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Abstract 

Web-based applications store their data at the server side. 

This design has several benefits, but it can also cause a seri­

ous problem because a misconfiguration, bug or vulnerabil­

ity leading to data loss or corruption can affect many users. 

While data backup solutions can help resolve some of these 

issues, they do not help diagnose the events that led to the cor­

ruption or the precise set of changes caused by these events. 

In this paper, we describe the design of a recovery sys­

tem that helps administrators recover from data corruption 

caused by bugs in web applications. Our system tracks ap­

plication requests, helping identify requests that cause data 

corruption, and reuses undo logs already kept by databases 

to selectively recover from the effects of these requests. The 

main challenge is to correlate requests across the multiple 

tiers of the application to determine the correct recovery ac­

tions. We explore using dependencies both within and across 

requests at three layers (database, application, and client) to 

help identify data corruption accurately. We evaluate our sys­

tem using known bugs in popular web applications, including 

Wordpress, Drupal and Gallery2. Our results show that our 

system enables recovery from data corruption without loss of 

critical data and incurs small runtime overhead. 

1 Introduction 

Web-based applications generally store persistent data on 

the server, enabling client mobility, simpler configuration and 

improved data management. These applications are increas­

ingly being designed for extensibility and to support a plugin 

architecture, allowing third-party developers to rapidly intro­

duce additional features and provide enhanced services and 

customization. However, this design can lead to an applica­

tion bug or a single misconfiguration affecting a large number 

of users, potentially causing data loss or corruption. Third­

party plugins may be poorly tested, may cause problems with 

other plugins, or even worse, corrupt user data. For example, 

administrators of the Wordpress blogging application [11] are 

generally advised to back up all data before installing any new 

plugins or new versions of the application [12]. 

Data corruption and recovery pose especially serious chal­

lenges for web applications, since these applications may 

store important user data and configuration settings. For ex­

ample, Wordpress can be configured to store arbitrary user 

data, and can even embed other web applications, such as the 

powerful Gallery [29] photo application that allows storing 

and sharing personal photos with specific users. However, 
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Wordpress has had several vulnerabilities [15, 16, 17] that 

can cause data loss or corruption. A typical solution to this 

problem is to restore data from a backup. However, this ap­

proach loses updates that occur after the backup is performed, 

and these updates must be recovered manually or via some 

ad-hoc methods. Furthermore, a backup solution does not 

help diagnose the external or application events that caused 

the problem. As a result, currently much of this diagnostic 

work needs to be done manually, which is time consuming 

and error prone. 

An alternative to backups is to use application-specific re­

covery features. A common example is an undo functionality, 

available in web applications such as GoogleMail. This fea­

ture allows the user to undo her last action, enabling recovery 

from simple misconfiguration problems or accidental click­

ing. While this feature is useful, it has several limitations. 

First, it needs careful design and significant modifications to 

applications, especially if the application is extensible [8, 13]. 

Second, it may require several, potentially complex, manual 

operations if the corruption is detected much after it occurred. 

Finally, most importantly, application-specific recovery de­

pends on the correctness of the application. For example, 

Gallery2 bug number 2016834 [9] prevents all users, includ­

ing the administrator, from accessing the application interface 

and thus the last action cannot be reverted, even if the undo 

feature was available. Similarly, bug number 67745 [6] in 

Drupal [4], a popular content management system, causes all 

comments on the site to be deleted if two administrators try 

to delete the same comment. If undo were available, it would 

restore this comment, but all other comments would be lost 

because the developer did not expect them to be deleted. 

In this paper, we describe the design of a generic data re­

covery system for web applications that store their persistent 

data in a database tier. Our system does not rely on the web 

application for recovery and thus, is resilient to failures and 

bugs in the applications. Our system has two main goals: 1) 

allow web application administrators to diagnose application 

failures that corrupt persistent data 2) enable selective recov­

ery of this data, without affecting the rest of the application. 

A significant challenge in achieving our goals lies in iden­

tifying data corruption and its dependent effects accurately. 

In a recent case, a major electronics retailer experienced a 

misconfiguration, so that the price of one of its products was 

entered incorrectly [3]. This price had to be fixed and all de­

pendent purchases involving this product had to be cancelled. 

Another online retailer had to shut down its services after a 

similar pricing error [2] to determine its dependent effects. 
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Many similar examples [1, 5, 7] show that determining cor­

ruption and its dependent effects accurately is an important 

part of the recovery process. 

These dependent effects can be captured using a combina­

tion of dependencies at the different tiers of the application. 

At the database tier, a query might read a row that was writ­

ten by another query and update a third row, thereby creating 

a causal dependency between the queries. Similarly, a trans­

action might read a row updated by a previous transaction 

and update others. Foreign key constraints, in which a row 

update or delete in a table causes other referencing tables to 

be updated, also cause dependencies. 

Using dependencies for data recovery has been explored 

previously in the context of transactional databases [19, 23, 

27] and file systems [24, 38]. However, these techniques are 

applied at a single layer, making them unsuitable for web ap­

plications. For example, transaction-level dependency anal­

ysis cannot be directly applied to web applications as they 

may not use transactions, so the recovery system cannot de­

pend on their existence. Also, web applications operate at 

multiple tiers. Ignoring the interactions across tiers, these ap­

proaches can cause inconsistency after recovery, as shown in 

Section 4.2. 

