

Control and Modeling Issues in Computer Operating Systems: Resource
Management for Real-Rate Computer Applications

David C. Steere†, Molly H. Shor‡, Ashvin Goel†, Jonathan Walpole†, Calton Pu��

†{dcs, ashvin, walpole}@cse.ogi.edu, Dept. of Computer Science and Engineering,

Oregon Graduate Institute, Beaverton, Oregon, 97921-1000 USA
‡ shor@ece.orst.edu, Dept. of Electrical and Computer Engineering,

Oregon State University, Corvallis, Oregon 97331-3211 USA
� calton@cc.gatech.edu, College of Computing, CCB Room 261,

Georgia Institute of Technology, Atlanta, Georgia 30332-0280 USA

† This work was supported by in part by DARPA contracts/grants N66001-97-C-8522, N66001-97-C-8523, and F19628-95-
C-0193, NSF grants ECS-9988435 and CCR-9988440, and by Tektronix, Inc. and Intel Corporation.

Abstract
Commonplace computer applications on general-purpose
computers increasingly are expected to meet “real-rate”
requirements, processing or displaying data or images at
an externally driven “rate”. We describe a feedback-
control-based resource manager design approach,
allowing the computer system to allocate resources such
as CPU and network bandwidth based on the measured
“progress” of the applications. Progress is measured by
separating a complex application into a number of
simpler applications separated by buffers. The resource
scheduler measures the buffer fill levels to determine
whether the rates of data coming in and going out of each
buffer are matched. Feedback controllers keep the buffer
levels around a certain fill level. We have developed
prototype systems in the Linux environment that
demonstrate that (classical) feedback control can be used
to match the real rates. However, more formal methods,
such as those that can be developed by the control theory
community, are needed to help with the analysis and
design of such systems to make them commercially
viable. This paper presents the computer system
problems, results from the prototype designs showing
feasibility, some preliminary modeling results, and
demonstrations and discussions of which control
modeling, analysis and design results and techniques
appear to be relevant to this computer system problem,
and why.

1 Introduction
A key problem facing designers of traditional and
embedded operating systems is the question of how to
build adaptive software systems that are robust,
predictable, and efficient across a range of operating
conditions. A limiting factor in this effort is the lack of
an established methodology for building adaptive system
software. Current approaches rely on ad-hoc wizardry
and result in systems in which the adaptation, or control
behavior, is indistinguishable from the system under

control. An example of this is TCP’s congestion control
mechanism, which shows both the strength and weakness
of current state-of-the-art in building adaptive software.
It is extremely successful: many credit the success of the
Internet on the robustness and performance of TCP. At
the same time, it is understood only by wizards and is
therefore difficult to modify, extend, or reuse.

We believe that a well-defined methodology for
reasoning about system dynamics will allow more
widespread development of adaptive software based on
feedback. One obvious place to start in developing such a
methodology is in control theory. Control theory is used
in many different engineering disciplines, including
electrical engineering, yet somehow has not been widely
applied to software systems.

Recently, several researchers have begun to look at
the use of feedback controllers for resource allocation
([1],[2],[3],[4],[5],[6],[7],[8]). For example, Steere et al.
introduced progress-based resource management, which
allocates resources to applications based on perceived
need [1]. The scheduler monitors an application’s rate of
progress, compares these measurements with the
application’s desired rate, and increases or decreases the
application’s allocation to drive its actual rate to the
desired value.

Initial experience with prototypes is promising and
indicates a strong need for more formal modeling and
analysis. The prototypes are difficult to tune correctly.
Correct performance depends both on the controller’s
parameter settings and the behavior of the application,
which can change dynamically and, from the operating
system’s point of view, unpredictably. In addition, the
presence of adaptive applications, such as adaptive QoS
(Quality of Service), together with this adaptive resource
manager, can lead an otherwise stable system to oscillate
or diverge. Standard computer-science formal methods do
not help one to understand a system’s adaptive behavior,
since they focus on interface syntax and semantics. We
need analytical techniques for understanding the behavior

of a dynamic system over time, such as those used in
control systems.

At the same time, applying control-style modeling
and analysis to software systems is itself a research
challenge. Software systems are discrete by nature, and
one must consider quantization error not only in sampling
and representation of data values but also in the
underlying signal itself. In addition, software applications
such as pipelines contend for access to managed resources
such as CPU and memory, but also to unmanaged
resources such as synchronization variables (locks and
semaphores). These synchronization issues make it
difficult to predict the effect of a change in allocation for
one resource, and hence to design a controller for that
resource. These are just a few of the challenges that we
face, from the perspective of the computer system
researchers. These challenges will be discussed from the
perspective of a control theory researcher in Sections 3
and 4.

