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Abstract 
Commonplace computer applications on general-purpose 
computers increasingly are expected to meet “real-rate” 
requirements, processing or displaying data or images at 
an externally driven “rate”.  We describe a feedback-
control-based resource manager design approach, 
allowing the computer system to allocate resources such 
as CPU and network bandwidth based on the measured 
“progress” of the applications. Progress is measured by 
separating a complex application into a number of 
simpler applications separated by buffers.  The resource 
scheduler measures the buffer fill levels to determine 
whether the rates of data coming in and going out of each 
buffer are matched.  Feedback controllers keep the buffer 
levels around a certain fill level. We have developed 
prototype systems in the Linux environment that 
demonstrate that (classical) feedback control can be used 
to match the real rates.  However, more formal methods, 
such as those that can be developed by the control theory 
community, are needed to help with the analysis and 
design of such systems to make them commercially 
viable. This paper presents the computer system 
problems, results from the prototype designs showing 
feasibility, some preliminary modeling results, and 
demonstrations and discussions of which control 
modeling, analysis and design results and techniques 
appear to be relevant to this computer system problem, 
and why. 

1 Introduction 
A key problem facing designers of traditional and 
embedded operating systems is the question of how to 
build adaptive software systems that are robust, 
predictable, and efficient across a range of operating 
conditions.  A limiting factor in this effort is the lack of 
an established methodology for building adaptive system 
software.  Current approaches rely on ad-hoc wizardry 
and result in systems in which the adaptation, or control 
behavior, is indistinguishable from the system under 

control.  An example of this is TCP’s congestion control 
mechanism, which shows both the strength and weakness 
of current state-of-the-art in building adaptive software.  
It is extremely successful: many credit the success of the 
Internet on the robustness and performance of TCP.  At 
the same time, it is understood only by wizards and is 
therefore difficult to modify, extend, or reuse. 

We believe that a well-defined methodology for 
reasoning about system dynamics will allow more 
widespread development of adaptive software based on 
feedback.  One obvious place to start in developing such a 
methodology is in control theory. Control theory is used 
in many different engineering disciplines, including 
electrical engineering, yet somehow has not been widely 
applied to software systems.  

Recently, several researchers have begun to look at 
the use of feedback controllers for resource allocation 
([1],[2],[3],[4],[5],[6],[7],[8]). For example, Steere et al. 
introduced progress-based resource management, which 
allocates resources to applications based on perceived 
need [1]. The scheduler monitors an application’s rate of 
progress, compares these measurements with the 
application’s desired rate, and increases or decreases the 
application’s allocation to drive its actual rate to the 
desired value.  

Initial experience with prototypes is promising and 
indicates a strong need for more formal modeling and 
analysis.  The prototypes are difficult to tune correctly.  
Correct performance depends both on the controller’s 
parameter settings and the behavior of the application, 
which can change dynamically and, from the operating 
system’s point of view, unpredictably.  In addition, the 
presence of adaptive applications, such as adaptive QoS 
(Quality of Service), together with this adaptive resource 
manager, can lead an otherwise stable system to oscillate 
or diverge. Standard computer-science formal methods do 
not help one to understand a system’s adaptive behavior, 
since they focus on interface syntax and semantics.  We 
need analytical techniques for understanding the behavior 



 
of a dynamic system over time, such as those used in 
control systems. 

At the same time, applying control-style modeling 
and analysis to software systems is itself a research 
challenge. Software systems are discrete by nature, and 
one must consider quantization error not only in sampling 
and representation of data values but also in the 
underlying signal itself.  In addition, software applications 
such as pipelines contend for access to managed resources 
such as CPU and memory, but also to unmanaged 
resources such as synchronization variables (locks and 
semaphores).  These synchronization issues make it 
difficult to predict the effect of a change in allocation for 
one resource, and hence to design a controller for that 
resource.   These are just a few of the challenges that we 
face, from the perspective of the computer system 
researchers.  These challenges will be discussed from the 
perspective of a control theory researcher in Sections 3 
and 4. 

