstrate the
additional benefits that a context-aware approach provides.
First, we evaluate energy savings that are possible for both
the temperature monitoring application and the fast memory
server application, by comparing a version of the application
using CAESAR to traditional non-selective resume versions.
Secondly, we provide response time and network throughput
results for our fast memory server application.

6.1 Evaluation Setup & Environment

We conducted experiments on the integrated system identi-
fied in Table 1 since it had the lowest hardware resume time,
but we disabled the on-board Realtek NIC since it did not
support the storing the Wake-On-LAN packet contents as
described in Section 4.2 and used an Intel 82574L Gigabit
PCI-E NIC which does. All of our experiments utilize the
ACPI S3 sleep state.

|
\
‘
B
\
\
\
¢
|
\
\
R W

—&— CAESAR
—o— Full Resume

Energy Savings (%)
3

0 L L L
0 10 20 30 40 50 60

Reading Interval (s)

Figure 5. Temperature Monitoring Application - Energy
Savings

6.1.1 Temperature Monitor Application Evaluation

We evaluated our temperature monitoring application by
comparing the Full Resume and CAESAR versions de-

CAESAR, Effective use of sleep states with context-aware selective resume

scribed in Section 5.1. The monitoring agents were run in
Dom0 using a Linux 2.16.18.8 kernel under Xen 3.4.

We evaluated the energy saving by measuring the amount
of power saved by each version relative to power of running
the agent on the server but never suspending it. We varied
the frequency of temperature reading between 2.5 and 65
seconds as seen in Figure 5. We took measurements with
intervals as low as 15 seconds for the Full Resume version,
below which we were unable to get the system to reliably
complete the resume—respond—suspend cycle within the
15 second interval.

At the lowest frequency schedule, once every 60 seconds,
the CAESAR version demonstrated an energy savings of
85% vs. ~73% for the Full Resume version, a 16% improve-
ment in energy savings. At the highest obtainable frequency
for the Full Resume version, 15 seconds, the CAESAR ver-
sion demonstrated an energy savings of 78% vs. 15%, an im-
provement of over 5X. In all cases, the energy saving of the
CAESAR version were higher and grew as the sample fre-
quency increased. Additionally, since the CAESAR version
has quicker suspend and resume times, it can support sam-
pling frequencies up to 2.5 seconds and realize energy sav-
ings where utilizing a Full Resume approach, with its long
cycle times, could not.

6.2 Memory Server Evaluation

We evaluated our memory server application by comparing
the Full Resume and CAESAR versions described in Section
5.2.

We evaluated energy savings by replaying three previ-
ously captured memory traces using the emulator described
in Section 5.2.3. Figure 6 compares energy savings when
desktops resume fully to serve pages, with savings obtained
CAESAR invokes only the memory server. The figures show
the energy savings of the desktop when its VM is consoli-
dated over a period of one hour. In total we collected and
analyzed over 90 traces then selected these three traces as
representative of the volumes and page request times found
in the other traces.

During the evaluation we tuned a server timeout setting,
which controls how long the server waits for an additional
request before it returns to sleep, to achieve the optimal
energy savings for each version. To determine this value,
we used a statistical analysis on our set of memory traces,
in conjunction with the power profile of the system and the
resume and suspend times [9]. This value ensures that the
system doesn’t return to sleep too early and enables optimal
results for each version. We used a value of 10ms for the
CAESAR version and 6s for the Full Resume version.

Figure 6(a), shows that for User 1, CAESAR increased
energy savings from 17% to 28% in the first five minutes.
At ten minutes, the savings increased from 28% to 44%. At
twenty minutes, CAESAR increased the savings from 44%
to 61%, and finally, at the end of the hour, CAESAR in-
creased from 61% to 74%. Initially, during the first minute,

2013/4/20

(a) User 1 Desktop Energy Savings
1.0 . : .