The purpose of the papers in this invited session is to
challenge the control theory research community to tackle
the modeling and analysis problems faced by computer
system researchers. Demonstrations of how modern
control tools can be used to solve the problems specific to
computer system developers, and new analytical tools
adapted to these problems, are welcome. These tools
should address the problems of interest to computer
system developers and should be communicated in a form
that can be applied by those who are not specialists in
control theory. The following fields of control theory will
be particularly pertinent to these problems: adaptive
control, robust control, bilinear and nonlinear control,
stochastic control, hybrid systems, discrete-event systems,
two-time scale systems, decentralized control, sampled-
data systems, control with state- and control-variable
constraints, and classical discrete-time control.

In this paper, we describe our prototype progress-
based resource allocators in detail and present several
challenges in modeling and control of such systems.
Section 2 presents the concept of progress-based
scheduling and describes three existing prototype
progress-based schedulers in the Linux operating system
and our experience with them. Section 3 discusses
challenges and modeling issues for these systems, in
control-theoretic terms. Section 4 discusses the controller
structures preferred by the computer system researchers.
Section 5 summarizes some desired control performance
issues for these controlled computer systems, open
problems and desired tools, from the perspective of the
computer system researchers.

2 Progress-based Scheduling
Our motivation for revisiting the question of resource
allocation stems from the increasing importance of real-
rate applications in both general purpose and embedded
systems. A real-rate application processes a stream of
data and has specific rate or throughput requirements in
which the rate is driven by real-world demands.

Examples of real-rate applications are software modems,
web servers, speech recognition, and multimedia players.

The goal of managing resources for these
applications is simply defined: the application should
receive a sufficient amount of resources to keep up with
its external or “real” rate, but no more. Unfortunately, this
goal is difficult to realize in practice because of the degree
of uncertainty in assessing the application’s needs. This
uncertainty has several sources. First, an application’s
desired rate is often available in application-level terms,
such as “frames per second”, and not in terms of the
resource, such as “bits per second”. Second, an
application’s resource requirements can change
dynamically and radically, such as the per-frame CPU
required to decode a variable bit-rate video stream. Third,
the efficiency with which an application uses a particular
resource can also vary with time. Giving an application
10% more CPU may increase its progress linearly if there
is no memory contention, but not at all if the application
is paging heavily. Fourth, the application may be
adaptive and may change its rate in response to changes in
resource allocation.

2.1 The Concept
To overcome these uncertainties, we developed progress-
based resource management, which uses feedback control
to allocate resources based on measurements of
application progress. The feedback controller monitors an
application’s progress and compares it with its externally
driven rate, such as the frame rate of a video player or the
rate of incoming requests to a web server. The controller
then calculates an adjustment to the application’s
allocation based on the application’s current deviations
from the external rate, on past observations of the
application, and on observations of the application’s
environment. It then adjusts the allocation by tuning the
scheduler’s parameters on behalf of the application. For
example, a controller for CPU could measure an
application’s “rate of progress” in terms of “units of work
per time”, compare this with the rate at which work units
are delivered to the application, and then increase or
decrease the application’s CPU allocation depending on
whether the application’s rate is below or above its
desired rate.

We detect the mismatch of these two rates by
increases and decreases in buffer fill levels in a pipeline
of application threads, as depicted in Figure 1. These
buffers provide a “symbiotic interface” allowing the
resource manager to monitor application progress without
violating the separation of concerns between the operating
system and the application.

We have built three prototype progress-based
resource managers. In each, we divide the functionality
into three components as shown in Figure 2: monitoring,
control, and dispatch. The monitor transparently observes
application progress and feeds this data to the controller.
The controller calculates the correct allocation for each
application in the system using past and present
observations of application progress and informs the

dispatcher of its allocation decisions by assigning
reservations to applications (in terms of proportion of
resource reserved per allocation period, for each
application.) The dispatcher builds a dispatch schedule
for all the applications in the system using reservations
supplied by the controller.

2.2 Some Prototype Systems
The following subsections describe our three prototype
resource allocators. Section 2.2.1 describes a controller
that increases or decreases the percentage of the CPU
assigned to an application. Section 2.2.2 describes a
controller that assigns the period over which the
application receives its CPU allocation. Section 2.2.3
describes a network bandwidth allocator, similar in nature
and function to the CPU proportional allocator. We have
not yet constructed a period allocator for the network. All
of these controllers are available on the web at
http://www.cse.ogi.edu/sys1/projects/quasar/releases.