The purpose of the papers in this invited session is to 
challenge the control theory research community to tackle 
the modeling and analysis problems faced by computer 
system researchers.  Demonstrations of how modern 
control tools can be used to solve the problems specific to 
computer system developers, and new analytical tools 
adapted to these problems, are welcome.  These tools 
should address the problems of interest to computer 
system developers and should be communicated in a form 
that can be applied by those who are not specialists in 
control theory.  The following fields of control theory will 
be particularly pertinent to these problems: adaptive 
control, robust control, bilinear and nonlinear control, 
stochastic control, hybrid systems, discrete-event systems, 
two-time scale systems, decentralized control, sampled-
data systems, control with state- and control-variable 
constraints, and classical discrete-time control. 

In this paper, we describe our prototype progress-
based resource allocators in detail and present several 
challenges in modeling and control of such systems.  
Section 2 presents the concept of progress-based 
scheduling and describes three existing prototype 
progress-based schedulers in the Linux operating system 
and our experience with them.  Section 3 discusses 
challenges and modeling issues for these systems, in 
control-theoretic terms. Section 4 discusses the controller 
structures preferred by the computer system researchers.  
Section 5 summarizes some desired control performance 
issues for these controlled computer systems, open 
problems and desired tools, from the perspective of the 
computer system researchers.  

2 Progress-based Scheduling 
Our motivation for revisiting the question of resource 
allocation stems from the increasing importance of real-
rate applications in both general purpose and embedded 
systems.  A real-rate application processes a stream of 
data and has specific rate or throughput requirements in 
which the rate is driven by real-world demands.  

Examples of real-rate applications are software modems, 
web servers, speech recognition, and multimedia players. 

The goal of managing resources for these 
applications is simply defined: the application should 
receive a sufficient amount of resources to keep up with 
its external or “real” rate, but no more. Unfortunately, this 
goal is difficult to realize in practice because of the degree 
of uncertainty in assessing the application’s needs.  This 
uncertainty has several sources.  First, an application’s 
desired rate is often available in application-level terms, 
such as “frames per second”, and not in terms of the 
resource, such as “bits per second”.  Second, an 
application’s resource requirements can change 
dynamically and radically, such as the per-frame CPU 
required to decode a variable bit-rate video stream.  Third, 
the efficiency with which an application uses a particular 
resource can also vary with time.  Giving an application 
10% more CPU may increase its progress linearly if there 
is no memory contention, but not at all if the application 
is paging heavily.  Fourth, the application may be 
adaptive and may change its rate in response to changes in 
resource allocation. 

2.1 The Concept 
To overcome these uncertainties, we developed progress-
based resource management, which uses feedback control 
to allocate resources based on measurements of 
application progress. The feedback controller monitors an 
application’s progress and compares it with its externally 
driven rate, such as the frame rate of a video player or the 
rate of incoming requests to a web server.  The controller 
then calculates an adjustment to the application’s 
allocation based on the application’s current deviations 
from the external rate, on past observations of the 
application, and on observations of the application’s 
environment.  It then adjusts the allocation by tuning the 
scheduler’s parameters on behalf of the application.  For 
example, a controller for CPU could measure an 
application’s “rate of progress” in terms of “units of work 
per time”, compare this with the rate at which work units 
are delivered to the application, and then increase or 
decrease the application’s CPU allocation depending on 
whether the application’s rate is below or above its 
desired rate.   

We detect the mismatch of these two rates by 
increases and decreases in buffer fill levels in a pipeline 
of application threads, as depicted in Figure 1.  These 
buffers provide a “symbiotic interface” allowing the 
resource manager to monitor application progress without 
violating the separation of concerns between the operating 
system and the application. 

We have built three prototype progress-based 
resource managers.  In each, we divide the functionality 
into three components as shown in Figure 2: monitoring, 
control, and dispatch.  The monitor transparently observes 
application progress and feeds this data to the controller.  
The controller calculates the correct allocation for each 
application in the system using past and present 
observations of application progress and informs the 



 
dispatcher of its allocation decisions by assigning 
reservations to applications (in terms of proportion of 
resource reserved per allocation period, for each 
application.)   The dispatcher builds a dispatch schedule 
for all the applications in the system using reservations 
supplied by the controller.  

 

2.2 Some Prototype Systems 
The following subsections describe our three prototype 
resource allocators.  Section 2.2.1 describes a controller 
that increases or decreases the percentage of the CPU 
assigned to an application.  Section 2.2.2 describes a 
controller that assigns the period over which the 
application receives its CPU allocation.  Section 2.2.3 
describes a network bandwidth allocator, similar in nature 
and function to the CPU proportional allocator.  We have 
not yet constructed a period allocator for the network.  All 
of these controllers are available on the web at  
http://www.cse.ogi.edu/sys1/projects/quasar/releases.  