Our recovery system correlates dependencies across dif­

ferent layers, namely at the presentation, application and 

database tiers, thus helping diagnose data corruption more ac­

curately. A potential drawback of our approach is that it can 

have false dependencies between requests that are essentially 

independent, leading to data loss. We explore using several 

dependency policies to resolve this problem. Furthermore, 

we show that the use of multiple policies helps the adminis­

trator determine the correct recovery actions more rapidly. 

Our system uses two novel methods for dependency anal­

ysis. First, it combines application replay with offline taint 

analysis for deriving application-level dependencies. Taint­

ing has generally been used online for securing applica­

tions [30, 31, 37], but we are not aware of its use for data 

recovery. Second, we explore the benefits of using finer­

grained field-level dependencies at the database than existing 

approaches that use row-level dependencies [19]. These tech­

niques help the administrator identify data corruption more 

accurately. 

Our main contribution is a dependency-based recovery 

system for web applications, that is resilient to bugs and ap­

plication misconfigurations. We have implemented a proto­

type of our system for the widely used PHP interpreter and 

the MySQL database, and tested our system on popular web 

applications including the Wordpress [11], Drupal [4] and 

Gallery2 [29]. We evaluate the effectiveness of our approach 

for various data corruption scenarios that can be triggered by 

known bugs and misconfigurations in these applications. Our 

second contribution is that we compare our results with pre­

vious approaches [19, 23, 27]. These approaches conducted 

performance evaluation, but did not evaluate whether their ap-
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proach caused false positives/negatives during recovery. We 

have used real web applications to evaluate the accuracy of 

our dependency analysis. Also, our database-row dependency 

scheme was designed to mimic the previous approaches. 

Next section discusses related work in the area. Section 3 

describes our approach and prototype implementation. In 

Section 4, we evaluate our system for various data corrup­

tion scenarios in popular web applications. We conclude in 

Section 5. 

2 Related Work 

Liu et al. [27] initially proposed a method for recov­

ering from malicious transactions based on tracking inter­

transaction dependencies. These inter-transaction dependen­

cies are created by examining the read-write sets of transac­

tions. The attacking transaction and effected transactions are 

moved to the end of the transaction history to simplify recov­

ery. Their follow-up works proposes a system in which nor­

mal operation is allowed while recovery is performed [19]. 

Similar recovery methods have been proposed in Fastrek [23] 

and the Flashback Database [34]. These methods focus en­

tirely on database-level recovery while ignoring application­

level dependencies, which can cause inconsistent recovery at 

the application level. Our system tracks application-level de­

pendencies during recovery by employing dynamic data-flow 

(i.e., tainting) within requests rather than just relying on the 

read-write sets of queries and requests, avoiding application­

level inconsistencies and tracking corruption more accurately. 

Compensating transactions have been used to recover from 

the effects of long-running or committed transactions [26] 

and for recovery in multi-level systems designed to increase 

concurrency [28]. We also use compensating transactions to 

perform recovery, but our focus is on recovering from appli­

cation bugs or vulnerabilities that cause data corruption, and 

we target web applications that may not use transactions. 

File system backups are commonly employed to recover 

from data corruption. However, backups revert data based 

on time and can lose legitimate updates that have occurred 

since the backup was taken. Selective file-system recovery 

aims to solve this issue via a set of dependency rules [25] that 

taint certain file updates, and reverting the effects of only the 

tainted updates [24, 38]. This method is too coarse-grained 

for database applications, because databases may save all in­

formation in a single file. The recovery operation would sim­

ply generate an older version of the database file, suffering 

from the same drawbacks as a backup approach. 

Operator Undo [21] is a powerful framework for applica­

tion recovery. The authors use it to recover from e-mail con­

figuration bugs, but the framework requires modifying ap­

plications to serialize requests for replayed. It also requires 

separating persistent data and special recovery procedures for 

each type of application request. By focusing on web appli­

cations with well-defined interfaces, we can provide similar 

functionality without modifying applications. 
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Causeway [22] provides operating system support for 

metadata (e.g., request id) transfer across the tiers of an ap­

plication. A similar idea was used by Magpie [20] in which 

the request execution paths were used to diagnose applica­

tion failures. Unlike these systems, our work utilizes the 

well-defined interfaces in a web application's tiers and passes 

metadata across tiers to log and correlate them without requir­

ing any modifications to the applications. 

There have been several proposals for using online taint 

analysis for securing web applications [30, 31]. Unlike these 

approaches, we use tainting only after a failure occurs, to fol­

low the effects of a bug. 

Our work is also motivated by various approaches for 

dealing with software configuration problems. PeerPres­

sure [35] uses statistical analysis of multiple systems to find 

and suggest a working configuration. Chronus [36] pinpoints 

a configuration problem by using predicates that determine 

whether the system is working correctly. AutoBash [32] aims 

to detect configuration problems and suggest corrective ac­

tions based on causality analysis. 

3 Our Approach 

This section describes the design of our recovery system. 

Our aim is to help the administrator identify the persistent 

data corrupted by a bug or a misconfiguration in a web ap­

plication, and selectively recover this data without affecting 

the rest of the application. First, we present the application 

model assumed by our recovery system. Section 3.2 provides 

an overview and the rest describes our system in more detail. 

