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Modern offices are crowded with personal computers. While studies have shown these to be idle most of the
time, they remain powered, consuming up to 60% of their peak power. Hardware-based solutions engendered
by PC vendors (e.g., low-power states, Wake-on-LAN) have proved unsuccessful because, in spite of user
inactivity, these machines often need to remain network active in support of background applications that
maintain network presence. Recent proposals have advocated the use of consolidation of idle desktop Virtual
Machines (VMs). However, desktop VMs are often large, requiring gigabytes of memory. Consolidating such
VMs creates large network transfers lasting in the order of minutes and utilizes server memory inefficiently.
When multiple VMs migrate concurrently, networks become congested, and the resulting migration latencies
are prohibitive. We present partial VM migration, an approach that transparently migrates only the working
set of an idle VM. It creates a partial replica of the desktop VM on the consolidation server by copying only VM
metadata, and it transfers pages to the server on-demand, as the VM accesses them. This approach places
desktop PCs in low-power mode when inactive and switches them to running mode when pages are needed
by the VM running on the consolidation server. To ensure that desktops save energy, we have developed
sleep scheduling and prefetching algorithms, as well as the context-aware selective resume framework, a
novel approach to reduce the latency of power mode transition operations in commodity PCs. Jettison, our
software prototype of partial VM migration for off-the-shelf PCs, can deliver 44–91% energy savings during
idle periods of at least 10 minutes, while providing low migration latencies of about 4 seconds and migrating
minimal state that is under an order of magnitude of the VM’s memory footprint.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Distributed
systems; D.4.4 [Operating Systems]: Communications Management—Network communication
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1. INTRODUCTION

Personal computers (PCs) are indispensable in the modern office. Studies [Webber et al.
2006; Nedevschi et al. 2009; Agarwal et al. 2009] have found that although office PCs
are idle for much of the day, they remain powered. We consider PCs to be idle in the
absence of the user and when not running tasks that have been specifically scheduled
to take advantage of such absence, as is often the case with compute or I/O-bound tasks,
such as virus scans and system backups. Idle times have been shown to add up to close
to 12 hours per day, excluding off times [Nedevschi et al. 2009]. Unfortunately, an idle
PC can consume up to 60% of its peak power. Although modern computers support low-
power modes of operation, defined by the Advanced Configuration and Power Interface
(ACPI) specification [Intel Corporation et al. 1999], the same studies have shown that
these are seldom employed mainly because of applications with always-on semantics.
Applications such as instant messengers (IM), Voice over IP (VoIP) clients, and remote
desktop access and administration utilities maintain network presence even when
the PC is idle. To address these shortcomings, modern PCs support mechanisms for
waking up from low-power mode at the request of remote hosts (e.g., Wake-on-LAN
[Lieberman Software Corporation 2006]). Although these work for applications that
provide remote access to the PC, they are ineffective for client-driven applications that
communicate with external servers continuously. Applications such as IM and VoIP
clients periodically report to protocol servers to maintain the user’s online status and
poll for incoming messages. Many cloud-based Web applications rely on a client-driven
model to maintain a connection to external services. Asynchronous JavaScript and
XML (AJAX) applications such as Facebook Chat [Facebook, Inc. 2012], Google Docs
[Google, Inc. 2012b], and Gmail Chat [Google, Inc. 2012a] are just a few examples of
applications for which Wake-on-LAN-like mechanisms do not work.

An attractive solution is to host the user’s desktop inside a Virtual Machine (VM),
migrate the VM to a consolidation server when idle, and put the PC to sleep [Das
et al. 2010]. The key advantage of this approach is that it does not require changes to
applications or special-purpose proxies. However, a straightforward implementation
causes large network transfers during migration of memory (and optionally disk) state
that can saturate shared networks in medium to large offices and allocates server
memory inefficiently.

In this article, we present partial VM migration, an approach that consolidates only
the small working set of the idle VMs. Partial VM migration is based on the observation
that an idle desktop, even in spite of background activity, requires only a small fraction
of its memory and disk state to function. Our experience with Windows and Linux VMs
shows that, when idle, these VMs access less than 10% of their memory allocation and
about 1MiB of disk state. Partial VM migration creates a partial VM on the server
and transfers on demand only the limited working set accessed while the VM is idle.
The PC sleeps when the consolidated partial VM needs no state from it and wakes to
service on-demand requests. We call these opportune sleeps microsleeps. Migrating the
VM back to the user’s PC is fast because partial VM migration maintains VM residues
on the PC and transfers only the dirty state created by the partial VM back to the
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PC. PCs can be desktop machines, laptops, or other machines that host user desktop
sessions locally.

Partial VM migration makes energy-oriented desktop consolidation practical. Be-
cause its network transfers are small, and partial VMs require only a small fraction of
their PC mode memory footprint, both the network and server infrastructure can scale
well with the number of users, and migration times are very small. High migration
efficiency creates more opportunities for energy savings because shorter periods of idle-
ness can be targeted. Fine-grain migration also lowers the penalty for poor migration
decisions. If an idle user becomes active sooner than expected, the user hardly notices
that his VM has migrated.

The main challenge of the approach is ensuring that desktops save energy, a goal
made difficult by the increased use of power when PCs transition between low-power
and full-power modes and the long latencies of the transition operations. We have
developed a scheduling algorithm that enables desktops to sleep only if there is an ex-
pectation that they will save energy, explored page prefetching strategies that increase
microsleep durations, and developed the context-aware selective resume framework,
an architecture used to reduce the latency of power mode transition operations in com-
modity PCs. Context-aware selective resume provides PCs in low-power mode with
a context descriptor of the task requesting the wake-up, which enables the PCs to
initialize only devices and system components needed for the completion of the task.

Jettison is our software prototype of partial VM migration for off-the-shelf PCs. Our
experience with a deployment of Jettison in a Linux desktop environment shows that
significant energy savings are achievable without adversely impacting user experience.
Within an hour of inactivity, desktops were able to save up to 78% of energy, and in
5 hours the savings increased to 91%. Experienced migration times were near 4s, and
migration sizes averaged under 243MiB for Linux desktop VMs with 4GiB of nom-
inal memory. When Jettison was combined with the context-aware selective resume
framework in controlled experiments, energy savings ranged from 44% to 66% during
shorter idle intervals of 10min to an hour. Our experiments also show that, in a sim-
ulated environment with 500 users, partial VM migration can deliver similar energy
savings as full VM migration while using less than 10% as much network resources and
providing migration latencies that are three orders of magnitude smaller. The capital
investment needed to achieve these energy savings is modest. Even a small private
cloud can support a large number of desktop VMs because the VMs migrated there
have small network and memory footprints: they only do what is needed to sustain
always-on semantics for desktop applications.

Although our current partial VM migration prototype targets VMs with local storage
on the PC, the approach is equally applicable to enterprise deployments with shared
network storage. Similarly, partial VM migration is complementary to solutions like
Intelligent Desktop Virtualization (IDV) [Intel Corporation 2011c] that simplify desk-
top management by centralizing it while supporting local execution. Whereas these
approaches concentrate on managing and backing up persistent VM state, partial VM
migration concerns itself with the migration of runtime state.

1.1. Contributions

This article makes the following contributions: (i) it shows that office PC idle times
are largely distributed throughout the day, including long periods during overnight
hours and short ones during office hours; (ii) it shows that the working set of idle Linux
and Windows VMs is small and consists mostly of memory state (disk is less than
1%); (iii) it shows that migrating a VM in full is unnecessary and, indeed, does not
scale well for energy-oriented idle desktop consolidation; (iv) it shows that on-demand
page and disk block requests are clustered enough to allow desktops to save energy
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by sleeping between request bursts; (v) it presents partial VM migration, an approach
that consolidates only the idle working set of idle VMs; (vi) it shows that partial VM
migration can save as much energy as full VM migration while sending less than
10% of the data, delivering migration latencies that are three orders of magnitude
smaller, and providing consolidation ratios that are an order of magnitude higher; and
(vii) it introduces context-aware selective resume, an approach that reduces latency
of resume operations of PCs in low-power by selectively initializing only devices and
system components relevant to the task requesting the system resume.

1.2. Organization

The remainder of the article is organized as follows. In Section 2, we begin with a dis-
cussion of the background to our work and the advancements in the PC technology that
are used to reduce idle power use. In Section 3, we discuss desktop virtualization, its
applications in this problem space, and we identify the challenges encountered with so-
lutions that rely on existing virtualization technology in enterprise offices. In Section 4,
we characterize the working sets of idle Linux and Windows desktop VMs with the
goal of identifying opportunities to improve upon existing approaches. In Section 5, we
present partial VM migration, our approach for reducing energy use by idle desktops
in enterprise offices. In Section 6, we introduce Jettison, our implementation of partial
VM migration for off-the-shelf desktop systems, and we present results from a deploy-
ment in a research environment. We identify two challenges arising from the use of
on-demand page migration from idle PCs—the energy cost of servicing page faults and
impact on reliability of desktop hardware components—and we discuss considerations
when deploying partial VM migration in enterprise environments. In Section 7, we
present context-aware selective resume, an approach to improve energy savings by re-
ducing PC suspend and resume cycle times. In Section 8, we use simulations driven by
user activity traces to extend results from our deployment of Jettison into large office
environments and evaluate the scalability of the approach. In Section 9, we discuss
related work. Finally, in Section 10, we conclude the article and discuss avenues for
future work.