2.2.1 Allocating CPU Proportion 
The role of the CPU proportion allocator is to assign 
processing resources, or CPU, automatically to threads, an 
application’s active consumer of processing resources. 
The allocator is performing well if it ensures that the 
threads can keep up with the real rate. The allocator 
assigns resources to threads in terms of proportion and 
period. For example, if the allocator assigns a thread a 
proportion of 20% and a period of 100 msec, the thread 
will run exclusively on the CPU for 20 msec every 100 
msec, although it may not get 20 consecutive msec, and 
will be idle the remaining 80 msec.  We assume for this 
discussion that applications are structured as pipelines of 

threads as depicted in Figure 1, such as multimedia 
pipelines. We discuss CPU allocation for other kinds of 
applications elsewhere [1]. 

The goal of the CPU allocator is to keep the input 
and output queues of all threads half full. Keeping the 
buffer fill levels steady indicates that the thread is 

matching its real-rate, a rising input-buffer fill level 
indicates the job is falling behind its rate, and a falling 
input-buffer fill level indicates the job is getting ahead. 
For the output queue, the reverse is true.  Keeping the fill 
levels at half full gives maximum room for over-
allocation or under-allocation error.  This goal is 
complicated by the fact that the system has no 
information about the application except the existence of 
its input and output buffers, the size of the buffers, and 
the current fill levels in these buffers. 

To ensure that the operating system can respond to 
dynamic changes in a thread’s resource needs, the 
allocator samples the buffer fill levels for every thread 
every 10 msec. For each thread, the allocator normalizes 
the fill level to a number between – ½ and ½, and adds or 
subtracts the fill levels for all the thread’s input and 
output queues to combine them into a single value.  This 
value is then fed to a feedback circuit similar to the 
Simulink block diagram depicted in Figure 5. In essence, 
it consists of a low-pass filter connected in series with a 
PID. The output of the controller, the suggested allocation 
for this job, is then passed to a standard rate-monotonic 
scheduler (RMS) [9], which ensures that the thread 
receives its allocation.  

To ensure that the RMS can successfully schedule 
all of the threads, the allocator sums the allocations for 
each thread and compares the total with a threshold. If the 
total exceeds the threshold, the allocator “squishes” some 

ThreadThread Thread Thread

Scheduler/DispatcherController

Monitor 
Progress

Actuate

Allocate
Resources

Figure 2. Diagram of progress-based scheduler prototype. This diagram shows the rough 
architecture of our scheduler. A feedback controller monitors the rate of progress of jobs, and 
calculates new proportions and periods based on the results. Actuation involves setting the 
proportion and period for the threads. The scheduler is a standard proportion/period reservation-
based scheduler. 

Thread 1 Thread 2 Thread 3 Thread 4 

Buffer 1 Buffer 2 Buffer 3 

Figure 1.  Pipeline arrangement of application threads.  Each thread processes data – taking 
data as input and outputting data.  [At least] one is driven by a “real” external rate.  The rates of the 
others are controlled so that the buffer fill levels are maintained around a desired fill level.  This 
arrangement guarantees that the “rate of progress” of each thread is matched to its desired rate. 



 

or all of the allocations so that the total is less than or 
equal to the threshold. Currently, the controller squishes 
the allocations proportionately; the larger the proportion, 
the more it is squished. Alternately, it could decide to 
suspend or kill less important jobs in order to maximize 
the allocation to important jobs [1]. 

We have implemented this controller in the Linux 
2.0 operating system. We implemented the controller 
using the SWiFT Feedback Toolkit [10] as a user-level 
process. The RMS is implemented as a scheduling policy 
in the Linux kernel, and we added a system call 
(procedure to invoke operating system functionality) that 
allows threads to register their input and output queues. 
As a side effect of registration, the operating system maps 
the fill levels of the registered buffers into the address 
space of the controller process to decrease the overhead of 
monitoring. Our scheduler does not control threads that 
do not register themselves. 