3.1 Application Model 

A web application is typically designed using a three tier 

architecture, consisting of the presentation, application-logic 

and database tiers. A user or an administrator interacts with 

the web application by issuing requests, which are external 

actions at the presentation (or client) layer that invoke the ap­

plication logic. The application logic executed by each re­

quest makes database queries or transactions to access appli­

cation data and configuration information. 

Our recovery system takes advantage of several features 

of web applications to track bug-related activities and data 

corruption. First, most web applications store their persistent 

data in databases for concurrency control and easy search ca­

pabilities, which allows reusing the database logs for tracking 

the persistent modifications made by the application. Second, 

web applications are generally written in high-level or type­

safe languages such as PHP or Java, allowing easier mon­

itoring of the application. For example, an unmodified PHP 

application can be monitored by instrumenting the PHP inter­

preter, rather than requiring binary rewriting or source-code 

modifications for instrumentation. 

Third, web servers treat each user request independently, 

often creating a separate process per request to ensure iso­

lation, and any interaction between requests occurs using 
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database queries. In contrast, full-blown OS processes have 

numerous IPC and shared memory mechanisms available for 

communication that not only make it hard to monitor the ap­

plication [25], but these channels can also cause contamina­

tion to spread more easily [24]. Finally, web applications 

have a simple and well-defined interface that is mostly lim­

ited to requests and database operations. This interface makes 

it easier to replay requests to the application, since there are 

fewer sources of non-determinism. Using replay, we track 

data dependencies more accurately than previous methods. 

Our recovery system assumes that the database and the 

application-logic engine (e.g., the PHP interpreter) are not 

buggy, and data is corrupted at the database layer due to bugs 

in the application-logic or in the presentation layer. Our sys­

tem also assumes that the underlying database supports trans­

actions so that the database undo logs are generated and can 

be used for recovery. If the web application does not use 

transactions, each query is treated as a separate transaction 

via the database 'autocommit' feature. Our system does not 

purge the undo log entries for a transaction immediately af­

ter the transaction is committed, but after a user-configurable 

time. Transactions occurring before this time are considered 

stable and their effects cannot be reverted. Finally, we assume 

that the database uses a serializable isolation level so that the 

database transactions can be replayed correctly. 

3.2 System Overview 

Our system consists of a monitoring component operat­

ing during run-time (on-line phase), and two components that 

perform analysis and data recovery after corruption is de­

tected (post-corruption phase). The monitoring component 

is relatively lightweight, and broadly speaking, it tracks user 

(or administrator) requests across the three tiers of the appli­

cation, namely at the presentation, application-logic and the 

database tiers, allowing data recovery at request granularity. 

Monitoring the application and tracking requests at all these 

tiers gives our system the ability to perform generic recovery. 

The analysis and recovery components are used after cor­

ruption is detected, such as an administrator determining that 

a web page does not display as expected. These components 

use the data collected during the monitoring phase, includ­

ing database logs, to guide the administrator through the re­

covery process. The analysis component tracks dependencies 

across the application tiers, helping the administrator deter­

mine corruption related events, and is crucial for effective 

recovery. The recovery component generates compensating 

transactions to selectively revert the effects of database oper­

ations that caused data corruption. 

3.3 Monitoring 

The monitors track and correlate requests across all the 

tiers of the application, allowing request-level data recovery. 

We chose requests as the minimal granularity for recovery, 

because they are the smallest logical unit of application in-
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Client 
Dependencies: 

1. User-level 
2. Session-level 

Application 
Dependencies: 

1. Request-level 
2. Program-level 

Database 
Dependencies: 

1. Row-level 
2. Field-level 

Figure 1. Dependencies across layers. 

teraction (i.e., applications execute code at the granularity of 

requests), and they are relatively independent. In essence, 

we convert a request into a transaction during recovery, thus 

reducing application-level inconsistencies after the recovery 

operation as shown later in Section 4.2. 

The monitors log sufficient information to allow mapping 

each request to database transactions, and transactions to spe­

cific tables and rows that were modified. These request and 

transaction mappings, together with the database undo log, 

allow selectively reverting the effects of all persistent data 

modifications performed by a request. 

The transaction mapping is an index into the database 

undo log. The key of the index, which we call a transac­

tion ID, is the commit log sequence number (LSN) of the 

transaction. The transaction ID is ordered in transaction ex­

ecution order, since we assume that the database uses seri­

alizable isolation. This ordering is important for replaying 

requests, as described later. The request mapping logs the 

transaction ID of all the transactions issued by each request. 

It also logs the queries issued by each transaction and some 

application-specific information described later. This instru­

mentation does not require any changes to the application 

code, and it does not depend on application correctness. 

3.4 Analysis 

The analysis component helps determine data corruption 

or loss related activities, and is crucial for effective recovery. 

Before the analysis, the current state of the application (i.e., 

database tables) is saved. The analysis is performed in a sand­

box environment. After the analysis, the recovery actions can 

be performed on the previously saved state of the applica­

tion. The analysis component uses the data collected during 

the monitoring phase to derive three types of data dependen­

cies, at the database, program and the client level as shown in 

Figure I. These dependencies help track contaminated data 

across the multiple tiers of the application. 