2.2.1 Allocating CPU Proportion
The role of the CPU proportion allocator is to assign
processing resources, or CPU, automatically to threads, an
application’s active consumer of processing resources.
The allocator is performing well if it ensures that the
threads can keep up with the real rate. The allocator
assigns resources to threads in terms of proportion and
period. For example, if the allocator assigns a thread a
proportion of 20% and a period of 100 msec, the thread
will run exclusively on the CPU for 20 msec every 100
msec, although it may not get 20 consecutive msec, and
will be idle the remaining 80 msec. We assume for this
discussion that applications are structured as pipelines of

threads as depicted in Figure 1, such as multimedia
pipelines. We discuss CPU allocation for other kinds of
applications elsewhere [1].

The goal of the CPU allocator is to keep the input
and output queues of all threads half full. Keeping the
buffer fill levels steady indicates that the thread is

matching its real-rate, a rising input-buffer fill level
indicates the job is falling behind its rate, and a falling
input-buffer fill level indicates the job is getting ahead.
For the output queue, the reverse is true. Keeping the fill
levels at half full gives maximum room for over-
allocation or under-allocation error. This goal is
complicated by the fact that the system has no
information about the application except the existence of
its input and output buffers, the size of the buffers, and
the current fill levels in these buffers.

To ensure that the operating system can respond to
dynamic changes in a thread’s resource needs, the
allocator samples the buffer fill levels for every thread
every 10 msec. For each thread, the allocator normalizes
the fill level to a number between – ½ and ½, and adds or
subtracts the fill levels for all the thread’s input and
output queues to combine them into a single value. This
value is then fed to a feedback circuit similar to the
Simulink block diagram depicted in Figure 5. In essence,
it consists of a low-pass filter connected in series with a
PID. The output of the controller, the suggested allocation
for this job, is then passed to a standard rate-monotonic
scheduler (RMS) [9], which ensures that the thread
receives its allocation.

To ensure that the RMS can successfully schedule
all of the threads, the allocator sums the allocations for
each thread and compares the total with a threshold. If the
total exceeds the threshold, the allocator “squishes” some

ThreadThread Thread Thread

Scheduler/DispatcherController

Monitor
Progress

Actuate

Allocate
Resources

Figure 2. Diagram of progress-based scheduler prototype. This diagram shows the rough
architecture of our scheduler. A feedback controller monitors the rate of progress of jobs, and
calculates new proportions and periods based on the results. Actuation involves setting the
proportion and period for the threads. The scheduler is a standard proportion/period reservation-
based scheduler.

Thread 1 Thread 2 Thread 3 Thread 4

Buffer 1 Buffer 2 Buffer 3

Figure 1. Pipeline arrangement of application threads. Each thread processes data – taking
data as input and outputting data. [At least] one is driven by a “real” external rate. The rates of the
others are controlled so that the buffer fill levels are maintained around a desired fill level. This
arrangement guarantees that the “rate of progress” of each thread is matched to its desired rate.

or all of the allocations so that the total is less than or
equal to the threshold. Currently, the controller squishes
the allocations proportionately; the larger the proportion,
the more it is squished. Alternately, it could decide to
suspend or kill less important jobs in order to maximize
the allocation to important jobs [1].

We have implemented this controller in the Linux
2.0 operating system. We implemented the controller
using the SWiFT Feedback Toolkit [10] as a user-level
process. The RMS is implemented as a scheduling policy
in the Linux kernel, and we added a system call
(procedure to invoke operating system functionality) that
allows threads to register their input and output queues.
As a side effect of registration, the operating system maps
the fill levels of the registered buffers into the address
space of the controller process to decrease the overhead of
monitoring. Our scheduler does not control threads that
do not register themselves.

To demonstrate the dynamic behavior of our
controller, we present the results of a scheduling
experiment using a simple application structured as a
producer and consumer thread. The producer works for
some number of cycles, writes a data block into a buffer,
and then repeats. The consumer reads from this buffer,
works for some number of cycles on the data, and then
repeats. To eliminate experimental noise due to memory
or cache effects, the “work” performed by both producer
and consumer is an idle loop in which the number of
iterations is controlled by the experimenter. The rate at
which data is consumed or produced depends on the

number of iterations in the work loop as well as the
allocation given to the thread.