To demonstrate the dynamic behavior of our 
controller, we present the results of a scheduling 
experiment using a simple application structured as a 
producer and consumer thread. The producer works for 
some number of cycles, writes a data block into a buffer, 
and then repeats.  The consumer reads from this buffer, 
works for some number of cycles on the data, and then 
repeats. To eliminate experimental noise due to memory 
or cache effects, the “work” performed by both producer 
and consumer is an idle loop in which the number of 
iterations is controlled by the experimenter. The rate at 
which data is consumed or produced depends on the 

number of iterations in the work loop as well as the 
allocation given to the thread.  

Figure 3 presents the results of an experiment to test 
the responsiveness of the controller with no competing 
load. The experiment manipulates the production rate 
(producer’s rate of progress) by changing the amount of 
work to produce a piece of data while holding the 
allocation fixed, resulting in a rate that resembles a 
square-wave with different width pulses. The consumer 
requires a constant amount of work to consume a data 
item, and so the allocator controls the consumption rate 
by adjusting the consumer’s allocation. Figure 3 shows 
the actual rate at which data were enqueued into the 
buffer by the producer and dequeued by the consumer 
and the buffer fill level. As can be seen, the consumer’s 
rate closely matches the producer’s rate. It takes roughly 
200 msec to drive the fill level back to half-full. This is 
primarily limited by the peak rate at which the consumer 
can consume data since the allocator cannot give it any 
more than 100% of the CPU. 

2.2.2 Allocating CPU Period 
The CPU period allocator determines the period of time 
over which a thread will receive its proportion [2]. The 
correct choice of period represents a trade-off between 
pressure to increase and pressure to decrease the period.  

There are several reasons for increasing the period. 
First, a large period increases the flexibility of the 
scheduler by raising the bound on the longest continuous 
interval the job is allowed to run. For example, a thread 
with a 50% proportion can run for at most 500 msec if its 
period is 1 second while it can run up to 1 second if its 
period is 2 seconds. Second, a large period reduces 
quantization error. The smallest enforceable time interval, 
or quanta, is somewhere between 1 and 15 msec on 
typical operating systems. If the quanta are 10 msec, a 
period of 20 msec allows only two different proportions 
to be effectively achieved regardless of the proportion 
assigned by the allocator, whereas a period of 2 seconds 
allows 100 different proportions to be achieved. Third, 
large periods potentially reduce the overhead of switching 
between threads by allowing larger contiguous 
allocations, reducing the number of switches per unit 
time.  

The key reason to reduce period is to smooth or pace 
the thread’s progress to reduce burstiness below some 
tolerable level, to avoid over- or under-flowing the 
buffers, and to limit the lengths of idle times. Burstiness 
results from the discrete nature of the scheduling; each 
thread alternately receives all or none of the CPU for 
some period, which is a subinterval of the CPU allocation 
period. The buffer fill level thus varies within a single 
allocation period, and may vary more over a longer 
allocation period.  Intuitively, a smaller period places a 
shorter bound on the consecutive execution time, reducing 
the amount of data that can be produced or consumed 
within a period, and on the idle time. 
 
 

Figure 3. Response of the controller to a variable-
rate real-rate job.  The producer runs at a 
predetermined variable rate, the controller determines 
the consumer’s allocation so that its progress matches 
that of the producer. The top graph shows the progress 
rates of the producer and consumer, the bottom graph 
shows the corresponding queue fill level. 



 

 
 

Figure 4: Dynamic period adaptation.  This graph 
shows the periods assigned by the controller to a 
producer and consumer which change their rates of 
production every 30 seconds (denoted by the vertical 
lines). Note that upward adaptation is much slower 
than downward, due to our use of linear increase and 
exponential decrease of period in response to 
measured burst size in buffer fill level. 

 
The period controller attempts to balance these 

conflicting concerns by assigning period such that the 
burstiness exhibited by a job is a fraction of the buffer 
size, in order to avoid over- or under-flowing the buffer. 
To achieve this goal, the controller monitors the high- and 
low water marks on fill level each period, and treats the 
difference as the burst size. (Note that the maximum 
possible burst size may be larger than this metric, since 
the controller may have interleaved the producer and 
consumer of the buffer during the period). This burst size 
is fed to a controller, which adjusts the period to drive the 
burst size to be 50% of the buffer size. If the burst size is 
less than 50%, the period is increased linearly over time. 
If the burst size exceeds 50%, the period is cut in half for 
an exponential reduction over time. 