3.4.1 Database Dependencies 

Database dependencies are generated at the row or field gran­

ularity based on the database rows or fields accessed by the 

application logic. These dependencies help correlate different 

requests based on the database operations performed by the 

requests, similar to existing approaches [19, 27]. As shown 

in Figure 2, a query Q2 is dependent on another query QI 

when Q2 reads data written by Ql. Similarly, a request R2 is 

dependent on request RI, when R2 contains Q2 and RI con­

tains Ql. These dependencies help generate a dependency 

graph with requests as nodes and edges as data dependencies. 
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R2 

R3 

Figure 2. A request dependency graph. 

The analysis component needs to know the read and write 

set of each query to generate a dependency. The monitor cap­

tures row-level write sets, because the database already main­

tains undo information at the row level. However, databases 

do not log read set information, because they do not need it 

and this logging imposes significant overheads. This prob­

lem has been addressed previously in two ways, other than 

simply logging the read sets. The first is to create a read-set 

template for each query, and then materialize the rows read by 

the query based on the parameters passed to the query [19]. 

However, this method requires manual creation of a template 

for each query issued by the application. The second method 

is instrumenting the database to generate and store the depen­

dencies during the on-line phase [23]. This approach gener­

ates dependencies more accurately, but affects performance 

during normal operation. 

After corruption is detected, the administrator uses our 

tools to identify one or more initial requests that trigger the 

bug or vulnerability in the application. Then the analysis 

component generates dependent requests using a method sim­

ilar to read-set templates, but without requiring manual cre­

ation of templates. It derives an approximate, but conserva­

tive estimate of the query read set by parsing the query and 

determining the tables accessed. This simple method for gen­

erating read sets results in a larger dependency graph com­

pared to the previous approaches. However, this larger de­

pendency graph only affects the time to perform recovery, 

but not the overall accuracy of our solution, because we use 

application-level tainting as described below. 

3.4.2 Application Dependencies 

The dependencies described above apply to entire requests 

and are tracked transitively. This coarse-grained approach 

can potentially generate many false dependencies. Such de­

pendencies occur for two reasons. First, the analysis compo­

nent tracks query read sets conservatively, as described above. 

Second, a request can issue multiple queries that may have no 

dependencies. For example, Figure 2 shows that request R2 

depends on R I, and R3 depends on R2, and thus R3 is also 

assumed to depend on R I. However, this dependency may 

not exist if, for example, R2 immediately discards the value 

it read from R I using Q2, while R3 only depends on Q4. 

We use dynamic tainting to track application-logic depen­

dencies within a request (shown as program-level dependen­

cies in Figure I) to prune both these types of false dependen­

cies from the dependency graph. This approach essentially 

validates a cross-request dependency. The analysis compo­

nent starts by tainting the initial request(s) in the dependency 
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graph and replaying them. It then replays requests that have 

incoming edges in the dependency graph and uses tainting to 

prune outgoing edges that are created by untainted queries. A 

scheduler orders all the requests in the dependency graph to 

replay them in the transaction ID or serialization order. We re­

play requests by capturing all HTTP request parameters dur­

ing the monitoring phase. While web requests are mostly de­

terministic, our system detects any non-determinism by com­

paring the queries generated during replay with the queries 

logged by the monitor. If an inconsistency is detected, we 

currently ensure safety by aborting the analysis process. 

Our implementation uses a taint-based PHP inter­

preter [33]. We have modified the interpreter to taint an appli­

cation variable that reads a tainted database row or field, and 

taint database rows or fields that are modified by queries using 

tainted application variables. Unlike previous work that im­

plemented row-level database dependencies, tainting allows 

us to implement more accurate field-level dependencies. Fur­

thermore, these dependencies allow us to take advantage of 

blind writes (a query overwrites a field without reading it) for 

breaking dependencies. With row-level dependency, a blind 

write requires the entire row to be overwritten. 

3.4.3 Client Dependencies 

Finally, the analysis component uses client-side dependen­

cies across requests, such as login sessions and user accounts. 

For example, session cookies identify all requests associated 

with a login session. These types of dependencies provide 

a useful abstraction, because they can help provide different 

starting points for the analysis: an administrator might know 

that the data corruption started with a specific user and start 

the dependency analysis by tainting all modifications by this 

user. This abstraction may also be useful for recovery. For 

instance, an administrator may wish to revert all the effects 

caused by a session, if she knows that session is responsible 

for the data corruption and there are no other dependencies. 

Client dependencies are not directly available at the 

application-logic or database level. We derive these depen­

dencies by using application-specific code in our monitor 

component, but without requiring any changes to the appli­

cations themselves. For example, session information is typ­

ically available in request parameters. 

3.5 Recovery 

The recovery component provides tools that simplify the 

recovery process. These tools provide information (e.g., time 

line of requests that affected specific tables, generated pages), 

helping the user identify requests that are the root cause of the 

failure, and serving as the starting point for the analysis com­

ponent. For example, the root cause can be determined by 

reverting requests using binary-search [36], until the admin­

istrator determines which request caused the corruption. 