Figure 3 presents the results of an experiment to test
the responsiveness of the controller with no competing
load. The experiment manipulates the production rate
(producer’s rate of progress) by changing the amount of
work to produce a piece of data while holding the
allocation fixed, resulting in a rate that resembles a
square-wave with different width pulses. The consumer
requires a constant amount of work to consume a data
item, and so the allocator controls the consumption rate
by adjusting the consumer’s allocation. Figure 3 shows
the actual rate at which data were enqueued into the
buffer by the producer and dequeued by the consumer
and the buffer fill level. As can be seen, the consumer’s
rate closely matches the producer’s rate. It takes roughly
200 msec to drive the fill level back to half-full. This is
primarily limited by the peak rate at which the consumer
can consume data since the allocator cannot give it any
more than 100% of the CPU.

2.2.2 Allocating CPU Period
The CPU period allocator determines the period of time
over which a thread will receive its proportion [2]. The
correct choice of period represents a trade-off between
pressure to increase and pressure to decrease the period.

There are several reasons for increasing the period.
First, a large period increases the flexibility of the
scheduler by raising the bound on the longest continuous
interval the job is allowed to run. For example, a thread
with a 50% proportion can run for at most 500 msec if its
period is 1 second while it can run up to 1 second if its
period is 2 seconds. Second, a large period reduces
quantization error. The smallest enforceable time interval,
or quanta, is somewhere between 1 and 15 msec on
typical operating systems. If the quanta are 10 msec, a
period of 20 msec allows only two different proportions
to be effectively achieved regardless of the proportion
assigned by the allocator, whereas a period of 2 seconds
allows 100 different proportions to be achieved. Third,
large periods potentially reduce the overhead of switching
between threads by allowing larger contiguous
allocations, reducing the number of switches per unit
time.

The key reason to reduce period is to smooth or pace
the thread’s progress to reduce burstiness below some
tolerable level, to avoid over- or under-flowing the
buffers, and to limit the lengths of idle times. Burstiness
results from the discrete nature of the scheduling; each
thread alternately receives all or none of the CPU for
some period, which is a subinterval of the CPU allocation
period. The buffer fill level thus varies within a single
allocation period, and may vary more over a longer
allocation period. Intuitively, a smaller period places a
shorter bound on the consecutive execution time, reducing
the amount of data that can be produced or consumed
within a period, and on the idle time.

Figure 3. Response of the controller to a variable-
rate real-rate job. The producer runs at a
predetermined variable rate, the controller determines
the consumer’s allocation so that its progress matches
that of the producer. The top graph shows the progress
rates of the producer and consumer, the bottom graph
shows the corresponding queue fill level.

Figure 4: Dynamic period adaptation. This graph
shows the periods assigned by the controller to a
producer and consumer which change their rates of
production every 30 seconds (denoted by the vertical
lines). Note that upward adaptation is much slower
than downward, due to our use of linear increase and
exponential decrease of period in response to
measured burst size in buffer fill level.

The period controller attempts to balance these

conflicting concerns by assigning period such that the
burstiness exhibited by a job is a fraction of the buffer
size, in order to avoid over- or under-flowing the buffer.
To achieve this goal, the controller monitors the high- and
low water marks on fill level each period, and treats the
difference as the burst size. (Note that the maximum
possible burst size may be larger than this metric, since
the controller may have interleaved the producer and
consumer of the buffer during the period). This burst size
is fed to a controller, which adjusts the period to drive the
burst size to be 50% of the buffer size. If the burst size is
less than 50%, the period is increased linearly over time.
If the burst size exceeds 50%, the period is cut in half for
an exponential reduction over time.

Figure 4 shows the dynamic behavior of this
controller. To demonstrate the ability of the controller to
dynamically tune its period according to job behavior, we
ran a simple producer/consumer in which the producer
changed its time per data unit every 30 seconds, toggling
between 1.5 and 3 msec per data unit. The period
controller detects that the application’s behavior has
changed based on its monitoring of burst size, and adjusts
the period accordingly. Note that the period controller
controls both the producer and the consumer’s periods.

2.2.3 Allocating Network Proportion
The network allocator is similar in form and function to
the CPU proportion allocator. This controller sits between
the transport layer in the protocol stack and the device
queue, adding a queue per stream and a packet scheduler
that moves packets from the per-stream queues into the

device queue. The controller tracks application progress
by monitoring the fill level in the per-stream buffer at the
sender and the fill level in the socket buffer on the
receiver. The controller itself is a low-pass filter in series
with a PID. The packet scheduler delivers allocation in
terms of proportion and period like the CPU dispatcher,
implementing an earliest-deadline first (EDF) algorithm.
The packet scheduler “schedules” packets by moving
them from per-stream queues into the FIFO device queue
for eventual transmission over the network.