2. BACKGROUND

In this section, we motivate the significance of the problem with a discussion of previous
studies on the power states of idle PCs, as well as our own study of user inactivity. We
then explore power management features on modern PC hardware designed to tackle
idle power waste. We discuss low-power operational states, dynamic scaling of CPU
power, and on-demand wake-up mechanisms and explain why these have not been
very successful in the field.

2.1. The Scale of the Problem

Desktop and laptop PCs pervade the modern office. A study on the after-hours status of
office equipment across U.S. office buildings has found that 60% of desktop computers
remain powered in overnight hours and that only 4% of them use low-power states
[Webber et al. 2006]. More recently, Nedevschi et al. [2009] reported similar findings,
with desktops remaining idle for more than 12 hours daily (not including off periods)
and only 20% using low-power states. Ineffective management of power in idle PCs
results considerable energy waste. A study commissioned by the California Energy
Commission [California Energy Commission 2006] has found that, in office buildings,
IT equipment is now the second largest consumer of electricity (20%), only surpassed
by lighting (25%).

These studies have found that office users and administrators actively disable power
management on their desktops. Desktop machines commonly ship preconfigured to

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 2, Publication date: March 2015.



Energy-Oriented Partial Desktop Virtual Machine Migration 2:5

Fig. 1. Desktop and laptop user activity. Each imaginary horizontal line represents a user. Active times are
represented in red and idle times in white.

enter low-power modes whenever user inactivity is detected for a significant period.
For example, by default, Windows 7 systems enter low-power sleep state after 30min of
user inactivity. A survey [Agarwal et al. 2009] sought to identify the reasons that people
keep idle desktop PCs powered. The survey found that, among office users, the most
oft-cited reasons were remote access and background applications. Of all respondents,
52% left their systems powered to support remote access to files and software on the
PCs and 35% to support applications running in the background. Of these applications,
IM and e-mail were the most popular, with a combined 47% share of the responses.

Idle times are not limited to after-work hours. To gain a better understanding of
idle times, we collected traces of desktop and laptop user activity in an industrial
research lab. We deployed an activity tracker that determines whether the user is
active every 5s. Users were said to be inactive if the tracker finds no mouse or keyboard
activity and no application has disabled the system’s screen saver. Applications such
as QuickTime video player disable desktop screen savers when playing a video to
prevent interruptions. Our tracker ran on Mac OS X because this was the most popular
operating system in the lab. We deployed the tracker over a period of 4 months on
the primary computers of 22 researchers, including both desktops and laptops. These
machines were user administered without any corporate lockdowns. We collected 2,086
person day traces from which a sample of 500 is presented in Figure 1. In the figure,
each horizontal line represents one person day for one machine, with a dot indicating
that the machine is in use and a white space when the machine is idle.

Our results confirm prior findings that desktops are idle for significant portions
of time. More importantly, our findings show that these idle times are distributed
throughout the day. Figure 1 shows that, in addition to the long overnight hours, there
are significant idle times spread throughout the day, including many at lunch hour
(12 p.m.), but also arbitrarily at other times. Idle times occur, for example, when users
step away for meetings, coffee breaks, or even as they simply turn away from the com-
puter to perform other tasks (e.g., reading a printout or speaking with co-workers). In
our traces, idle times that are shorter than 2 hours add up to more than 25% of total idle
times. This is indicative of substantial opportunities to save energy during work hours.
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Table I. ACPI System Power States

State Suspend Time (s) Resume Time (s) Power (W)
S0: On N/A N/A 60.42 ± 6.09
S3: Suspend-to-RAM 7.24 ± 0.46 8.77 ± 0.24 2.33 ± 0.01
S4: Suspend-to-disk 12.97 ± 0.06 26.29 ± 0.33 1.22 ± 0.01
S5: Soft Off 12.70 ± 0.74 40.70 ± 0.12 1.21 ± 0.01

ACPI power states and transition times for a Dell Studio XPS 7100 desktop.
Standard deviations reported following ±.

The poor adoption of power management in desktop PCs is in stark contrast to
its success on the monitors attached to the same PCs. For example, Webber et al.
found that only 20% of computer monitors remained powered overnight (in contrast to
60% of desktop PCs), and about 75% were found to use low-power states (versus 4% of
desktops). For monitors, unlike PCs, being in low-power mode has no impact on running
applications, and the latency to resume to full-power operation is low. Moreover, monitor
stand-by modes are highly energy efficient, making their use attractive. For example,
in stand-by mode, a 19-inch Dell 1905FP LCD monitor consumes only 4% of its average
active power of 32W. To achieve similar levels of success in desktop PCs, desktop power
management must provide similar benefits, namely: (i) low-power operation must not
interfere with application execution; (ii) resume latency must be low; and (iii) low-power
mode must provide deep energy savings.

2.2. System Power States

In recognition that PCs spend a significant fraction of time idle, in 1996, the PC industry
introduced the Advanced Configuration and Power Interface (ACPI) [Hewlett-Packard
Corporation et al. 2009], now found in virtually all PCs. ACPI allows PCs to enter
and exit low-power modes without incurring the time penalty and loss of application
execution context associated with full power off and boot-ups. The ACPI standard
defines system power states, as well as the power states for component devices needed
to support them, that can be managed directly by the OS. System power states defined
include:

(1) S0 (On): The system is in full operation and the CPU executing instructions.
(2) S1: A low wake latency sleep state. CPU stops executing instructions, but remains

powered. CPU and hardware retain context.
(3) S2: Similar to S1 but CPU does not retain context. CPU context is flushed to DRAM.
(4) S3 (Suspend-to-RAM): The CPU and devices are off. DRAM remains powered only

to maintain state (self-refresh mode). CPU context is flushed to DRAM.
(5) S4 (Suspend-to-Disk): The CPU and devices (including DRAM) are off. DRAM state

and CPU context have been flushed to disk or persistent storage.
(6) S5 (Soft Off): CPU, DRAM, and devices are powered off. Power supply unit (PSU)

maintains minimal power to support power up via keyboard, USB device, a soft
power switch, or network interface.

(7) G3 (Mechanical Off): Power to the system has been fully severed by mechanical
means (e.g., unplugged or PSU power switched off). No power is running through
the circuitry.

Of these power states, the most widely available in modern PCs are S0, S3, S4, S5,
and G3, of which only the first four can be entered via software control. Table I shows
the power use and transition times for a Dell Studio XPS 7100 desktop with a 3GHz
quad-core AMD CPU, 6GiB of DRAM, and configured with Debian GNU/Linux 5.0 and
kernel version 2.6.32. The table points to three important facts. First, it shows that low-
power states significantly reduce the power used by the desktop by more than an order
of magnitude—from 60.42W to 2.33W for S3, and 1.22W for S4. Second, the table shows
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that entering and exiting low-power states (S3 and S4) is much faster than powering
off and subsequently booting-up the desktop. Resume time—time to transition from
low-power or off state to on state—is of particular importance because it is the time
users must wait before the system becomes usable. While booting the system takes
40.70s, resuming from S3 and S4 only take 8.77s and 26.29s, respectively. Finally, the
table shows that the low-latency low-power states provide energy savings that are
comparable to full power off (within 1.1W).

These findings indicate that low-power states are better suited to reduce energy use
during idle times than a full power off. They are fast, ensuring minimal user disruption,
and have negligible penalty in terms of energy waste. Indeed, these results show S3
state to be the most attractive due to its low latency.

Whereas available low-power modes allow PCs to reduce their energy use when idle,
they cause the CPU to halt all instruction execution, and, as a result, all applications
stop running and the PC drops off the network. The user cannot remotely access the
PC, and applications with always-on semantics are disconnected from network peers.
The result is seen in the study by Webber et al., discussed in Section 2.1, that finds that
only 4% of office desktop PCs make use of low-power states, even in overnight hours.
In the next sections, we discuss solutions engendered by PC makers to support some
of these background applications and identify their shortcomings.

2.3. Maintaining Network Presence

Two strategies have been pursued by PC makers to support application functionality
while PCs operate in low-power. The first introduces processor level low-power modes
that regulate the power used by the CPU while it executes instructions, and the second
is a set of technologies that enable on-demand wake-up of PCs in low-power by remote
applications.