After the analysis component generates the set of tainted 

requests, the recovery component uses the information in the 
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Table 1 Modifications to existing software. 
Component Existing Software Changed Lines 

DB Monitor MySQL 287 

Application-logic PHP interpreter 219 

Monitor 

Application-logic PHP interpreter 519 

Analysis with taint support 

Query Rewriter JSQLParser 1850 

Recovery Component - 4757 

database log and our request and transaction mappings to 

generate compensating transactions. For each update oper­

ation in a transaction, an operation that writes the previous 

value of the updated row(s) is appended in reverse order to 

the program of the compensating transaction [19]. These 

transactions are applied in reverse serialization order on the 

current state of the database and they selectively revert the 

effects of the database operations issued by the tainted re­

quests. Unlike redo recovery [21], our recovery component 

does not replay application requests, and thus does not re­

quire any application-specific information. More details of 

our approach are available elsewhere [18]. 

3.6 Implementation 

We have implemented a prototype of our recovery system 

for the PHP scripting engine and the MySQL database. Ta­

ble 1 shows the number of lines of code we added or changed 

to implement our system. Note the majority of the code lies in 

the recovery component. Our changes to the PHP engine and 

MySQL are relatively small, and thus, it should be relatively 

easy to port our system to other languages and databases. 

Implementing database tainting by modifying the database 

would have required significant changes to MySQL to sup­

port all SQL functionality. Instead, we implemented tainting 

with query rewriting by slightly modifying JSQLParser [10]. 

We modify the database tables to store a per-row or per-field 

taint bit and rewrite queries during replay. This approach is 

simpler to implement and provides significant flexibility to 

implement different dependency policies described later. 

4 Evaluation 

We evaluate our system in terms of how well it helps re­

cover from data corruption caused by bugs found in popular 

web applications. We also measure our system's performance 

and space overheads. For our experiments, we used MySQL 

configured with its transactional storage engine (InnoDB). 

4.1 Dependency Policies 

The aim of our analysis tools is to provide sufficient in­

formation to the administrator to identify data corruption. To 

this end, our tools provide support for different dependency 

policies described below. Our evaluation compares the recov­

ery accuracy of these policies. 

1) Request-level dependency with row-level tainting 

(request-row): This policy is the most conservative depen-
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dency policy. It assumes that a request is tainted if it reads 

a tainted database row. All further database updates by the 

request are marked as tainted, regardless of whether tainted 

information is used to update the database. 

2) Program-level dependency with row-level tainting 

(program-row): This policy takes application-level data flow 

into consideration when generating the dependency graph. 

During a request, all variables that are initialized using a 

tainted row are marked tainted. The taint is propagated 

throughout the request. When a query with tainted values 

is executed, the taint information is saved in the database at a 

row granularity preserving taints across requests. 

3) Database-level dependency with row-level tainting 

(database-row): This policy implements previously pro­

posed recovery methods [19]. It propagates taints when 

queries read tainted rows and update other rows. Since this 

policy does not consider application-level dependencies, such 

as dependencies between the queries of a request, it may fail 

to identify all the effects of the corruption. Also, the recovery 

reverts operations at the query level rather than the request 

level, probably resulting in application-level inconsistencies. 

4) Program-level dependency with field-level tainting 

(program-field): This policy is similar to 2), except that 

taints are stored in the database at a field granularity, which 

also allows us to take advantage of blind writes. 

5) Database-level dependency with field-level tainting 

(database-field): This policy is similar to 3), except that 

taints are stored in the database at a field granularity. 

Our analysis tools can also incorporate administrator 

knowledge about the application and help her determine the 

effects of data corruption more accurately. An administrator 

can whitelist tables, columns, rows or even fields, to stop taint 

propagation at the database tier. Our replay logs collect suffi­

cient information about taint propagation, at the database and 

application layers, which is useful for generating whitelists. 

We used this approach to create whitelists for our evaluation. 

We have also implemented a request profiler detecting 

requests with different application-level semantics, such as 

adding a comment, editing a post or updating a user. The 

profiler identifies request types based on the queries issued 

(e.g., INSERT), their order, and the database items (i.e., ta­

bles, columns) they accessed. The profiler generates a list of 

request types together with heavily accessed data items suit­

able for whitelisting. The intuition is that these items may 

cause significant taint propagation, but the frequent requests 

and accesses are unlikely to be a cause of corruption. Once 

the administrator whitelists these items, the tainting engine 

ignores them during replay, generating a new set of depen­

dencies, thus giving the administrator a better understanding 

of how the corruption may have propagated. 

4.2 Recovery Accuracy 

We evaluate the accuracy of our dependency policies by 

triggering five real bugs in popular web applications, includ-
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ing Wordpress, Drupal and Gallery2. We investigated bug 

repositories and selected these bugs as follows: 1) data was 

corrupted/lost and there was no easy way to restore it (except 

using backups which may lose valid data), 2) the bugs were 

related to the application-logic and not the underlying soft­

ware (e.g., PHP, MySQL). We describe these bugs, failure 

scenarios, the correct recovery actions and report how our re­

covery system performed. We assume that the administrator 

has identified the root cause of the corruption as explained in 

Section 3.5, and thus, the initially tainted request is known. 

For our evaluation, we define correct recovery actions to 

be the actions that will remove data corruption and its effects, 

bring the application into a consistent state and minimize the 

amount of data lost. We use three metrics to measure recovery 

accuracy. First, we determine whether recovery operations 

cause application-level inconsistencies that break application 

functionality. Second, we measure false positives, which are 

requests that are marked tainted even though they are unre­

lated to the corruption and will cause data loss during recov­

ery. Third, we measure false negatives, which are requests 

that are not marked tainted, but whose effects should be re­

verted. These will cause corruption to linger in the applica­

tion after recovery, possibly causing problems in the future. 