—
R 08
-l I
206
Z 04 —
2 02 =
5 |y
S 0.0 — Full Resume
N CAESER
_0'2 1 1
0 1000 2000 3000
Run Time (sec)
(b) User 2 Desktop Energy Savings
1.0 . . .
—
R 08
206
Z 04
Zy 02
e
S 0.0 R —— Full Resume
- R (R CAESER
0.2 ! L
0 1000 2000 3000
Run Time (sec)
(c) User 3 Desktop Energy Savings
1.0
_ . . .
R 08
&
206
R B — T
[z
Zy 0.2 ——=
;3 W
S 00 = —— Full Resume
= R CAESER
0.2 ! L
1000 2000 3000

Run Time (sec)

Figure 6. Memory Server Energy Savings

CAESAR leads to a loss of energy as our implementation
first transitions the PC into low power, incurring the tran-
sition cost, before it can start serving pages. This initial
penalty can be avoided by serving pages from the admin-
istrative domain (as done by Jettison) at the start, and transi-
tioning to the CAESAR-based memory server only after the
first sleeping opportunity.

Figure 6(b), shows that for User 2, CAESAR increased
energy savings from 18% to 28% in the first five minutes.
At ten minutes, the savings increased from 29% to 42%.
At twenty minutes, CAESAR increased the savings from
39% to 57%, and finally at the end of the hour, CAESAR
increased from 66% to 75%.

Figure 6(c), shows that for User 3, CAESAR increased
energy savings from 14% to 16% in five minutes. In ten
minutes it increased savings from 17% to 24%. In twenty
minutes it increased energy savings from 21% to 31%. And
finally over the course of an hour, savings increased from
26% to 42%. The figure shows that, while savings for User

CAESAR, Effective use of sleep states with context-aware selective resume

3 are lower across the consolidation, CAESAR is still able
to improve savings significantly. Across users, CAESAR
delivers improvements of 13% to 66% over five minutes,
43% to 54% in ten minutes, 38% to 49% in twenty minutes,
and 14% to 65% in an hour.

Comparing the Full Resume and CAESAR versions, as
shown in Figure 6, we see that the improvements offered
by CAESAR are largest early on in the consolidation run
time. This results from a large amount of sporadic requests
as the system faults on a few pages frequently. In all cases
the CAESAR version continued to deliver improved energy
savings as it is able to exploit more opportunities to sleep
between page requests as result of its lower latency and
higher throughput.

3500

M Full Resume
3000 B CAESER

2500

2000

1500

Sleep Time (s

1000

500

Figure 7. Jettison Sleep Times Results

6.2.1 Sleep Times

Shorter cycle times increase total sleep the desktop can per-
form during consolidation. Sleep time refers the time in
which the desktop is in low power mode while its VM is con-
solidated. Figure 7 shows increases in desktop sleep times
with the use of CAESAR, over an hour long consolidation
of the VMs for the three users. Sleep times aggregate all in-
tervals of at least one second in which the desktop used less
than 8 W of power. The figure shows that, for User 1, CAE-
SAR increases total sleep time from 39.19 minutes to 51.01
minutes. For User 2, it increases total sleep time from 41.41
minutes to 52.32 minutes. And finally, for User 3, CAESAR
increases total sleep time from 15.24 minutes to 30.98 min-
utes. Across users, CAESAR increases sleep times by 26%
to 103%, during the hour-long period of consolidation.

Version Response Time Max. Throughput
Full Resume 5,865 ms 22 MB/s
CAESAR 1,487 ms 34 MB/s
Always On 0.2 ms 22 MB/s

Table 2. Latency & Throughput Results

6.2.2 Resume Latency

We evaluated response time latency by measuring the time
it takes for a system to successfully receive a requested page
from our memory server. This represents the total time it
takes to send the initial request to the server and receive
the complete response from the server including all network,

2013/4/20

system and resume time overhead. We conducted 45 runs
and averaged the results across all the runs. The results are
shown in Table 2. They demonstrate the effectiveness of our
selective resume approach in reducing the overall resume la-
tency. The response time for our CAESAR implementation
is almost 4X the Full Resume version at resuming and re-
sponding to a request.

6.2.3 Throughput

We evaluated both overall throughput, which includes re-
sume latency, and maximum throughput which shows the
highest speed at which pages could be sent.