Processor-level power management. Processor power-performance states (P-states)
enable the OS to dynamically control the power used by the processor to match the
demands from running workloads. This is accomplished by modulating the processor
core’s voltage and operating frequency (DVFS), which results in changes to the pro-
cessor’s dynamic power—the power dissipated directly in order to execute instructions
during clock cycles [Weiser et al. 1994; Govil et al. 1995; Sueur and Heiser 2010]. P-
states are designed to allow processors to lower their power use while continuing to
execute instructions. However, they only manage the power used by the processor, and
the processor is responsible for only a fraction of the total power used by PCs. The
bulk of the power (up to 75%) is used by the remaining components, which include
motherboard, DIMMs, hard disks, network cards, cooling components, and graphics
cards [Fan et al. 2007], and these components continue to waste power during idle
times. Moreover, because P-states only affect the dynamic power of the processor and
not its static power (power dissipated as a result of current leakage in the circuit), the
dynamic power range offered is limited. For example, an Intel Pentium M uses 24.5W
in high-frequency mode (1.6GHz) and 6W in its lowest frequency mode (0.6GHz). More
recent processors have been found to show even smaller dynamic power ranges because
static power represents a larger fraction of dissipated power in smaller transistors with
low threshold voltage [Sueur and Heiser 2010].

Remote wake-up. To ensure that whenever PCs enter low-power system states (which
are effective in reducing total system power use) they continue to support administra-
tive applications (e.g., compliance scanners) that require access to the desktop, the
industry has developed technologies that enable these applications to remotely wake
the PC on demand. These include Wake-on-LAN [Lieberman Software Corporation
2006] and Wake-on-Wireless-LAN [Intel Corporation 2006]. The former is found in
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most desktops and laptops with Ethernet network interfaces and the latter on laptops
with 802.11 wireless interfaces. Before suspending the PC into low-power, the OS con-
figures the Network Interface Controller (NIC) to remain powered during system low
power and to wake the system upon receipt of a designated network packet. In stan-
dard Wake-on-LAN mode, known as “magic” packet mode, this is a broadcast frame
containing the Media Access Control (MAC) address of the NIC. In wake-on-destined
mode of operation, the NIC wakes the PC on receipt of any packet destined to itself,
independent of the payload. Upon receipt of the designated packet, the NIC controller
issues a Power Management Event (PME), which is a trigger for the BIOS to power
the system up. Whereas on-demand wake-up solutions are suitable for centrally man-
aged administrative applications, they are not well suited for applications that need to
run on the PC itself while it is in low-power state. These are applications that either
perform background tasks or issue requests to network hosts to maintain network pres-
ence. Examples of these include instant messengers, VoIP clients, and DHCP clients,
as well as Web 2.0 applications that run within Web browsers and maintain presence
on cloud servers. For these applications, the host continues to fall off the network when
in low-power mode.

3. DESKTOP VIRTUALIZATION

In this section, we discuss machine virtualization, an established technology that de-
couples the logical computer (OS and applications) from the physical machine. Virtu-
alization enables modern approaches to dealing with idle desktops. We describe two
such approaches and discuss the issues involved in implementing them in produc-
tion environments. The first approach, Virtual Desktop Infrastructure (VDI) has seen
some adoption in enterprise office environments, and the second, consolidation of idle
desktop VMs, is a more recent research proposal.

Machine virtualization or simply virtualization decouples the logical machine (OS,
applications, etc.) from the physical machine hardware. It does this by interposing
a Virtual Machine Monitor (VMM) [Seawright and MacKinnon 1979] or hypervisor
layer between the operating system and the hardware. Physical resources expected
by the OS are virtualized by the hypervisor, allowing them to be multiplexed among
multiple VMs. The hypervisor ensures that all running VMs have fair access to the
machine’s resources and provides isolation between VMs. Virtualization enables a
single physical machine to run multiple desktop sessions simultaneously (including
OSes and applications), each with its own (virtualized) CPU, memory, disk and network
interface.

In addition to hardware multiplexing, virtualization provides another benefit: It
enables migration of VMs across physical hosts [Chen and Noble 2001; Sapuntzakis
et al. 2002; Kozuch and Satyanarayanan 2002]. Because the VM software is decoupled
from the host hardware, a VM can begin execution at one host and subsequently
migrate to a different host without significant down time. Both hardware multiplexing
and VM migration can be used to reduce energy use by idle desktops, as we discuss in
the next sections.

3.1. Virtual Desktop Infrastructure

Virtual Desktop Infrastructure (VDI) has emerged in the past decade as a means to
simplify enterprise desktop management and deliver enterprise-class storage services
[Baratto et al. 2004; VMware, Inc. 2013; Citrix Systems, Inc. 2011; Oracle Corporation
2012]. In enterprise VDI deployments, multiple desktop VMs run on shared corporate
servers. Users access personal VMs over the network from a client running on their
desks. As illustrated in Figure 2, user input is intercepted from the client and trans-
mitted to the VM on the server, where processing takes place. Because the VMs run in
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Fig. 2. Overview of virtual desktop infrastructure (VDI).

shared servers under the control of IT administrators, they can be configured to boot
from a single system disk image that holds the OS and shared software. This read-only
disk image is known as the “golden” image. User data and configuration are stored
on private secondary disk images. This separation of system and user state ensures
that administrators can perform maintenance tasks affecting many VMs (e.g., applying
software patches) by updating a single disk image.

Full-time conversion to VDI can help reduce idle energy use because VDI enables the
use of low-power stateless thin clients with only enough hardware to render graphics
generated on the server and capture user input. When users are idle, these “thin
clients” can be powered off without interrupting VM execution taking place on the
shared server. However, deployment of VDI has several disadvantages:

(1) High infrastructure cost. First, because desktop VMs require large memory
allocations (gigabytes), each server is only able to host a limited number of VMs.
As a result, in large offices, a large upfront investment on servers is required,
and the energy costs of running the servers are high. Second, the servers must be
provisioned to accommodate the peak workloads of the desktops VMs. This means
not only large memory, but also very fast CPUs, network interfaces, and the like,
which have been found to be energy inefficient under low utilization [Barroso and
Hölzle 2007]. Third, because of high storage performance requirements of VDI,
storage cost is also high [Spruijt 2010].

(2) Limited access to local hardware. Because VMs run on remote servers, access
to local hardware resources that deliver brisk performance or specialized func-
tionality (e.g., 3D acceleration and dedicated media encoding hardware) is limited.
Applications such as video conferencing clients and online gaming, which maintain
network presence (and that could benefit from VDI), also require access to local
decoding or graphics acceleration and controller devices.

The result of these shortcomings has been a slow adoption of VDI [Fograrty 2011].
Full-fledged desktops continue to outsell thin clients used in VDI, and these thick
clients, with their energy inefficient idle operation, will remain in use for years.

Hardware vendors such as Intel now champion IDV [Intel Corporation 2011c], a dif-
ferent model of deployment of desktop virtualization. In this model, VMs run on the
end-user desktops in the same client-side manner advanced in the Internet Suspend/
Resume [Kozuch and Satyanarayanan 2002] and the Collective [Sapuntzakis et al.
2002] projects but, like in VDI, they rely on golden system disk images stored on
enterprise-class shared file systems. Software updates remain simple to apply; how-
ever, the PCs must remain powered during idle times in order to sustain always-on
applications. The approach we discuss next enables idle PCs to enter low-power modes
during idle times while offering compatibility with the IDV model of desktop virtual-
ization for enterprise deployments.
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Fig. 3. Overview of idle desktop VM consolidation.

3.2. Idle Desktop VM Consolidation

The LiteGreen project [Das et al. 2010] proposed ephemeral consolidation of idle desk-
top VMs using existing virtualization technology to reduce energy use. When the user
is active, the VM runs on desktop hardware located on the user’s desk. When the user is
inactive, the VM is migrated to a consolidation server (where it shares resources with
other idle VMs), and the PC is placed in low-power state. When the user returns to the
PC and interacts with the mouse or keyboard of the desktop, the VM is migrated back
to the PC. Figure 3 illustrates the nature of idle VM consolidation. This approach uses
live VM migration [Clark et al. 2005], which not only allows VMs to continue execution
after migration, but also reduces down time during migration. As memory state is mi-
grated from the source host (e.g., the PC) to the destination (e.g., consolidation server),
the VM continues to execute at the source. Once a minimal memory state remains to
be migrated, execution is halted at the source, the remaining state (including CPU
context) is migrated, and execution resumes at the destination.

Although this approach allows background applications to continue to run and main-
tain network presence, and it supports access to local desktop hardware (e.g., 3D ac-
celeration), our experiments indicate that, because desktop VMs have large memory
footprints, migrating them is slow. Users are forced to interact with their VMs with de-
graded performance over VNC [Richardson et al. 1998] while migration completes, and
this constitutes a hindrance to adoption in enterprise environments. Next, we quantify
the performance of existing VM consolidation technologies on enterprise-class hard-
ware and show that they are lacking.