Figure 4 shows the dynamic behavior of this 
controller. To demonstrate the ability of the controller to 
dynamically tune its period according to job behavior, we 
ran a simple producer/consumer in which the producer 
changed its time per data unit every 30 seconds, toggling 
between 1.5 and 3 msec per data unit. The period 
controller detects that the application’s behavior has 
changed based on its monitoring of burst size, and adjusts 
the period accordingly. Note that the period controller 
controls both the producer and the consumer’s periods.    

2.2.3 Allocating Network Proportion 
The network allocator is similar in form and function to 
the CPU proportion allocator. This controller sits between 
the transport layer in the protocol stack and the device 
queue, adding a queue per stream and a packet scheduler 
that moves packets from the per-stream queues into the 

device queue. The controller tracks application progress 
by monitoring the fill level in the per-stream buffer at the 
sender and the fill level in the socket buffer on the 
receiver. The controller itself is a low-pass filter in series 
with a PID. The packet scheduler delivers allocation in 
terms of proportion and period like the CPU dispatcher, 
implementing an earliest-deadline first (EDF) algorithm. 
The packet scheduler “schedules” packets by moving 
them from per-stream queues into the FIFO device queue 
for eventual transmission over the network. 

One interesting complication that arises in the 
network controller is that the most prevalent transport 
protocol, TCP, is itself adaptive and adjusts its behavior 
in response to changes in available bandwidth. This 
creates the possibility of this feedback resulting in 
instability or reduced throughput. As an example, 
consider the effect of a long period and a small network 
proportion allocation. At the beginning of a stream’s 
allocation period, the network allocator will move packets 
quickly onto the device queue since the stream has not yet 
used up its allocation. After its allocation has been used, 
the stream’s packets will wait until the next period before 
entering the device queue. TCP sends packets and then 
waits for an acknowledgment that they have been 
received. If too long a delay occurs before it receives the 
acknowledgment, then it cuts back the rate at which it 
sends packets. A long allocation period may result in a 
long delay, which TCP would attribute to congestion, 
causing it to reduce the rate at which it sends. This in turn 
will cause the bandwidth controller to reduce the 
allocation, and this cycle will continue until TCP is 
making little or no progress. 

2.3 Responding to Overload 
Although these controllers can balance resource needs 
between applications automatically and with minimal 
input from the applications, they cannot prevent overload 
from occurring. Overload occurs when more resources are 
needed than are available.  A result of overload is that 
some element of one of the competing pipelines cannot 
match the real rate and the entire pipeline progress will 
slow. To give the pipeline a chance to respond to the 
overload, the controller detects the overload condition and 
notifies the application. In another paper submitted to this 
session, we describe an application’s response to overload 
in which the application reduces its consumption of the 
resource by dropping its rate [3], (see also [11]). We call 
this form of application tuning adaptive QoS, since the 
application is lowering its resulting quality to lower its 
consumption of resources.  

2.4 Our Experience and the Next 
Challenge 

Our initial experience with these controllers has been 
positive, and we are now studying composition of single 
controllers into a larger system. We have identified four 
forms of composition: horizontal, vertical, parallel, and 
temporal. Horizontal composition links the output of one 
independently controlled entity with the input of another, 



 
as in the pipeline in Figure 1. Vertical composition occurs 
when adaptive software at one software layer interacts 
with another, such as an adaptive application running on 
an adaptive resource manager in the operating system or 
TCP running on our network allocator. Parallel 
composition occurs when independent applications share 
the same resource, and may affect each other if their 
demands exceed the capacity of the resource. Temporal 
composition occurs when a running controller is 
reconfigured, retuned, or replaced with another one.  

Building stable controllers that can be composed to 
result in stable and predictable behavior is a key challenge 
to wider application of feedback to computer systems. 
Current practice in software system design composes 
subsystems that may have been designed with other 
applications in mind. If these subsystems are themselves 
adaptive, composition that may satisfy interface 
constraints may still result in unstable systems. Hence 
current interface description languages (IDLs) must 
somehow be extended to describe dynamic behaviors, and 
techniques must be developed to merge these dynamic 
specifications automatically to result in a single 
specification that describes the whole system. 