One interesting complication that arises in the
network controller is that the most prevalent transport
protocol, TCP, is itself adaptive and adjusts its behavior
in response to changes in available bandwidth. This
creates the possibility of this feedback resulting in
instability or reduced throughput. As an example,
consider the effect of a long period and a small network
proportion allocation. At the beginning of a stream’s
allocation period, the network allocator will move packets
quickly onto the device queue since the stream has not yet
used up its allocation. After its allocation has been used,
the stream’s packets will wait until the next period before
entering the device queue. TCP sends packets and then
waits for an acknowledgment that they have been
received. If too long a delay occurs before it receives the
acknowledgment, then it cuts back the rate at which it
sends packets. A long allocation period may result in a
long delay, which TCP would attribute to congestion,
causing it to reduce the rate at which it sends. This in turn
will cause the bandwidth controller to reduce the
allocation, and this cycle will continue until TCP is
making little or no progress.

2.3 Responding to Overload
Although these controllers can balance resource needs
between applications automatically and with minimal
input from the applications, they cannot prevent overload
from occurring. Overload occurs when more resources are
needed than are available. A result of overload is that
some element of one of the competing pipelines cannot
match the real rate and the entire pipeline progress will
slow. To give the pipeline a chance to respond to the
overload, the controller detects the overload condition and
notifies the application. In another paper submitted to this
session, we describe an application’s response to overload
in which the application reduces its consumption of the
resource by dropping its rate [3], (see also [11]). We call
this form of application tuning adaptive QoS, since the
application is lowering its resulting quality to lower its
consumption of resources.

2.4 Our Experience and the Next
Challenge

Our initial experience with these controllers has been
positive, and we are now studying composition of single
controllers into a larger system. We have identified four
forms of composition: horizontal, vertical, parallel, and
temporal. Horizontal composition links the output of one
independently controlled entity with the input of another,

as in the pipeline in Figure 1. Vertical composition occurs
when adaptive software at one software layer interacts
with another, such as an adaptive application running on
an adaptive resource manager in the operating system or
TCP running on our network allocator. Parallel
composition occurs when independent applications share
the same resource, and may affect each other if their
demands exceed the capacity of the resource. Temporal
composition occurs when a running controller is
reconfigured, retuned, or replaced with another one.

Building stable controllers that can be composed to
result in stable and predictable behavior is a key challenge
to wider application of feedback to computer systems.
Current practice in software system design composes
subsystems that may have been designed with other
applications in mind. If these subsystems are themselves
adaptive, composition that may satisfy interface
constraints may still result in unstable systems. Hence
current interface description languages (IDLs) must
somehow be extended to describe dynamic behaviors, and
techniques must be developed to merge these dynamic
specifications automatically to result in a single
specification that describes the whole system.

3 System Modeling Issues
The modeling issues related to this system are discussed
in this section from a control theoretic perspective.

In one sense, the computer systems designers have
devised a system that, when in its desired range of
operation, behaves very much like a digital control
system. They have done this by designing a controller
and programming approach that avoid the discrete-event
conditions that dominate traditional computer systems.
Even more, they have selected a computer system
problem that fits very well with the control theory –
matching real rates. This is quite a different problem than
the more traditional problem of maximizing throughput.
The preliminary results from this approach make it quite
attractive for use on multipurpose computing systems,
since system stability is as important to most users as
system throughput.

Our preliminary modeling work shows that a
discrete-time Simulink model, with the appropriate
saturation blocks, produces very similar data – in
aggregate – to the actual system under certain conditions.
A simple Simulink model, for these special conditions,
will be provided in Section 3.1, and compared against
actual run-time data. A generalization of this model is
given for a more general multi-thread, multi-buffer
pipeline.

This simplified model is used to pose some open
problems in control-theoretic terminology in Section 3.2.

The problems include the effect of one thread blocking on
a secondary resource (hybrid system), the effect of
implementing “adaptive” applications under this
“adaptive” resource manager (adaptive control), the
problems posed by varying application data rates (robust
control), and the problem of keeping the buffer fill level
and control allocations within permissible bounds
(state/actuator constraints).

Other system details that differentiate it from the
proposed simplified model are discussed in Section 3.3.
Some of these include asynchrony of sampling and
allocation periods, “blockiness” of data production, and
the truly discrete nature of computing, including that an
application must receive 0% or 100% of a resource at any
given time.