4.2.1 Results 

We summarize the results of various dependency analysis 

policies in Table 2 and Table 3. In Table 2, the second col­

umn shows the total number of requests we had to replay for 

the dependency analysis. All bugs had one initial request that 

corrupted data and each replay starts with one initially tainted 

request. The "requests to undo" column shows the number of 

requests the administrator needs to undo to correctly recover 

from data corruption. The next column shows the dependency 

policy used; 'none' indicating that no dependency informa­

tion is considered for undo. The last two columns present the 

accuracy of the policies in terms of false positive and nega­

tive requests. The false positive numbers are without and with 

whitelisting. In Table 3, we present the results of database­

level dependency policies. Since database-level policies only 

create dependencies across queries, all the numbers are in 

terms of queries. The last column shows the inconsistencies 

that are encountered after undoing these queries. The policies 

in Table 2 did not have any inconsistencies. 

Many bugs we investigated did not corrupt data after the 

initial request and thus the 'none' policy (no dependency 

analysis) works well. One bug in Drupal created dependen­

cies, and hence false negatives when dependencies are not 

considered. Note that we do not know beforehand whether 

a corruption will create dependencies, and thus dependency 

analysis provides useful information during recovery. 

Table 2 shows that the request-level dependency policies 

suffer from high false positive rates, while Table 3 shows 

that the database-level policies can have many false negatives 

and inconsistencies. These results show that web applications 
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Table 2. Recovery accuracy for request-level and program-level dependency policies. The false posi­

tives column shows numbers without and with table whitelisting, respectively. 

Case Total Number of Requests Requests to Undo Dep. Policy False Positives False Negatives 

none 0 0 

Wordpress - 109 1 request-row 60 0 

link category rename program-row 8 0 

program-field 6 0 

none 0 6 

Drupal - 118 7 request-row 111/100 0 

lost voting information program-row 95/89 0 

program-field 89/0 0 

none 0 0 

Drupal - 117 1 request-row 116/102 0 

lost comments program-row 100/93 0 

program-field 95/0 0 

none 0 0 

Gallery2 - 91 1 request-row 90/13 0 

removing permissions program-row 88/11 0 

program-field 82/10 0 

none 0 0 

Gallery2 - 151 1 request-row 148/0 0 

resizing images program-row 139/0 0 

program-field 119/0 0 

Table 3. Recovery accuracy of database-level dependency policies. All numbers indicate queries. 
Case Queries to Undo Dep. Policy False Positives False Negatives Inconsistencies after Undo 

Wordpress - 23 database-row 

link category rename database-field 

Drupal - lost vo- 38 database-row 

ting information database-field 

Drupal - 24 database-row 

lost comments database-field 

Gallery2 - 9 database-row 

removing permissions database-field 

Gallery2 - 17 database-row 

resizing images database-field 

generally expect that requests execute atomically, and thus re­

covery should be performed at a request granularity to mini­

mize inconsistencies in the application after recovery. Table 2 

also shows that the program-field dependency policy has the 

least number of false positives and no false negatives. 

Although database-level policies can cause application­

level inconsistency, they tend to have fewer false positives 

than the others. Thus, an administrator can compare the out­

puts of the database and program policies to derive the correct 

recovery actions more accurately and rapidly. The request 

policies do not require replay and can be useful if the pro­

gram policy replay fails (e.g., incomplete implementation). 

Below, we describe one bug for each application in more 

detail. For each case, we provide an overview of the applica­

tion, background information for the corresponding bug and 

explain the results of each dependency policy. These results 

show that our approach is essential for data recovery, because 

bugs can be complex and it is hard to know what was cor­

rupted without dependency analysis. 
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0 15 The count value does not match 

0 21 the actual number of links. 

86 16 The polLvotes table 

0 18 has duplicate entries. 

116 0 none 

0 0 

97 0 The global sequence id has 

9 0 an old value breaking 

110 0 future inserts 

20 0 requiring a new id. 

4.2.2 Wordpress: Link Category Rename 

Wordpress is a popular blogging application that allows users 

to create content (e.g., posts, links) and associate it with cat­

egories to group and present it in a more organized way. 

Scenario: An administrator already has some links associ­

ated with a certain category, caL1. To edit a category's 

name, she has to click on it. A bug [14] allows her to rename 

ca Ll to an empty string. She can still associate links with 

this category by selecting its checkbox. She adds new links 

associated with this category and others (e.g., {old_caLl, 

caL2}, {caL2, caL3 }) and changes some settings. 

Correct recovery actions: Undo the rename operation. 

Background: Wordpress maintains links, terms (i.e., cate­

gories) and their types (i.e., belonging to posts or links) in 

separate tables (i.e., links, terms, term_taxonomy). 

Another table stores the relationships between the content and 

the terms (i.e., term_relationships). After querying 

this table, the number of links belonging to a certain category 
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is stored in the count column in the term_taxonomy ta­

ble. This field is used for fast access when generating a page. 

Results: The request-row policy marks many requests as 

falsely dependent because of an actively shared table (e.g., 

options). It does not consider whether tainted data a re­

quest reads from the above mentioned tables is used to update 

the database, instead it conservatively taints the request that 

updates a row in the options table. Since all requests query 

this table, they get tainted leading to many false positives. 