Methodology. In these experiments, we migrated an idle desktop VM from a desktop
computer to a consolidation server. Our desktop and server consisted of Dell Pow-
erEdge R610 machines with 24GiB of RAM, eight 2.3 GHz Xeon R© cores, Fusion-MPT
SAS drives, and a Broadcom NetXtreme IITM gigabit NIC. Both systems ran Debian
GNU/Linux 5.0 desktop VMs with 4GiB of memory and 12GiB of disk images on top
of Xen 3.4 hypervisor [Barham et al. 2003]. The disk images were hosted on a shared
storage server provided through Red Hat’s network block device GNBD, which ensured
disk availability upon migration (i.e., only memory and CPU state was migrated be-
tween the desktop and consolidation server). The hardware used for the desktop has
CPU, memory, and storage that deliver performance exceeding that of typical desktop
computers, and we will show that, even with high-performance hardware, live VM
migration performance remains unsuitable for idle desktop VM consolidation.

We began the experiments with a warm-up phase, in which we ran typical desktop
applications that allocate and update memory. We ran a script that opens a spreadsheet,
a word document, and a presentation document on OpenOffice.org; a PDF document
on Evince document viewer; as well as seven Web pages on Firefox Web browser. These
Web pages included CNN.com, Slashdot.com, Maps.Google.com, Ole.com.ar, and the
SunSpider JavaScript benchmark [SunSpider Benchmark 2012], as well as Acid3 Web
standard compliance test [Acid3 Test 2012]. The last two pages are used to exercise
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various components of the Web browser. After running the script, we allowed the VM
to remain idle for 1min, after which the VM was migrated to the consolidation server
through a dedicated network switch. Each experiment was repeated five times, and we
report the average results. Even though the footprint of the VM was 4GiB, the script
would consistently lead the VM to using only 1.2GiB of its memory.

Results. Live migration took, on average, 38.59s to migrate the desktop VM and
consumed 4.27GiB of network bandwidth. A user returning to her desk has to wait
nearly 40s before her VM can run from the desktop. However, the migration of a single
VM at a time does not give the full picture of the user experience. Specifically, a “resume
storm” occurs when multiple users start work or resume work at the same time or in
close proximity. Resume storm events are likely after correlated idle periods (e.g., at
start of work day in the morning, at end of lunch break in the afternoon, or at the end
of meetings).

We experimented with concurrent live migration of multiple VMs. As expected, live
migrating multiple VMs out of a single consolidation server concurrently degrades
latency linearly: four VMs take an average of 137s, whereas eight take 253s. Staggering
the resume times (so that VM migrations start moments apart) helps, but even with
20s pause between resumes of eight VMs, latency still averages 115.62s. Not only is
live migration unable to ensure quick resumes, it also introduces significant strain on
the network (number of migrations times the average VM size).

To alleviate the latency and congestion problems caused by live VM migration, Das
et al. propose using ballooning [Waldspurger 2002] to reduce the size of the memory
image before migration. Ballooning is a technique that allows the memory footprint of a
VM to shrink on demand. Although ballooning reduces the VM footprint, this happens
at a considerable expense of time and I/O.

We repeated the VM migration experiments just described; however, before per-
forming migration, we used ballooning to reduce the VM’s memory footprint. In our
experiments, ballooning in Xen was able to reduce the idle VM’s footprint to 423MiB.
To reach this footprint size, we turned on swapping on the VM to avoid killing any pro-
cesses. However, ballooning took an average of 328.44 ± 69.41s to reach its saturation
point, and, in the process, it evicted 275.99 ± 9.25MiB of cached disk state and swapped
out 449.08 ± 51.55MiB of main memory to secondary storage using the network re-
sources. These results demonstrate that ballooning is ineffective at reducing migration
latencies. Moreover, while the ballooned VMs can be easily migrated—the VMs with
423MiB footprints were migrated, on average, in 4.86s—the memory state swapped
out and the evicted cached disk state have to be reconstructed from the shared storage
after resume, resulting in additional network usage and slowed desktop responsive-
ness. Thus, although ballooning reduces the VM’s footprint on the consolidation server,
it fails to significantly reduce migration latencies or network bandwidth. Even if we
use local disks instead of shared storage to reduce network usage, ballooning latency is
still prohibitive, and, in this case, the desktops must be awakened to serve pages being
swapped in while the desktop VM executes at the consolidation server.

As a refinement to full VM migration, the consolidation server could persist pages of
consolidated VMs to a local cache for use during subsequent consolidations of the same
VM. When the VM is consolidated again, only the pages that have been updated on the
desktop need to be migrated to the server. Although our experiments with server-side
caching of pages were limited to an approach that migrates only the working set of
idle VMs (which we discuss in Section 5.3), we expect the refinement to also benefit full
VM migration. Results with partial migration of idle VM working sets show that the
use of a server cache can reduce memory transfer by 28%. The success rate of the cache
hinges on how much the memory of the VM changes while it runs on the desktop, and,
since the VM is active when running on the desktop, it is likely to see large changes. For
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example, simple activities such as Web browsing have been shown to produce hundreds
of megabytes of dirty memory state [Surie et al. 2008].

4. WORKING SETS OF IDLE DESKTOP VMS

Desktop VM consolidation is an attractive solution for reducing energy use of idle desk-
tops. It allows desktops to enter low-power states while applications continue to run
and maintain network presence; it requires no changes to applications, thus ensuring
that it can be readily used with existing software; and it supports access to local hard-
ware. However, as we showed in Section 3.2, this approach has several shortcomings
that result from the large memory footprints of desktop VMs: (i) migrating desktop
VMs over the network is slow; (ii) in shared networks, overlapping VM migrations can
cause network congestion; and (iii) consolidation ratios on the server are low, result-
ing in high infrastructure costs and low energy savings. In this section, we show that
idle Linux and Windows desktop VMs have small working set sizes (pages that are
accessed by the idle VMs) that are up to an order of magnitude smaller than their
memory footprints, a finding that we use to design our desktop consolidation approach
that migrates only the idle working set.

Over two sets of experiments, we collected memory and disk access traces of idle
desktop VMs. In the first set of experiments, we ran a controlled set of applications on
idle Linux and Windows 7 VMs and collected memory access traces to better understand
the VMs’ memory access patterns and working set sizes for different applications. In
the second experiment, the deployment study, we deployed an early version of our VM
consolidation software (Jettison) on the desktops of three university researchers over
a period of 7 weeks to understand memory and disk accesses by idle VMs. We describe
the details of the prototype in Section 6.

4.1. Controlled Workloads

To record memory access traces for the Linux VMs, we used SnowFlock’s [Lagar-Cavilla
et al. 2009] VM fork abstraction. SnowFlock supports rapid cloning of VMs by creating
and running a replica of a VM with minimal CPU and memory state. As the replica
runs, it attempts to access memory pages. If these pages have not been copied from the
parent VM, the replica faults and SnowFlock copies the pages on demand, allowing
VM access to the pages. For our experiments, we ran our VM workloads on a desktop
and, after allowing the VM to become idle for at least 5min, used SnowFlock to cre-
ate a replica of the VM on the server. We then halted execution on the desktop and
monitored memory pages that SnowFlock transferred from the desktop to the server
as a function of the VM’s execution on the server. SnowFlock also provides a migration
avoidance mechanism for pages the VM’s kernel intends to overwrite with new alloca-
tions. Our subsequent experiments with desktop workloads in Section 6.2 show that
this mechanism reduces migration size on average by 9.06MiB.

Because SnowFlock supports only paravirtualized guest VMs (VMs whose kernels
have been modified specifically to take advantage of virtualization), we used a different
approach to track page accesses by the Windows guest. To that end, we instrumented
the Xen hypervisor with code that invalidates all page entries in the Extended Page
Table (EPT) [Neiger et al. 2006] of the memory management unit. VM accesses to pages
cause faults that we trap in the hypervisor and log to a file. This approach works only
with fully virtualized guests that take advantage of hardware virtualization assists,
including the EPT.

We describe next the experimental platform and the idle desktop workloads studied
in this experiment. For each workload, we collected traces from three runs to ensure
the results reported are consistent.
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Table II. Idle Session Workloads

Workload Description
Login The login screen of the desktop system
E-mail Mozilla Thunderbird connected to an IMAP e-mail server; the client polls the server every

10min.
IM The Pidgin multiprotocol IM client connected to an IRC room with more than 100 active

users
Multitask A desktop session with the e-mail client, IM client, spreadsheet (OpenOffice.org Calc), PDF

reader (Evince), and the native file browser (Nautilus for Linux and Explorer for Windows)

Platforms. SnowFlock is implemented on the Xen [Barham et al. 2003] hypervisor
version 3.4.0. Both the host and Linux VM use Debian Linux 5.0 with x64 version of
the kernel 2.6.18.8. The VM was configured with 1GiB of RAM, a 12GiB disk image,
and ran on a Dell Optiplex 745 desktop with 2.66GHz Intel Core 2 Duo CPU and 4GiB
of RAM. The Windows 7 VM was configured with 4GiB of RAM and backed by a 16GiB
disk image. This VM ran on Xen 4.2.0-rc4 on a Dell Studio XPS 7100 desktop with
3GHz quad-core AMD PhenomTMII X4 945 processor and 6GiB of RAM.