3 System Modeling Issues 
The modeling issues related to this system are discussed 
in this section from a control theoretic perspective. 

In one sense, the computer systems designers have 
devised a system that, when in its desired range of 
operation, behaves very much like a digital control 
system.  They have done this by designing a controller 
and programming approach that avoid the discrete-event 
conditions that dominate traditional computer systems.  
Even more, they have selected a computer system 
problem that fits very well with the control theory – 
matching real rates.  This is quite a different problem than 
the more traditional problem of maximizing throughput.  
The preliminary results from this approach make it quite 
attractive for use on multipurpose computing systems, 
since system stability is as important to most users as 
system throughput. 

Our preliminary modeling work shows that a 
discrete-time Simulink model, with the appropriate 
saturation blocks, produces very similar data – in 
aggregate – to the actual system under certain conditions.  
A simple Simulink model, for these special conditions, 
will be provided in Section 3.1, and compared against 
actual run-time data.  A generalization of this model is 
given for a more general multi-thread, multi-buffer 
pipeline.   

This simplified model is used to pose some open 
problems in control-theoretic terminology in Section 3.2. 

The problems include the effect of one thread blocking on 
a secondary resource (hybrid system), the effect of 
implementing “adaptive” applications under this 
“adaptive” resource manager (adaptive control), the 
problems posed by varying application data rates (robust 
control), and the problem of keeping the buffer fill level 
and control allocations within permissible bounds 
(state/actuator constraints). 

Other system details that differentiate it from the 
proposed simplified model are discussed in Section 3.3. 
Some of these include asynchrony of sampling and 
allocation periods, “blockiness” of data production, and 
the truly discrete nature of computing, including that an 
application must receive 0% or 100% of a resource at any 
given time. 

3.1 A Simplified Model for a Special Case 
Consider a two-thread pipeline with a single buffer 
(Figure 5.a.) We make a number of simplifying 
assumptions and develop a Simulink model (Figure 5.b.) 
to test against the actual system. These assumptions are as 
follows. The same number of bytes input to a thread is 
produced as an output of the thread, and that the 
processing takes place “smoothly”, based on the rates 
indicated, in each allocation period. The controller is 
operating in its non-overload condition, with sum of 
allocations less than available resources. The allocation 
periods are fixed in length and are the same as the 
controller period (every 10ms), and the periods are all 
synchronized. The processing rate of the consumer – 
Thread 2 – is fixed at the constant value of 21760 bytes 
for 100% CPU proportion over the controller’s period.  A 
feedback controller controls the allocation of Thread 2.   
The allocation of the producer – Thread 1 – multiplied by 
its processing rate switches between 0.2*21760 = 4332 
bytes per second and 8664 bytes per second. The buffer 
has size 2800 bytes. The  

Fig. 5.a.  Simple two-thread pipeline. Thread 1 has 

processing rate 1r  bytes per CPU cycle and CPU 

allocation 1a CPU cycles per second.  Thread 2 has 

processing rate 2r  bytes per CPU cycle and CPU 

allocation 2a CPU cycles per second. Rate of progress 

is ii ar  bytes per second. Buffer fill level is b . 

Thread 1 Thread 2 

Buffer 11,ar 22,ar  



 

 
controller (LPF followed by a PID) is actually realized by 
the difference equation   

]2[075.0]1[525.0][451875.0

]2[75.0]1[75.1][

−+−−+
−−−=

nxnxnx
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This controller realization is designed to hold its previous 
value if 0]2[]1[][ =−=−= nxnxnx  and 

]2[]1[ −=− nana . The input to the controller is a 
number between –512 and +512, where 0 corresponds to 
the buffer being half-full, and the output ][na  is 
multiplied by 0.001 to obtain the computed allocation,  

Figure 6.a. Consumer allocation. Values may 
range from 0 to 1. 
 

which is then limited to be between 0 and 1 (0% and 
100%).  

The data in Figure 6.a. and 6.b. were collected for 
the simulated system depicted in Figure 5a (smooth lines) 
and for the actual system.  The actual experiment was 
similar to that used to collect the data in Figure 3. The 
producer’s “rate of progress” was given a series of step 
changes. The controller determined the consumer’s 
allocation, under non-overload conditions. The data is 
compared here to see how well the model matches the 
actual system.  