The program-row policy reduces the number of false pos­

itives, because data flow at the program-level prevents taint 

from spreading to the options table. These false positives 

are caused by the row-level tainting granularity. When the ad­

ministrator adds links with other categories than the renamed 

one (i.e., {caL2, caL3 }), these operations get tainted, 

because each of these categories were previously used with 

the renamed category, such as {old_caLl, caL2} and 

{old_caLl, caL3 }, causing false positives. The finer­

grained program-field policy has fewer false positives and 

no false negatives. Field-level tainting improves accuracy, 

recognizing the addition of links associated with {caL2, 

caL3 } as independent of old_caLl. The six false posi­

tives are caused, because these requests added new links as­

sociated with old_caLl and updated a link belonging to it. 

Wordpress associates a new link with a category in three 

steps: 1) the relation between the link and the category is in­

serted into the term_relationships table. 2) this table 

is queried for the number of links associated with the cate­

gory. 3) this number is used to update the count field of the 

category in the term_taxonomy table. The database-row 

policy only marks the third step as tainted, because it reads 

the category's row that was tainted previously when another 

link associated with old_caLl was added. The insert oper­

ation in the first step was not marked as tainted, because it did 

not read any tainted rows. Reverting only the update opera­

tion will cause an inconsistency in the application, because 

the actual number of links belonging to a category in the 

term_relationships table will not match the count 

value in term_taxonomy table. In contrast, the database­

field policy misses all other related steps (Le., creating a rela­

tionship with that category), because the count is blindly 

overwritten resetting its taint. Exploiting blind writes via 

field-level tainting to break dependencies is desirable; how­

ever, a database-level policy can have false negatives. 

Discussion: The addition of the links associated with 

old_caLl and updating an existing link in this category 

may be considered as dependent on the initial corrupting re­

quest because of the explicit data dependency between the 

requests (i.e., old_caLl's id is used to create the relation­

ship). However, this would lose the new links and the up­

date. In this case, choosing the correct recovery action is non­

trivial, because this problem is application-specific. Instead, 

we provide detailed results for different policies, and thus, 

help the administrator make an informed decision about the 
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correct recovery action. We did not have to use whitelisting 

for this case because of the small number of tainted requests. 

4.2.3 Drupal: Lost Voting Information 

Drupal allows an administrator to create a poll with multiple 

choice options via a module. One can control who can vote 

(e.g., only registered users). A user can only vote once and 

the application asserts this by keeping track of who has voted. 

Scenario: An administrator creates a poll for registered 

users. After some users have voted, the administrator fixes 

a typo in the poll contents. A bug [7] causes the information 

about who has voted to be lost, allowing repeat votes. This 

creates an inconsistency in the application, because the sum 

of votes becomes greater than the number of users. 

Correct recovery actions: Determine the repeat votes and 

restore information about who has voted. 

Background: Drupal maintains session data in the 

ses s ions table and retrieves it at the beginning of each re­

quest to obtain the associated user's id for permission checks. 

The table is updated with a timestamp and other related data 

at the end of each request. The poll content (e.g., the text of 

the choices, number of votes) is saved in the polLchoices 

table, whereas the polLvotes table tracks who has voted. 

Results: The request-row policy marked all requests as 

tainted because of the shared session data. The updated poll 

is put to the front page. Since every session starts requesting 

the front page, the taint is spread between different users. 

The program-row policy tainted requests that read and use 

the poll data during voting. When different users vote on the 

same poll, their sessions get tainted, causing many false pos­

itives. To our surprise, the finer-grained program-field policy 

did not reduce the false positives much, even though the ses­

sion update was a blind write. Our investigation revealed that 

this update was using a tainted value, (i.e., the user id) that 

got tainted when the initial request updated the session data. 

The database-row policy marked queries in many re­

quests to be tainted. All false positives were related to 

the sessions and users table. On the other hand, the 

database-field policy marked the queries that updated the 

number of votes in the polLchoices table, but not the 

queries inserting information about who has voted into the 

po 1 L vot e s table. Reverting the effects of only the updates 

would create an inconsistency in the application, because the 

polLvotes table would have duplicate entries. 

Discussion: After examining our logs, we whitelisted 

sessions, history and watchdog tables. The request­

row policy still produced many false positives via the users 

table because of the updates to the access timestamp field. 

In contrast, the field-level policy resets the taint for this field, 

as the update is a blind write, resulting in no false positives. 

The second and third rows in Table 2 show that the same 

dependency policies produce different results in terms of false 

positives, even though the scenarios involve the same applica­

tion. This shows that the nature of the bug plays an important 
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role on determining what kind of dependencies really exist 

and thus, the correct recovery actions. We can help the ad­

ministrator by providing detailed results and analysis logs for 

each policy and how they generate the dependencies. 

4.2.4 Gallery2: Remove Permissions Breaks Application 

Gallery2 has a fine-grained access control mechanism. An 

administrator can assign various capabilities (e.g., view) for 

specific pictures or whole albums to specific users and groups. 

Scenario: An administrator temporarily removes other users' 

permissions to view the entire gallery. She then creates sub­

albums under the main album, and adds users and groups. 