Workloads. Table II describes the workloads studied. The workloads consist of typical
desktop applications. Login illustrates the nightly behavior of desktop systems whose
users log out at the end of the work day. E-mail and IM are micro-workloads, consisting
of a desktop session and the subject application (e-mail or IM client). For the Linux
micro-workloads, we disabled the default GNOME desktop session (which provides
task bars, desktop management utilities, screensavers, etc.) and ran the applications
directly on the X Server. The micro-workloads are intended to give us a detailed look at
the behavior of applications that maintain network presence with external hosts while
idle. Multitask consists of a full-fledged desktop environment (GNOME in Linux), as
well as the applications described in the table. It illustrates the behavior of the desktop
of a multitasking office worker who has become idle temporarily and has not made any
effort to quit any running application.

4.2. Deployment Study

Our VM consolidation software (presented in Section 6) was set up with a Linux VM on
the desktops of three university researchers over a period of 7 weeks. Each user used
his or her VM as the primary desktop over the duration of his or her participation. Our
system monitored keyboard and mouse activity , and, when inactivity was detected for
a period of at least 15s, a dialog warning of an impending migration was displayed for
5s. If no activity was detected during this warning period, the VM was migrated to the
consolidation server. Otherwise, the dialog was discarded and the VM remained in the
desktop.

Platform. Each user was given a desktop VM configured with 4GiB of memory and
12GiB of disk image hosted on the desktops. The VMs were configured with Debian
GNU/Linux 5.0 with kernel version 2.6.18.8 for x86_64, the GNOME desktop system
and desktop applications such as Mozilla Firefox Web browser, OpenOffice.org office
suite, and the like. Users were free to install additional applications as needed. The
VMs ran on top of the Xen 3.4.0 hypervisor.

The hardware consisted of desktop systems and a server. For desktops, we used
three Dell Studio XPS 7100 systems. The server was a Sun Fire X2250 system with
two quad-core 3GHz Intel Xeon CPUs and 16GiB of memory. The desktops connected
to the server over a shared GigE switch.
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Fig. 4. Total page migration size for idle Linux and Windows 7 VMs with 4GiB of memory over 1 hour.

4.3. Working Sets of Idle VMs with Controlled Workloads

Figures 4(a) and 4(b) show the working set sizes of the idle Linux and Windows VMs,
respectively, with workloads from Table II over a period of an hour. These figures
show that idle Linux and Windows desktop VMs access less than 10% of their memory
allocations over hour-long periods, even with different workloads. For Linux VM work-
loads, the Login workload accessed an average of 22.97 ± 1.94MiB of pages across all
runs. E-mail, Chat, and Multitask accessed an average of 52.32 ± 0.37MiB, 55.69 ±
1.13MiB, and 91.01 ± 9.52MiB, respectively. For the idle Windows 7 VMs, the Lo-
gin workload averaged 196.66 ± 0.77MiB of working set. E-mail workload aver-
aged 372.80 ± 11.60MiB, Chat averaged 336.03 ± 12.66MiB, and Multitask averaged
381.04 ± 37.19MiB.

For both OS configurations, the traces show higher page transfer activity in earlier
stages of the VM’s execution on the consolidation server. More pages are migrated in
the first half of each run than in the second half. This behavior is explained by the
fact that, initially, when the VM begins execution on the consolidation server, none
of the VM’s pages is available on the server, and, as a result, any page access must
be satisfied by migrating the page from the desktop. However, subsequent accesses to
pages that have been migrated because of previous accesses are satisfied locally on the
server. With the passage of time, a larger fraction of the VM’s idle working set becomes
available on the server, and the result is that fewer accesses cause page migrations.

We note that, from time to time, the VMs exhibit sudden bursts of page migration
activity. These events are caused by running processes following a path of execution
not previously followed during the run. For example, the Linux e-mail workload shows
a large number of pages being migrated after nearly 10min. This coincides with the
server poll interval of the e-mail client. IM shows a similar burst after 20min, which
we believe to be caused by timer-related events of the application. Because Multitask
contains both of these applications, it shows bursty migrations at both the 10th and
the 20th minute of the run. The Windows VM shows more frequent bursts of migration
activity because, unlike the Linux VM, its configuration does not disable built-in system
tasks launched automatically on system start-up or user login, which cause their own
page migrations.

4.4. Working Sets of Idle VMs During the Deployment

Results from our deployment confirm those from the controlled workloads, showing that
idle desktop VMs access less than 10% of their memory allocation. Figure 5 shows the
distribution of working set sizes of the three user VMs over 313 idle periods. Each time
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Fig. 5. Distribution of working set sizes of idle Linux VMs with 4GiB of memory.

the user was inactive, we consolidated the VM and recorded the size of pages accessed
by the VM until the user returned. The mean memory working set was only 165.63 ±
91.38MiB, where ± denotes standard deviation. During these idle times, on average,
1.16 ± 5.75MiB of disk blocks were accessed. The implications of a small memory and
disk footprint are that (i) little state needs to be migrated when consolidating, a benefit
in terms of reduced network load; (ii) little state needs to be migrated when resuming,
a network benefit but also, more importantly, an improvement of user experience by
reducing reintegration latency; and (iii) limited memory needs to be committed to each
running VM on the server, a benefit in reduced infrastructure costs.

These results confirm that migrating the full VM memory footprint, as described
in Section 3.2, is inefficient. Instead, knowing that idle VMs only access small work-
ing sets, we can migrate only that working set for consolidation. Doing so ensures
that migrations are fast, reduce network congestion, and limit the VM memory com-
mitment on the consolidation server, increasing consolidation ratios. The difficulty,
however, is in determining a priori which pages are part of the idle working set (and
therefore need to be migrated). Because modern desktops consist of complex applica-
tions with nondeterministic execution [Ronsse et al. 2003], it is difficult to accurately
predict which pages they will access each time the VM is migrated to the server. In
Appendix A, we show that page access traces from the controlled desktop workloads on
the Linux and Windows VMs present opportunities for the desktop to sleep between
page requests.

In the next sections, we introduce partial VM migration, an approach that consol-
idates only the working set of idle VMs by migrating pages on demand, as they are
needed on the server, and uses the observed distribution of page request interarrivals
to make decisions about when it is energy efficient to place PCs in low power and what
pages to prefetch during consolidation. We show with a deployment on desktops of
four Linux users that partial VM migration is effective in reducing energy use of idle
desktops.

5. PARTIAL MIGRATION OF IDLE DESKTOP VMS

Partial VM migration consolidates the working set of idle desktop VMs to allow user
applications to maintain network presence while the desktop is in low-power state.
Unlike full VM consolidation described in Section 3.2, partial VM migration does not
migrate the VM’s full memory footprint. When performing consolidation, partial VM
migration first transfers the execution of the idle VM to a consolidation server by
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migrating CPU state, immediately halting execution on the desktop and starting it
on the server. Then, as the VM executes on the server, it fetches on demand only the
memory and disk state that is accessed by the VM. The VM’s preconsolidation state
remains as a residual on the desktop in anticipation of a reverse migration. When the
user becomes active, partial VM migration transfers only the dirty state (memory pages
and disk blocks that have been modified on the server) to the desktop and integrates
it into the preconsolidation state. Because state is transferred from the desktop to the
server on demand, the desktop only enters low-power state between transfers. We call
these intervals microsleeps.

Partial VM migration does not require application modifications, the development
of specialized protocol-specific proxies, or additional hardware. When the VM is exe-
cuting on the desktop PC, the desktop has all of the VM’s state, which provides full
system performance to the user. When on the server, only the working set required
for idle execution is available locally. By migrating only the idle working set, partial
VM migration provides high consolidation ratios on the server and makes it possible to
save energy by migrating often throughout the day without overwhelming the network
infrastructure. Similarly, migrating back to the user’s desktop is fast because only the
dirty state created by the partial VM is reintegrated back into the desktop.

Partial VM migration leverages two insights. First, the working set of an idle VM
is small, often more than an order of magnitude smaller than the total memory al-
located to the VM. Second, rather than waiting until all state has been transferred
to the server before going to sleep for long durations, the desktop can save energy by
microsleeping early and often, whenever the remote partial VM has no outstanding
on-demand request for state. Existing desktops can save energy by microsleeping for a
few tens of seconds. Shorter intervals do not save energy because the transient power
to enter and leave sleep state is higher than the idle power of the system. The challenge
is to ensure that the desktop microsleeps only when it will save energy. In the next
sections, we describe the policies used to inform the consolidation and reintegration
decisions of idle desktop VMs. We then discuss microsleep policies used to decide when
it is opportune for the desktop to sleep, and, in Section 5.3, we develop page prefetch
strategies that maximize these microsleep opportunities.