We measured the maximum throughput that each imple-
mentation could achieve by calculating the time it took to
request ~256M worth of pages from an awake and active
memory server. As shown in Table 2, our Selective Resume
implementation was able to reach a maximum throughput
speed of over 34 Megabytes/second, which was ~55% faster
than the 22 Megabytes/second achieved by the other ver-
sions, including the Always On version. This increased per-
formance is a result of our CAESAR version not having the
operational overhead created by having the complete OS re-
sumed.

40
—©- Always On

35| -5~ CAESAR
30 | —o— Full Resume

25 - —=

20

15 e

10 A~

3 }/E/j_ij/

1 2 4 8 16 32 64 128
MB Transferred

MB/sec

256

Figure 8. Overall Throughput Results

We evaluated the overall throughput by measuring the
time it takes for a system to successfully receive a set of
pages from a suspended memory server. This represents the
total time it takes to send the initial request to the server and
receive the complete response from the server including all
network, system and resume time overhead. We conducted
the tests by requesting a set of between 1 and 256 megabytes
of pages and did five separate runs and averaged the results
across all the runs for a given set size.

The results shown in Figure 8 demonstrate the effective-
ness of selective resume in increasing overall throughput as
a result of providing both increased maximum throughput
and reduced first response latency. Interestingly, with request
sizes of more than ~95 MB, our CAESAR implementation
outperforms even the always on system because the higher
maximum throughput our CAESAR version achieves out-
weighs the short resume latency it introduces during the re-
sume phase.

CAESAR, Effective use of sleep states with context-aware selective resume

7. Related Research

While ACPI sleep states have been available on systems for
many years, prior research to take advantage of them has fo-
cused primarily on avoiding unnecessary resumes. These ap-
proaches have, in part, been driven by the lack of flexibility
and high latency of resume transitions, and they all require
system augmentation with external servers or embedded sys-
tems. In contrast, our research seeks to remove the underly-
ing problem by making sleep states more flexible by having
them designed into the system themselves.

Most similar to CAESAR is Turducken [18] which uti-
lizes tiers of lower power hardware to respond to resume
requests and only resumes higher tiers as required by the re-
sume context. In contrast, our approach increases sleep times
and provide the illusion of being online without requiring
additional hardware or changes to applications.

Many systems have been designed to provide the illusion
of on-line availability, by building a network proxy or spe-
cialized hardware that can filter and/or respond to incoming
network requests [4, 5, 15, 17]. The proxy checks incoming
requests and only resumes the system for those requests that
meet specific criteria. These approaches all require an exter-
nal proxy server or hardware to be effective and often require
application modifications.

Other research has focused on taking advantage of sleep
states by offloading processing. For example, virtualized
desktops can be offloaded to a separate server [9, 11].
Brakmo et al. [10] propose opportunistic use of short sleeps,
that are imperceptible to the user, to save energy of portable
devices. Our work complements both these approaches by
providing fast fine-grained access to resources as they are
needed.

8. Conclusions

We have made the case that the current resume functionality
does not have the flexibility to meet the needs of modern ap-
plications that require sporadic access to system resources.
We have shown that resume latencies are mostly dominated
by software and can be reduced significantly. We have in-
troduced CAESAR, a framework for utilizing context-aware
selective resume. We have implemented two applications
and demonstrated that our selective resume approach can re-
spond up to 3.9X faster and improve energy savings by over
5X. Additionally, we show that selective resume enables im-
proved cycle time enabling us to realize energy savings in
applications where non-selective approaches cannot.

Ultimately, we expect that context-aware selective re-
sume functionality will enable new research that can take
advantage of the greatly reduced cycle times and additional
power savings. If we can reduce the cycle times below an
application’s or user’s ability to perceive them then we have
effectively created an always-on system that consumes al-
most no power.

2013/4/20

References

[1] ACPI, advanced configuration and
power interface specification, revision 4.0.
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf.

[2] Coreboot project - http://www.coreboot.org/.
[3] Tianocore project - http://sourceforge.net/projects/tianocore/.