After she logs out, a bug [9] causes the application to show an 

error message, stopping the application entirely and making 

the web interface no longer available. 

Correct recovery actions: Restore permissions to view the 

gallery. The administrator considers sub-albums' additions 

irrelevant to the corruption. 

Background: Gallery2 uses a global sequence id for every 

item (e.g., picture, album) inserted into the database making 

this id their primary key in their respective tables. It stores 

the last value in the Sequenceld table. A global Entity 

table stores each item and its associated data. For entities, 

such as sub-albums, a ChildEntity table stores the re­

lationships. The table SessionMap tracks open sessions, 

associating each session with the corresponding user's id. 

Results: The request-row policy marks almost every request 

as tainted. The session data becomes tainted with the initial 

request and the taint is spread to other requests when it is read 

at the beginning of each request. The program-row and the 

program-field policies also have many false positives. Similar 

to Drupal, the user id retrieved from the tainted session data 

is propagated throughout the request and is used to update the 

session data at the end of the request, spreading the taint. 

The database-row policy marks the update queries to the 

SessionMap and Sequenceld tables as tainted. The ses­

sion data may be considered temporary and ignored during 

recovery; however, the sequence update queries are important 

for correct functionality of the application. Every insertion of 

an item will increment the sequence id. If this value is re­

verted back to its original state before the corruption, a new 

item being inserted will get an id that is already assigned to 

another item. This will certainly cause undesired behaviour, 

since the same id is already in use in the En tit Y table. 

On the other hand, the database-field policy only marks 

the sequence id updates, as the old value of the field is read 

during the update. The taint for the session data is reset with 

a blind write. The used value cannot be tainted, because this 

policy does not propagate the taint throughout the request. 

Discussion: We examined our logs and whitelisted the 

SessionMap and Sequenceld tables, significantly re­

ducing the false positives. The rest is caused by the parent­

child relationship between the main gallery and the added 

sub-albums. The id of the main gallery, which was tainted 
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Table 4. Throughput and latency overhead 
Monitors Throughput (reqJsec) Latency (ms) 

Enabled and Overhead and Overhead 

None 31.31(0) 3637 (0) 

MySQL 31.50 (-0.61%) 3614 (-0.62%) 

PHP 29.55 (5.62%) 3853 (5.95%) 

PHP & MySQL 30.06 (3.99%) 3787 (4.12%) 

by the initial request, is used to insert new entries to the 

ChildEntity table, resulting in false positives. Choosing 

the correct recovery actions in this case is also application­

specific. One may argue that these requests are really depen­

dent, because viewing sub-albums is prevented if the parent 

album is not accessible. Thus, sub-albums' additions should 

be dependent on the first request that removed the permis­

sions from the parent (i.e., main) album. The number of false 

positives is small and manageable. Also, our replay logs pro­

vide enough information on how taint spreads, so that the ad­

ministrator can decide for the correct recovery actions. The 

database-level policies not only had false positives, but re­

verting them caused the inconsistency given in Table 3. 

4.3 Performance 

We report our system's performance and disk space re­

quirements using the TPC-W industry benchmark. We mea­

sure the throughput and logging overhead of our monitors. 

The server was an Intel Pentium 4 2.80 GHz with dual CPU 

on Ubuntu Linux 8.04 with Apache 2.2.8 running in pre-fork 

mode. Both CPU's were saturated using 100 emulated clients 

running on an Intel Pentium 4 3.0 GHz with 4 CPU's. Both 

machines were connected via a 1 Gb link. We report averages 

of at least 15 runs each lasting 30 minutes. 

4.3.1 Throughput Overhead 

To measure the throughput overhead of our monitors, we ran 

tests by enabling them separately and both of them together. 

The results can be found in Table 4. Our instrumentation in­

curs a maximum of 4% overhead in throughput and latency, 

when both monitors are on. The overhead is mostly caused 

by our PHP instrumentation, which can be further optimized. 

Our database instrumentation improves performance 

slightly (compare the first and second rows in Table 4), be­

cause our monitor disables the periodic purge of the undo in­

formation of committed transactions. For details, see [18]. 

4.3.2 Disk Space Overhead 

The disk overhead arises from disabling the undo log purge, 

keeping the mapping between transactions and modified rows 

in the database and the PHP log. The logs take about 4 KB 

per request (3.08 KB for the PHP log) for TPC-W, totaling 

196 MB for a 30 minute run (9.19 GB per day). Compress­

ing the PHP log reduces the log size to 2.23 GB per day. A 

250 GB disk can save logs of about 104 days. Given current 

disk capacities, we believe that this overhead is acceptable for 

providing a generic recovery system for web applications. 
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5 Conclusion 

A web application bug causing data loss or corruption can 

affect many users, because these applications store data at 

the server side. We have described the design of a recov­

ery system for web applications that helps administrators re­

cover from data corruption. Our system tracks and correlates 

requests across multiple tiers of the application with modest 

changes to existing software. A significant challenge in data 

recovery is determining the correct set of dependent requests. 

Our evaluation compared various dependency schemes, in­

cluding our proposed tainting-based scheme, and showed 

how they allow an administrator to successfully diagnose and 

recover from various corruption scenarios and real bugs. Our 

prototype implementation with MySQL and PHP shows that 

generic data recovery functionality can be obtained with little 

overhead and no modifications to the web applications. 
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