5.1. Migration Policies

Partial VM migration automates migration of desktop VMs to a consolidation server
when it detects opportunities to put the desktop in low-power mode. It migrates the
VM back to the desktop once those opportunities are unavailable. Here, we describe
the conditions for consolidation and reintegration of desktop VMs.

5.1.1. Consolidation Conditions. With partial VM migration, we consolidate a desktop
VM when the following conditions are met:

(i) User inactivity. To avoid disruptions to the user, we migrate the desktop VM
only when the user is not actively engaging the VM. We determine user idleness by
monitoring keyboard and mouse activity. In the absence of activity, we provide an
on-screen warning that allows the user to abort the consolidation.

(ii) VM idleness. The VM can execute on the server with sufficient autonomy from
the desktop such that the desktop can sleep and save energy. This means that the VM
must require few pages and disk blocks from the desktop. As a result, we must monitor
memory and disk access rates periodically.

(iii) Server capacity. The server must have sufficient resources to accommodate the
VM. Because the VM is idle during consolidation, the primary resource of concern is
memory availability, and since the VM requires only enough memory for its working
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Fig. 6. Power used by a Dell Studio XPS 7100
desktop during various power states.

Fig. 7. Remote fault interarrival distribution of idle
desktop VMs. The interarrival time for 99.23 of
page requests is less than 1s.

set that is unknown at the start of consolidation, the server reserves memory based on
an estimate. This estimate is made from observed sizes of VM traces and is adjusted
each time the VM is consolidated. If during server-side execution the VM requires
more memory than estimated and the server has enough free memory, it allocates it as
needed. Otherwise, the server evicts the VM back to its desktop.

5.1.2. Reintegration Conditions. The decision to reintegrate a VM to the desktop is sym-
metrical to that of consolidating it to the server. It hinges on failures to meet idleness
and server capacity conditions. That is, either (i) the user becomes active (e.g., the user
presses a key on the keyboard), (ii) the VM becomes active and requires a large amount
of state from the desktop (e.g., a scheduled virus scan walks through files on disk), or
(iii) the server’s capacity is exceeded (e.g., the VM requests memory when the server
is fully committed). In addition, we may migrate a VM back to the desktop if (iv) the
VM generates a UI event used to attract the user’s attention. For example, when a
VoIP client running on the consolidated VM receives a phone call and emits a ring tone
through the sound device, the event can be intercepted and the VM migrated to the
desktop to ensure that the user can hear the incoming call.

5.2. Microsleep Policy

Partial VM migration is designed to take advantage of lulls in page migration from
desktops to consolidation servers by placing the desktops in low-power mode. How-
ever, deciding when desktops microsleep is not trivial because system power state
transitions are costly. Transitions for microsleeps that end prematurely because of an
incoming page request can cause the desktop to consume more energy than were it
to remain powered. We design next an algorithm for determining when the desktop
can microsleep. This algorithm seeks to minimize energy waste and uses the observed
page request interarrival distribution of idle desktop VMs and the power profile of the
desktop PC to reduce the probability of initiating a microsleep that is too short.

A desktop system experiences increased power use during transitions between low-
power and full-power states. Figure 6 shows the power used by a desktop that is idle
for 60s then transitions into low-power S3 mode. The desktop remains in this state for
another 60s, after which it transitions again to idle state where it remains until the end
of the experiment. These measurements were collected with a Watts Up? PRO power
meter attached to a Dell XPS 7100 desktop system. The figure shows an increase in
power use during the transition periods. The power peaks from 62W when idle up to
72W and 88W as the desktop enters and exits S3 mode, respectively.
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The relatively high cost of entering and leaving low-power means that microsleeps
only save energy if they last long enough to compensate for the transient rise in power
used to enter sleep and wake the system to service the next remote fault.

Specifically, the energy use of an idle desktop system is given by:

Ei = Piti, (1)

where Ei is the energy used in watt hours, Pi is the system’s idle power rate, and ti is
the idle time in hours.

The energy use of an idle system that microsleeps is:

Eμ = Piti′ + Poto + Psts + Prtr, (2)

where ti′ is the portion of time the system remains powered, Po and to the power rate and
time the system spends entering sleep, Ps and ts the power rate and time the system
spends in sleep, and Pr and tr the power rate and time the system spends exiting sleep.

Power rates to, and tr depend only on the desktop’s profile. In typical desktops, Ps is
often an order of magnitude smaller than Pi, and Po and Pr are larger than Pi. Then,
microsleep can only save energy if ts is long enough to compensate for increased energy
use during to and tr. The shortest interval for which it is energy efficient to microsleep
is one in which Ei = Eμ. In such intervals, the system wastes no time awake, so ti′ = 0,
and the interval is given by:

tb = −Ps(to + tr) + Poto + Prtr
Pi − Ps

. (3)

Plugging in the power profile measurements for the Dell Studio XPS 7100 desktops
in Table III, we find that, for these systems, tb = 32.22 s. Thus, these desktops should
microsleep only when there is an expectation that no remote faults will arrive within
the next 32.22s. tb is smaller for desktops with lower power transition latencies, as we
are able to achieve with context-aware selective resume in Section 7.

To determine the likelihood of a fault-free period of at least tb length, we determine
the conditional probability that the next remote fault will arrive in less than tb as a
function of the wait time (tw), the time interval that has elapsed since the last remote
fault arrived at the desktop. tw tells us how long the desktop must remain awake
after serving a page in order to avoid energy-inefficient microsleeps. More formally,
p(I < tb + tw|tw) is the probability of interarrival I being energy inefficient.

Figure 8 plots the conditional probability that the next remote fault will arrive in
less than 32.22s based on remote fault interarrival times shown in Figure 7 from our
prototype deployment described in Section 4.2. Figure 8 shows that as the wait time
increases up to 28s, the likelihood of seeing the next remote fault in less than 32.22s
decreases rapidly. This decrease is because faults are highly correlated, and, as shown
in Figure 7, more than 99.23% of remote faults occur within 1s of previous faults. The
implication is that, for the vast majority of faults, when the desktop wakes to service
one fault, it will likely be able to service faults that follow immediately, thus avoiding
many inefficient microsleeps. With wait times immediately above 28s, the probability
of seeing a remote fault increases significantly because 60s interarrivals are common,
typically because of timer-based events.

We determine next the optimal value of wait time, tw, that minimizes the energy
waste as follows:

min Ewaste(tw) = tw Ei + p(I < tb + tw|tw)Eμ, (4)

where Ewaste is the total energy wasted. To compute Eμ, we assume the worst case,
in which a fault occurs immediately after the desktop enters sleep so that ts = 0 and
ti′ = 0.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 2, Publication date: March 2015.



Energy-Oriented Partial Desktop Virtual Machine Migration 2:19

Fig. 8. Conditional probability that the next re-
mote fault will arrive in less than 32.22s as a
function of the wait time.

Fig. 9. Expected energy waste as a function of
sleep timeout (tw). With tw values that are short,
energy is wasted by sleep interruptions from page
requests. Longer values waste energy by keeping
the desktop in full-power.

With our desktops’ energy profile, Ewaste is shown in Figure 9, and it is clear that the
energy waste minimizing tw is 6 s.

5.3. Memory Prefetch

We use prefetching to increase the frequency and length of energy-efficient inter-
arrivals. Prefetching proactively migrates state to the server and allows faults to be
serviced locally on the server, thus not requiring the desktop to be awake.

Most state transfer (in excess of 99%)—and hence remote faults—is caused by mem-
ory accesses (see Section 4.4). As a result, we concentrate our efforts on reducing mem-
ory faults and allow disk requests to be serviced on demand, independent of whether
storage is local or networked.

We explored two prefetch strategies. The first, hoarding, explores similarity in page
frame numbers accessed between different migrations of the same VM. At the time of
consolidation, this approach fetches a sequence of pages whose frame numbers were
requested in previous instances in which the VM was consolidated. In the second
prefetch strategy, on-demand prefetch, we exploit spatial locality of page accesses by
using a pivot window to prefetch pages whose frame numbers are near a requested
page. Both strategies fetch pages into a per VM buffer, either in disk or in a discrete
memory location, and pages are only committed to the partial VM’s memory when the
VM attempts to access them. This approach ensures that prefetching does not grow
the memory footprint of an idle VM, and, whenever the prefetch buffer is full, it can
evict pages that are unlikely to be used.