The block diagram in Figure 7 describes a simplified 
model for the general case of a pipeline with M threads 
and M-1 queues. All the normalizing constants are 
collapsed into the Bi.  Note that the processing rates enter 
as gains in the loops of the block diagram and that the 
product of the 

Figure 6.b.  Buffer fill level.  Values may range  
from 0 to 1000.  

 
allocation and the processing rates is used to determine 
the input of the accumulator transfer functions that 
represent the buffers. The allocations are the outputs of 

Figure 5.b. Simulink block diagram for simplified system. 

Figure 5.b. Simulink Block Diagram  



 
the controllers.  In the non-overload condition, the 
controller structure is decentralized: each controller 
depends only on the “pressure” calculated from the buffer 
fill levels of neighboring buffers. 

3.2 Consequences for Some Open 
Problems of Interest 

The simplified models in Figures 5b and 7 are useful in 
understanding some of the problems posed by the 
computer system researchers. 
 

Variations in processing rates of applications result 
in varying parameter values in the model.  Appropriate 
tools to address this problem include robust control to 
parameter uncertainty or µ-synthesis, and control designs 
for systems with time-varying or randomly-varying 
parameter values. 

Adaptive applications – those that vary their 
processing rates during overload conditions or more 
generally as a function of the desired allocations or buffer 
fill levels of the system – can be viewed as adaptive 
controllers, where the processing rate gain is the control 
variable.  This variable control gain depends on other 
variables in the system.  Stability and convergence 
properties of such systems can be determined using 
adaptive control theory or nonlinear control theory.  In the 
case that the processing rates are made to vary linearly 
with the system’s state, the resulting closed-loop system 
model would be a bilinear model. If the processing rates 
change discretely during overload conditions, then this 
could be viewed as a hybrid system problem.   

The actual threads behave, in some sense, like multi-
input systems, with the response to one input  “fast” and 
the response to a different input “slow”.  However, since 
the response is blocky, this appears perhaps more like a 
hybrid system behavior than a slow-fast (two time scale) 
system behavior.  One thread may stop processing while 
waiting for a secondary resource to become available, 
which would be a discrete event in this “hybrid” system.  
It is possible to develop controllers to allocate the other 
resources, as well, such as the disk bandwidth controller 
described in [4].  Useful modeling and analysis 

techniques could help the computer system designers 
understand the overall system behavior in the presence of 
multiple controllers, for multiple resources.  

The problem of keeping buffer fill levels and control 
allocations within permissible bounds is a problem of 
control with state and actuator constraints [12].  
“Squishing” during overload conditions results in a shift 
from one controller to another controller, where gains 
between 0 and 1 are inserted into some or all of the loops.  
Some form of decentralized robustly stabilizing controller 
design may guarantee stability for a range of possible 
gains. 

3.3 Where the Simplified Model Falls Short 
The simplified model misses many details of system 
behavior, even though it appears to match overall system 
behavior.   

When one examines the “fine” behavior of the 
system, between sampling instances or within an 
allocation period, one notices the “blocky” behavior.  In 
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fact, this discrete, or “blocky” behavior arises from a 
number of different phenomena.  The data production 
itself is “blocky”.  A thread may process some data from 
its input buffer for some time before outputting any data 
to its output buffer.  An example of this is a thread that 
converts video packets into video frames.  Some discrete 
amount of a resource is allocated over any given time 
period.  For example, in a single-processor system, either 
0% or 100% of the CPU may be allocated at a given time 
instance.   

Furthermore, the sampling and allocations periods 
are not synchronized.  In fact, the allocation periods for 
all the applications in the system are asynchronous with 
respect to one another, and under period control they may 
vary in length.  The buffer fill levels are measured when 
the controller samples, which may well be in the middle 
of various applications’ allocation periods.  That means 
there is some level of random noise associated with the 
variation of the buffer fill level during an allocation 
period.  (The applications feeding it and emptying it take 
turns running, and the buffer fill level may vary 
substantially over an application’s allocation period.)  
This is, however, not the same as a multi-rate system, 
since the allocation periods are not the same as sampling 
periods for the system. 

 

 
Figure 8. Decoding Time per Frame. Two movies. 

 
The CPU time required to process a certain amount 

of data may vary from one packet type to another, and 
even within a packet type (Fig. 8). 