3.1 A Simplified Model for a Special Case
Consider a two-thread pipeline with a single buffer
(Figure 5.a.) We make a number of simplifying
assumptions and develop a Simulink model (Figure 5.b.)
to test against the actual system. These assumptions are as
follows. The same number of bytes input to a thread is
produced as an output of the thread, and that the
processing takes place “smoothly”, based on the rates
indicated, in each allocation period. The controller is
operating in its non-overload condition, with sum of
allocations less than available resources. The allocation
periods are fixed in length and are the same as the
controller period (every 10ms), and the periods are all
synchronized. The processing rate of the consumer –
Thread 2 – is fixed at the constant value of 21760 bytes
for 100% CPU proportion over the controller’s period. A
feedback controller controls the allocation of Thread 2.
The allocation of the producer – Thread 1 – multiplied by
its processing rate switches between 0.2*21760 = 4332
bytes per second and 8664 bytes per second. The buffer
has size 2800 bytes. The

Fig. 5.a. Simple two-thread pipeline. Thread 1 has

processing rate 1r bytes per CPU cycle and CPU

allocation 1a CPU cycles per second. Thread 2 has

processing rate 2r bytes per CPU cycle and CPU

allocation 2a CPU cycles per second. Rate of progress

is ii ar bytes per second. Buffer fill level is b .

Thread 1 Thread 2

Buffer 11,ar 22,ar

controller (LPF followed by a PID) is actually realized by
the difference equation

]2[075.0]1[525.0][451875.0

]2[75.0]1[75.1][

−+−−+
−−−=

nxnxnx

nanana
.

This controller realization is designed to hold its previous
value if 0]2[]1[][=−=−= nxnxnx and

]2[]1[−=− nana . The input to the controller is a
number between –512 and +512, where 0 corresponds to
the buffer being half-full, and the output][na is
multiplied by 0.001 to obtain the computed allocation,

Figure 6.a. Consumer allocation. Values may
range from 0 to 1.

which is then limited to be between 0 and 1 (0% and
100%).

The data in Figure 6.a. and 6.b. were collected for
the simulated system depicted in Figure 5a (smooth lines)
and for the actual system. The actual experiment was
similar to that used to collect the data in Figure 3. The
producer’s “rate of progress” was given a series of step
changes. The controller determined the consumer’s
allocation, under non-overload conditions. The data is
compared here to see how well the model matches the
actual system.

The block diagram in Figure 7 describes a simplified
model for the general case of a pipeline with M threads
and M-1 queues. All the normalizing constants are
collapsed into the Bi. Note that the processing rates enter
as gains in the loops of the block diagram and that the
product of the

Figure 6.b. Buffer fill level. Values may range
from 0 to 1000.

allocation and the processing rates is used to determine
the input of the accumulator transfer functions that
represent the buffers. The allocations are the outputs of

Figure 5.b. Simulink block diagram for simplified system.

Figure 5.b. Simulink Block Diagram

the controllers. In the non-overload condition, the
controller structure is decentralized: each controller
depends only on the “pressure” calculated from the buffer
fill levels of neighboring buffers.

3.2 Consequences for Some Open
Problems of Interest

The simplified models in Figures 5b and 7 are useful in
understanding some of the problems posed by the
computer system researchers.

Variations in processing rates of applications result
in varying parameter values in the model. Appropriate
tools to address this problem include robust control to
parameter uncertainty or µ-synthesis, and control designs
for systems with time-varying or randomly-varying
parameter values.

Adaptive applications – those that vary their
processing rates during overload conditions or more
generally as a function of the desired allocations or buffer
fill levels of the system – can be viewed as adaptive
controllers, where the processing rate gain is the control
variable. This variable control gain depends on other
variables in the system. Stability and convergence
properties of such systems can be determined using
adaptive control theory or nonlinear control theory. In the
case that the processing rates are made to vary linearly
with the system’s state, the resulting closed-loop system
model would be a bilinear model. If the processing rates
change discretely during overload conditions, then this
could be viewed as a hybrid system problem.

The actual threads behave, in some sense, like multi-
input systems, with the response to one input “fast” and
the response to a different input “slow”. However, since
the response is blocky, this appears perhaps more like a
hybrid system behavior than a slow-fast (two time scale)
system behavior. One thread may stop processing while
waiting for a secondary resource to become available,
which would be a discrete event in this “hybrid” system.
It is possible to develop controllers to allocate the other
resources, as well, such as the disk bandwidth controller
described in [4]. Useful modeling and analysis

techniques could help the computer system designers
understand the overall system behavior in the presence of
multiple controllers, for multiple resources.

The problem of keeping buffer fill levels and control
allocations within permissible bounds is a problem of
control with state and actuator constraints [12].
“Squishing” during overload conditions results in a shift
from one controller to another controller, where gains
between 0 and 1 are inserted into some or all of the loops.
Some form of decentralized robustly stabilizing controller
design may guarantee stability for a range of possible
gains.