[4] AGARWAL, Y., HODGES, S., CHANDRA, R., ScoTT, J.,
BAHL, P., AND GUPTA, R. Somniloquy: augmenting network
interfaces to reduce PC energy usage. In Proceedings of
the USENIX symposium on Networked systems design and
implementation (NSDI) (2009), pp. 365-380.

[5] AGARWAL, Y., SAVAGE, S., AND GUPTA, R. SleepServer: a
software-only approach for reducing the energy consumption of
PCs within enterprise environments. In Proceedings of the 2010
USENIX annual technical conference (2010).

[6] AMD. Magic packet technology -
http://support.amd.com/us/embedded_techdocs/20213.pdf.

[7] ASUS. Asus zenbook ux2le product website.
http://asus.com/Notebooks/Superior_Mobility/.

[8] BILA, N., DE LARA, E., HILTUNEN, M., JosHI, K.,
LAGAR-CAVILLA, H. A., AND SATYANARAYANAN, M.
The case for energy-oriented partial desktop migration. In
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing (Berkeley, CA, USA, 2010), HotCloud’10,
USENIX Association, pp. 3-3.

[9] BILA, N., DE LARA, E., JosHI, K., LAGAR-CAVILLA,
H. A., HILTUNEN, M., AND SATYANARAYANAN, M. Jettison:
Efficient idle desktop consolidation with partial vm migration.
To appear in Proceedings of the European Conference on
Computer Systems (EuroSys2012) (2012).

[10] BRAKMO, L. S., WALLACH, D. A., AND VIREDAZ, M. A.
usleep: A technique for reducing energy consumption in
handheld devices. In Proceedings of the 2nd International
Conference on Mobile Systems, Applications and Services
(Mobisys 2004) (Boston, MA, USA, Jun 2004).

[11] DAS, T., PADALA, P., PADMANABHAN, V. N., RAMIJEE,
R., AND SHIN, K. G. LiteGreen: saving energy in networked
desktops using virtualization. In Proceedings of the USENIX
annual technical conference (2010).

[12] DOGAR, F. R., STEENKISTE, P., AND PAPAGIANNAKI,
K. Catnap: exploiting high bandwidth wireless interfaces
to save energy for mobile devices. In Proceedings of the
international conference on Mobile systems, applications, and
services (MobiSys) (2010), pp. 107-122.

[13] HINES, M. R., AND GOPALAN, K. Post-copy based
live virtual machine migration using adaptive pre-paging
and dynamic self-ballooning. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments (New York, NY, USA, 2009), VEE ’09,
ACM, pp. 51-60.

[14] Lu, Y., Lo, L., WATSON, G. R., AND MINNICH, R. G.
CAR: using cache as RAM in LinuxBIOS, 2006.

[15] NEDEVSCHI, S., CHANDRASHEKAR, J., L1U, J., NORD-
MAN, B., RATNASAMY, S., AND TAFT, N. Skilled in the art of
being idle: reducing energy waste in networked systems. In Pro-

CAESAR, Effective use of sleep states with context-aware selective resume

ceedings of the 6th USENIX symposium on Networked systems
design and implementation (NSDI) (2009), pp. 381-394.

[16] SATYANARAYANAN, M., BAHL, P., CACERES, R., AND
DAVIES, N. The case for vim-based cloudlets in mobile
computing. IEEE Pervasive Computing 8 (October 2009), 14—
23.

[17] SHIH, E., BAHL, P., AND SINCLAIR, M. J. Wake on
wireless: An event driven energy saving strategy for battery
operated devices. In Proceedings of the Sth Annual International
Conference on Mobile Computing and Networking (MOBICOM
’02) (Atlanta, GA, USA, Sep 2002).

[18] SORBER, J., BANERJEE, N., CORNER, M. D., AND
ROLLINS, S. Turducken: Hierarchical power management
for mobile devices. In Proceedings of the 3rd International
Conference on Mobile Systems, Applications and Services
(Mobisys 2005) (Seattle, WA, USA, Jun 2005).

2013/4/20