Figure 10 shows how our prefetch strategies improve average microsleep durations
as a function of the total memory migration size. Memory migration size is composed
of pages migrated by the prefetch strategy and pages migrated due to a prefetch cache
miss. To produce the figure, we developed a simulator that runs through page access
traces we collected in our deployment and allows us to impose indirectly different limits
to the size of memory migrated. For on-demand prefetch, we vary the prefetch pivot
window, and, for hoarding, we vary the hoarding limit. The figure is based on page
access traces from a user VM that was consolidated 58 times. The figure shows that
both approaches reduce the number of interruptions to microsleeps, with on-demand
prefetch performing better. Hoarding increases the average microsleep duration from
83.62s to 136.64s. On-demand prefetch increases it to 150.82s.
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Fig. 10. Increased microsleep durations from
prefetching. For a given memory migration size,
prefetching increases microsleep durations.

Fig. 11. Increased energy savings from prefetching.
The strategies deliver similar improvements.

Fig. 12. CDF of microsleep durations. Hoarding increases duration of short microsleeps most, whereas
on-demand prefetch increases duration of long microsleeps most.

Figure 11 shows the energy savings of the desktop as a function of the total memory
migration size for the VM of the previous figures. We use the simulator to compute the
energy use of the desktop by aggregating energy used over each interval the desktop
would be idle, suspending, sleeping, and resuming using Equation (2). The energy sav-
ings are normalized over the energy the desktop uses when left powered during the
same idle periods. The figure shows that, as a result of the improved microsleep dura-
tions, energy savings also improve. The two strategies deliver similar energy savings
because, as we show next, whereas on-demand prefetch is effective at increasing the
frequency of long microsleeps, hoarding increased the duration of short microsleeps,
both of which lead to increased energy savings.

Figure 12 presents a CDF of microsleep durations for both strategies, with set-
tings that migrate close to 500MiB of memory (on-demand: pivot window = 20 pages,
migration size = 492.19 MiB; hoarding: limit = 480MiB, migration size = 490.83MiB).
The figure shows that whereas hoarding reduced the incidence of energy-inefficient
microsleeps (<32.22s) from 55.51% to 48.43%, on-demand prefetch led to more mi-
crosleeps with long durations. Without prefetching, 10.34% of microsleeps had dura-
tions of longer than 47s. Hoarding increased these to a modest 11.11%. On-demand
prefetch doubled the long microsleeps to 20.13%.
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We also experimented with refinements to the prefetch strategies. First, we combined
the strategies to first hoard a fixed set of pages and, when cache misses occur, prefetch
on-demand pages with locality. We found this to yield an improvement in energy savings
for any given migration size of 1%–4% over on-demand prefetch alone. An attractive
feature of on-demand prefetch is that it does not create bulk network transfers, which
can quickly congest the network. Rather, it amortizes memory migration over the
duration of the consolidation as pages are needed by the VM. Given similar energy
savings performance among the three strategies, on-demand prefetch is preferable.
Second, we explored maintaining VM residuals on the server and found that it can
reduce network transfers by an additional 28%. When a VM migrates back to the
desktop, the server can retain the pages it has previously received in a side cache in
anticipation of a future consolidation of the same VM. Cached pages are invalidated
whenever updates are made when the VM runs on the desktop. When the VM is
consolidated again, page faults only need to be serviced from the desktop when the
pages are not found in the cache. We considered page sharing across consolidated VMs
and expect it to reduce the VMs’ memory footprints by up to 28%; we anticipate a
desktop VM to have more pages in common with itself over time (server residuals)
than in common with other VMs.

In subsequent sections, we use on-demand prefetch for memory migration and fix
the prefetch pivot window size at 20 pages, which we found to deliver the highest
savings per MiB. We also fix the prefetch cache at 50MiB because prefetched pages
are commonly used within a short period, and, with such buffer, we see little cache
thrashing because of page eviction. Our implementation of partial VM migration does
not retain VM residuals on the consolidation server, which could provide additional
benefits in energy savings and reduced network traffic.

6. IDLE DESKTOP MIGRATION WITH JETTISON

In this section, we present details of Jettison, our implementation of partial VM migra-
tion. We then quantify the energy savings and network performance of the implemen-
tation with a deployment of Jettison in a research environment and use traces of user
idleness we collected in a corporate research lab to estimate the performance of partial
desktop VM migration in large enterprise offices. Finally, we discuss the challenges
facing the adoption of partial VM migration.

6.1. Jettison Prototype

Jettison extends the functionality of Xen 3.4 hypervisor [Barham et al. 2003]. Xen is a
type 1 or native [Goldberg 1973] hypervisor that runs at the highest processor privilege
level and relegates guest domains to lower privileged ones. Xen supports an adminis-
trative guest domain (dom0) and multiple unprivileged guest domains (domUs). In our
architecture, desktop environments are encapsulated in domUs.

Jettison is implemented as modifications to the hypervisor, daemons in dom0, and
a page migration avoidance patch in the kernel of the domU. Our implementation
currently supports paravirtualized guests, and we leave support of fully virtualized
VMs needed for unmodified guests such as Windows for future work. In the discussion
to follow, we explain where changes are needed for fully virtualized VMs. Jettison
runs a number of components both on the desktops and the consolidation server, as
shown in Figure 13. On the dom0 of the desktop systems, Jettison runs the following
components:

(1) memsrv. A daemon responsible for serving VM memory pages to the consolidation
server over TCP. It maps all of the VM’s frames with read-only access and runs
only when the VM is consolidated.
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Fig. 13. Architecture of Jettison. The desktop runs an activityMonitor daemon that coordinates VM migra-
tion and PC sleep in response to detected UI events and memory and disk requests. On the consolidation
server, the memtap daemon services faults by fetching from the PC.

(2) disksrv. A daemon responsible for serving disk blocks to the server over TCP. disksrv
opens the VM’s disk image in read-only mode.

(3) activityMonitor. A daemon responsible for detecting user activity, initiating both
consolidation and user-triggered reintegrations, maintaining the microsleep wait
timer tw introduced in Section 5.2, and suspending the desktop system to low-power
state S3 (suspend-to-memory). At present, activityMonitor monitors keyboard and
mouse and, after a user-configured period of inactivity, provides an on-screen warn-
ing for another preconfigured period before consolidating the VM. activityMonitor
also receives notifications from memory and disk servers whenever a page or disk
block request is received and resets tw accordingly. Although we are able to extract
CPU and I/O utilization statistics from the hypervisor, we did not implement a
mechanism for detection of memory, I/O-, or CPU-bound tasks, which would cause
VMs to remain on the desktop. We leave its implementation to future work.

(4) memrestore and diskmerge. Utilities that integrate memory and disk state received
from the consolidation server. memrestore maps the VM’s memory frames and
updates them with the pages received.

On the consolidation server’s dom0, Jettison runs the following components:

(1) memtap. A process that monitors VM page faults, notifies remoteWakeup (described
later), issues page requests to memsrv running on the desktop, and, upon receiv-
ing the page, updates the VM’s page frame. One memtap process is instantiated
for each consolidated VM. memtap maps its VM’s frames with write access so it
can perform direct updates. To support memtap, the hypervisor page fault handler
code maintains a bitmap of migrated pages, and, on a fault, it forwards notifica-
tions to memtap using Xen event channels (Xen’s own IPC mechanism), suspends
the faulting vCPU execution, and, on receipt of the page, reschedules the vCPU.
The migration avoidance code in the domU ensures that overwriting a page (page
allocation) does not cause a notification to memtap.

(2) cownetdisk. A block device driver we built to migrate blocks on request and track
block updates by the consolidated VM. Xen employs a split-device model in which a
device front-end interface runs in the kernel of domU and a back end, implementing
the functionality of the device, runs in dom0. cownetdisk is our instantiation of the
block device back end for consolidated VMs with desktop local storage. It is based
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on the blocktap interface [Warfield et al. 2005] and implements a copy-on-write
networked disk device. While a VM runs on the server, cownetdisk maintains two
sparse virtual disk slices as files in dom0. The bottom slice, the read-only slice,
keeps blocks that have only been read by the VM, and the top slice, the dirty slice,
maintains all that have been written to, which will be migrated to the desktop
during reintegration. A bitmap is used to identify the valid slice for a block. Read
requests for blocks not in the server are fetched from the desktop and placed in
the read-only slice. First writes to a block cause the promotion of the block to the
dirty slice. Once a block is promoted, all future accesses occur in the top slice.
Writes to blocks not present in the server cause a fetch from the desktop first and
an immediate promotion. The exception is whole block writes, which cause only
a promotion. On a remote fetch, cownetdisk also notifies remoteWakeup first to
ensure that the desktop is awake.