3.3 Where the Simplified Model Falls Short
The simplified model misses many details of system
behavior, even though it appears to match overall system
behavior.

When one examines the “fine” behavior of the
system, between sampling instances or within an
allocation period, one notices the “blocky” behavior. In

1

1

−z

B

1

2

−z

B

1

1

−
−

z

BM

��

)(zK M

)(1 zK M −

)(3 zK

)(2 zK

)(1 zK 1r

2r

3r

Mr

1−Mr

1a

2a

3a

1−Ma

Ma

2a

3a

1−Ma

1a

Ma

1b

Figure 7. Block diagram for multi-thread, multi-queue pipeline. Saturation
blocks are omitted for simplicity.

2b

1−Mb

2
1

2
1

2
1

+
 -

+
 -

+
 -

-

+

-

+

-

+

-

+

-

+

+

-

-

+

fact, this discrete, or “blocky” behavior arises from a
number of different phenomena. The data production
itself is “blocky”. A thread may process some data from
its input buffer for some time before outputting any data
to its output buffer. An example of this is a thread that
converts video packets into video frames. Some discrete
amount of a resource is allocated over any given time
period. For example, in a single-processor system, either
0% or 100% of the CPU may be allocated at a given time
instance.

Furthermore, the sampling and allocations periods
are not synchronized. In fact, the allocation periods for
all the applications in the system are asynchronous with
respect to one another, and under period control they may
vary in length. The buffer fill levels are measured when
the controller samples, which may well be in the middle
of various applications’ allocation periods. That means
there is some level of random noise associated with the
variation of the buffer fill level during an allocation
period. (The applications feeding it and emptying it take
turns running, and the buffer fill level may vary
substantially over an application’s allocation period.)
This is, however, not the same as a multi-rate system,
since the allocation periods are not the same as sampling
periods for the system.

Figure 8. Decoding Time per Frame. Two movies.

The CPU time required to process a certain amount

of data may vary from one packet type to another, and
even within a packet type (Fig. 8).

The rates of data flow into a thread may not be equal
to the rate of flow out. This is particularly the case if the
application chooses to “degrade” a video stream, reducing
resolution or removing frames.

In spite of all this, the resource manager performs
quite well in practice!

4 Control Synthesis Issues
This section discusses some possible control structures
being considered for implementation, with the motivation
for each of control structure. A number of problems of
interest to computer systems designers are discussed in
this context.

Our guiding principles in the development of these
computer systems are:
a) discrete events should be avoided: “real” rates can be

matched best if “discrete events” resulting in locks
and semaphores can be avoided; “good”
programming practices for such system should avoid
lock and semaphore conditions; discrete events to be
avoided include the buffers being full or empty

b) access-control should be avoided: access-control and
job cancellation such as occurs in “real-time”
operating systems is undesirable; a “fair” policy
should be assumed in the case that demand for a
resource exceeds its availability; applications should
be encouraged to adapt to conditions when they are
not allocated their preferred level for graceful
degradation of performance, and this should result in
a “fair” result

c) application programming should require minimum
overhead and no knowledge about the controller
designs: the programmer should specify desired
performance associated with an application, not
desired allocation; different applications may be
labeled by their “importance”, but not by the
traditional “priority”

d) controller design should require minimal, appropriate
information about the applications: the system should
function well without any centralized system
knowledge about how many processes are going to
run at a given time within the system; overall
controller design should not depend on the particular
attributes of applications running in the system;
controller adaptation is appropriate and should be
based on measurable system-level conditions.

4.1 Current Controller Structure
A single (decentralized) controller (a low-pass filter
cascaded with a PID controller), with fixed gains, is used
at present for each application in the system. The same
gains are used for each application. The only inputs to the
controller are the buffer fill levels of the input and output
buffers of that application.

The condition when the total resource allocation is
greater than 100% is addressed by reducing all
applications’ allocations by the same proportion.
Applications critical for the continued performance of the
operating system can be designated as more “important”
and thereby avoid being squished by the same proportion.

4.2 Proposed Controller Structures
We propose that some form of “gain scheduling”,
together with “robust controller design” for the various
operating regions of interest, is appropriate for this

system. Some measurements, estimation, or identification
will be needed to determine the current operating region.

We propose three levels of adaptation: feedback
controllers, Quality of Service adaption (such as data
dropping by applications), and tuning of adaptation
policies.

We propose “squishing” of allocations when total
resource allocation exceeds 100%, as discussed in Section
4.1.