The rates of data flow into a thread may not be equal 
to the rate of flow out.  This is particularly the case if the 
application chooses to “degrade” a video stream, reducing 
resolution or removing frames. 

In spite of all this, the resource manager performs 
quite well in practice! 

4 Control Synthesis Issues 
This section discusses some possible control structures 
being considered for implementation, with the motivation 
for each of control structure.  A number of problems of 
interest to computer systems designers are discussed in 
this context. 

Our guiding principles in the development of these 
computer systems are: 
a) discrete events should be avoided: “real” rates can be 

matched best if “discrete events” resulting in locks 
and semaphores can be avoided; “good” 
programming practices for such system should avoid 
lock and semaphore conditions; discrete events to be 
avoided include the buffers being full or empty 

b) access-control should be avoided: access-control and 
job cancellation such as occurs in “real-time” 
operating systems is undesirable; a “fair” policy 
should be assumed in the case that demand for a 
resource exceeds its availability; applications should 
be encouraged to adapt to conditions when they are 
not allocated their preferred level for graceful 
degradation of performance, and this should result in 
a “fair” result 

c) application programming should require minimum 
overhead and no knowledge about the controller 
designs: the programmer should  specify desired 
performance associated with an application, not 
desired allocation; different applications may be 
labeled by their “importance”, but not by the 
traditional “priority” 

d) controller design should require minimal, appropriate 
information about the applications: the system should 
function well without any centralized system 
knowledge about how many processes are going to 
run at a given time within the system; overall 
controller design should not depend on the particular 
attributes of applications running in the system; 
controller adaptation is appropriate and should be 
based on measurable system-level conditions. 

4.1 Current Controller Structure 
A single (decentralized) controller (a low-pass filter 
cascaded with a PID controller), with fixed gains, is used 
at present for each application in the system.  The same 
gains are used for each application. The only inputs to the 
controller are the buffer fill levels of the input and output 
buffers of that application. 

The condition when the total resource allocation is 
greater than 100% is addressed by reducing all 
applications’ allocations by the same proportion.  
Applications critical for the continued performance of the 
operating system can be designated as more “important” 
and thereby avoid being squished by the same proportion. 

4.2 Proposed Controller Structures 
We propose that some form of “gain scheduling”, 
together with “robust controller design” for the various 
operating regions of interest, is appropriate for this 



 
system.  Some measurements, estimation, or identification 
will be needed to determine the current operating region. 

We propose three levels of adaptation: feedback 
controllers, Quality of Service adaption (such as data 
dropping by applications), and tuning of adaptation 
policies. 

We propose “squishing” of allocations when total 
resource allocation exceeds 100%, as discussed in Section 
4.1. 

To avoid “discrete event” conditions, such as buffer 
fill levels going to 0% or 100%, and to provide “good” 
quality of service, we propose optimization of buffer sizes 
and controllers, and period adaptation of the allocation 
periods of applications.  Problems such as determination 
of appropriate buffer sizes and allocation periods are 
based on the performance specifications on “Quality of 
Service”, briefly discussed in Section 5. 

5 Conclusion 
Realistic performance specifications for such a system 
depend not only on stability and on boundedness of buffer 
fill levels between full and empty, but also on minimizing 
end-to-end latency of the pipeline, variation in end-to-end 
latency (“jitter”), allocated inter-frame time, and 
variations in inter-frame time (“smoothness”). 

In particular, we would like to develop 
specifications of dynamic program behavior in order to 
reason about the composite behavior of systems that are 
constructed out of potentially adaptive components. For 
example, it would be nice to be able to prove the stability 
of an adaptive application running on an adaptive 
resource manager given certain guarantees about each of 
the components. These guarantees might be bounds on 
possible rates, second order rates, etc. Ideally, one could 
develop a specification language and tools for merging 
specifications from different applications into one 
composite specification, which could then be used to 
reason about properties such as stability, efficiency, or 
responsiveness. One could think of these specifications as 
the dynamical equivalent of interface description 
languages in today’s object-oriented systems. 

We have described a novel application of linear 
feedback control and introduced the concept of progress-
based scheduling, and we have described several areas in 
which existing methods for modeling and analyzing 
software systems are insufficient for our needs. We hope 
to stimulate interest in the control community to develop 
new models and apply them to understand better the 
dynamic behavior of software systems, particularly those 
built via composition. 
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