To avoid “discrete event” conditions, such as buffer
fill levels going to 0% or 100%, and to provide “good”
quality of service, we propose optimization of buffer sizes
and controllers, and period adaptation of the allocation
periods of applications. Problems such as determination
of appropriate buffer sizes and allocation periods are
based on the performance specifications on “Quality of
Service”, briefly discussed in Section 5.

5 Conclusion
Realistic performance specifications for such a system
depend not only on stability and on boundedness of buffer
fill levels between full and empty, but also on minimizing
end-to-end latency of the pipeline, variation in end-to-end
latency (“jitter”), allocated inter-frame time, and
variations in inter-frame time (“smoothness”).

In particular, we would like to develop
specifications of dynamic program behavior in order to
reason about the composite behavior of systems that are
constructed out of potentially adaptive components. For
example, it would be nice to be able to prove the stability
of an adaptive application running on an adaptive
resource manager given certain guarantees about each of
the components. These guarantees might be bounds on
possible rates, second order rates, etc. Ideally, one could
develop a specification language and tools for merging
specifications from different applications into one
composite specification, which could then be used to
reason about properties such as stability, efficiency, or
responsiveness. One could think of these specifications as
the dynamical equivalent of interface description
languages in today’s object-oriented systems.

We have described a novel application of linear
feedback control and introduced the concept of progress-
based scheduling, and we have described several areas in
which existing methods for modeling and analyzing
software systems are insufficient for our needs. We hope
to stimulate interest in the control community to develop
new models and apply them to understand better the
dynamic behavior of software systems, particularly those
built via composition.

References

[1] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C.
Pu, J. Walpole, A feedback-driven proportion allocator
for real-rate scheduling, Operating Systems Design
and Implementation (OSDI), Feb 1999.

 [2] D. Steere, J. Walpole, C. Pu, Automating
proportion/period scheduling, in Proceedings 20th

IEEE Real-Time Systems Symposium, Phoenix,
Arizona, USA, December 1-3, 1999. Also, D. Steere,
J. Gruenberg, D. McNamee, C. Pu, J. Walpole, Fine-
grain Period Adaptation in Soft Real-Time
Environments, OGI CSE Tech. Rep. CSE-99-012,
Sept 1999

[3] D. McNamee, C. Krasic, K. Li, A. Goel, D. Steere, J.
Walpole, Control challenges in multi-level adaptive
video streaming, Proceedings of the 39th IEEE
Conference on Decision and Control, Sydney,
Australia, December 2000.

 [4] D. Revel, D.McNamee, C. Pu, D. Steere, J. Walpole,
Feedback Based Dynamic Proportion Allocation for
Disk I/O, OGI CSE Tech. Rep. CSE-99-01, Jan 1999

[5] L. A. Welch, D. R. Alexander, D. A. Lawrence,
Feedback control resource management using a
posteriori workload characteristics, Proceedings of the
39th IEEE Conference on Decision and Control,
Sydney, Australia, December 2000.

[6] S. Tamboli, J. Hansen, P. Koopman, Applications of
Control Theory to Reserves-Based QoS Resource
Allocation, Proceedings of the 39th IEEE Conference
on Decision and Control, Sydney, Australia,
December 2000.

[7] T. F. Abdelzaher, C. Lu, Modeling and performance
control of Internet Servers, Proceedings of the 39th
IEEE Conference on Decision and Control, Sydney,
Australia, December 2000.

[8] C. Lu, J. Stankovic, G. Tao, and S. Son, Design and
evaluation of a feedback control EDF algorithm, Real-
Time Systems Symposium, December 1999.

[9] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46-61, Jan
1973.

[10] A. Goel, D. Steere, C. Pu, J. Walpole, SWiFT: A
Feedback Control and Dynamic Reconfiguration
Toolkit, OGI CSE Technical Report 98-009, poster
presented at 2nd Usenix Windows NT Symposium,
Sept 1998. Also, Adaptive Resource Management Via
Modular Feedback Control, OGI CSE Tech. Rep.
CSE-99-03, Jan 1999.

[11] J. Walpole, C. Krasic, L. Liu, D. Maier, C. Pu, D.
McNamee, D. Steere, Quality of service semantics for
multimedia database systems, in Data Semantics 8:
Semantic Issues in Multimedia Systems, edited by R.
Meersman, Z. Tari, S. Stevens, Kluwer Academic
Publishers, Jan 1999. Also, C. Krasic, J. Walpole,
QoS Scalability for Streamed Media Delivery, OGI
CSE Tech. Rep. CSE-99-011, Sept 1999.

[12] R. Pytlak, Numerical Methods for Optimal Control
Problems with State Constraints, Springer, 1999.