(3) remoteWakeup. A daemon responsible for waking a sleeping desktop via Wake-on-
LAN [Lieberman Software Corporation 2006] whenever remote state is required.
This daemon abstracts the management of the power state of desktops consolidated
from the memory and disk clients. Before the memory client (memtap) or the disk
client (cownetdisk) request a page or disk block from the desktop, they notify the
local remoteWakeup daemon on the consolidation server, providing the IP address
of the desktop they wish to access. The remoteWakeup daemon maintains an IP-to-
MAC address translation table and the power state of all desktops whose VMs are
consolidated. The translation table is used to construct the Wake-on-LAN packet,
and the power state of the desktop is used to decide whether to send a Wake-on-LAN
packet without first sending a network probe. The state of a desktop is determined
with a timestamp recorded when the last request was sent to the desktop. When a
new request is made, remoteWakeup assumes that the desktop is asleep whenever
the timestamp is elapsed by a period of at least tw seconds, the period for which the
desktop is configured to wait before going to sleep. Both memtap and cownetdisk
are configured to resend their requests to remoteWakeup whenever the desktop
fails to respond.

To support our migration policies, we also monitor the VM’s I/O and CPU usage. Xen
already maintains these statistics, which we can access to determine that the VM is
idle. We can determine memory usage periodically via the hypervisor’s shadow page
tables. Using shadow page tables, Xen can initially mark all pages of a VM read-only,
and an attempt by the VM to make a write is trapped by the hypervisor, which sets a
dirty bit for the page.

What happens during consolidation. On the desktop, the execution of the VM is
halted, and our dom0 tools generate a VM descriptor and all memory state of the VM
remains in core. The descriptor contains VM configuration metadata, such as device
configuration, vCPU register state, page table pages, and configuration pages shared
between the domain and hypervisor. The largest component of the descriptor is the
page table pages. The descriptor is migrated to the server, which creates a new domain
and begins its execution. A disksrv process and a memsrv process are instantiated,
and device back ends are disconnected from the halted VM. Whenever these state
servers receive a request, they notify the activityMonitor so it knows not to schedule
an immediate sleep of the desktop.

As the VM begins execution on the server, it faults on page accesses. These faults
generate an interrupt handled by the hypervisor. In turn, using an event channel, Xen’s
interdomain communication interface, the hypervisor notifies the memtap process of
the fault and suspends the faulting vCPU. When memtap has received the page and
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updated the VM’s frame, it notifies the hypervisor via the same event channel. The
hypervisor then reschedules the faulting vCPU for execution.

What happens during reintegration. When the VM resumes execution on the
desktop—for example, because the user has returned—any state that was modified
while it ran on the server needs to be integrated into the desktop state. Because the
desktop contains all of the VM’s state and only a fraction of it has become stale, only
the new state is migrated back. For this, we use the disk and memory dirty state track-
ing mechanisms described earlier. When the VM is reintegrated, only pages and disk
blocks marked as dirty are migrated to the desktop.

On the consolidation server, the VM is halted, and our dom0 tools map in dirty
memory frames and vCPU register state and send their contents to the desktop. The
dirty disk slice, if any, is also sent. On the desktop, the VM’s memory frames are mapped
with write permission by our dom0 tools, which update them with received dirty state.
In parallel, the dirty disk slice is merged with the local disk. Once all state has been
updated, device back ends are started, and the VM is allowed to begin execution.

Network migration. Network migration is supported within LAN environments
where both the desktop and the server are in the same Layer 2 broadcast domain.
In these environments, because Jettison VMs rely on host network bridging and main-
tain the same MAC address across hosts, they continue to receive network packets
that are destined to them after migration. When adding the VM’s virtual NIC to its
Ethernet bridge, the host sends an ARP probe that notifies network switches to direct
frames with matching MAC addresses to itself. This allows existing connections to
remain active with minimal latencies during migration. When the desktop and server
connect via a Layer 3 or higher network device, the device must ensure that both are
in the same broadcast domain. For example, a router must include both the desktop’s
and the server’s subnets within the same Virtual LAN.

Dynamic memory allocation. Dynamic memory allocation is achieved by allocating
on demand the underlying pages of memory of a consolidated VM. For paravirtualized
guests, we realize on-demand allocations through the concept of a “ghost MFN.” Xen
uses two complementary concepts to address a page frame. Machine Frame Number
(MFN) refers to the machine address of the frame, as viewed by the MMU. Physical
Frame Numbers (PFNs) are indirect addresses given to the paravirtualized VM kernel
to refer to the real MFNs. PFNs give the VM the illusion of having access to a contiguous
address space. A ghost MFN has the property of serving as a placeholder that encodes
the PFN that it backs and as a flag indicating absence of actual allocation. The ghost
MFN is placed in lieu of an allocated MFN in the page tables and the PFN-to-MFN
translation table that each Xen paravirtual guest maintains. The first guest access to
the PFN triggers a shadow page fault in the hypervisor, which is trapped and handled
by allocating the real MFN to replace the ghost. We limit fragmentation of the host’s
free page heap by increasing the granularity of requested memory chunks to 2MiB at
a time while still replacing ghost MFNs one at a time.

Although we have not implemented dynamic memory allocation and remote fault
handling for fully virtualized guests, known as Hardware Assisted VMs (HVMs), we
plan to use Xen’s built-in populate-on-demand (PoD) mechanism to do both. PoD maps
PFNs to MFNs on demand for HVMs by faulting on first access to each page. This
mechanism is used to boot HVMs with lower memory commitments than their maxi-
mum reservation. PoD allocates a preset target memory to a per-guest cache and maps
pages to the guest’s memory on demand. When the cache runs out of pages, PoD scans
the memory of the guest for zero pages, then unmaps and returns them to the cache.
For our purposes, we modify the PoD cache so it starts with a small chunk of memory,
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and, when it runs out of pages, instead of scanning for zero pages, it gets additional
allocation chunks from the hypervisor, as we do for our ghost MFN implementation.

We note that, in both approaches, the faults used to allocate memory on demand
are the same as those we use to fetch missing state on demand. That is, when a fault
occurs, first, we commit the backing frame to the VM, and we then notify memtap to
fetch the content from the desktop.

Security. Migration of desktop memory and disk state over the network introduces
new risks of exposure of private user data. First, network hosts can passively listen to
and capture memory and disk state that is transmitted over the network between desk-
top PCs and the consolidation server. Second, unauthorized hosts may actively commu-
nicate with memory and disk servers on the desktops or the consolidation server either
by directly establishing a connection to the server or by redirecting requests of a legit-
imate client in a man-in-the-middle attack. Preventing unauthorized network access
to memory and disk state requires a robust implementation of end-to-end authentica-
tion and encryption of network data. We envision the use of a secure network protocol
for state migration, such as the Transport Layer Security protocol (TLS) [Dierks and
Rescorla 2008]. TLS is particularly suitable because it is an application layer protocol
widely used to authenticate the endpoints and encrypt the streams for the transport
layer. We leave the implementation of network security on Jettison for future work.

6.2. Experimental Evaluation

We evaluated the performance of Jettison with a deployment that involved four users
and lasted 6 days. We use the results of this deployment to answer the following
questions:

(1) How much energy is saved by partial VM migration?
(2) Does microsleeping save energy?
(3) How much state needs to be migrated to the consolidation server to run an idle

VM?
(4) How much data need to be migrated back to the desktop when reintegrating the

VM?
(5) How long does it take to migrate a consolidated VM back to the desktop?

6.2.1. Experimental Setup. Our deployments employed desktop systems and a consoli-
dation server. When the users were active, VMs ran on the desktops. When inactive,
the VMs migrated to the server. Jettison was configured to consolidate VMs when no
keyboard or mouse activity was detected for a period of 15s. Once a VM was found to
be inactive, an on-screen warning was displayed for 5s before migrating the VM to the
consolidation server, thus allowing a nearby user to cancel an impending consolidation
if needed.

Each VM was configured with 4GiB of memory and 12GiB of disk. The VMs ran
Debian GNU/Linux 5.0 with kernel version 2.6.18.8 for a 64-bit x86 platform, the
GNOME desktop configured with Mozilla Firefox Web browser, Mozilla Thunderbird
e-mail client, OpenOffice.org office suite, Pidgin IM client, and OpenSSH daemon,
among others. Users were free to install additional applications as needed. Background
IM and e-mail traffic was often present, including occasional delivery of messages. Some
of our users used the IM client to connect to Google Talk and used Thunderbird for
e-mail, whereas others used web-based Gmail and chat. Our VMs were also accessible
via SSH, and some users reported downloading documents from their consolidated
VMs from home. Such activities did not require VM reintegration because they did not
cause high I/O activity or significant growth of VM memory.
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Table III. Power Profile of Dell Studio XPS 7100 PC

State Time (s) Power (W)
Suspend 8.38 ± 0.22 107.90 ± 1.77
Resume 8.58 ± 0.85 121.72 ± 24.52
Idle N/A 61.40 ± 0.03
Sleep (S3) N/A 1.95 ± 0.02
Network N/A 136.63 ± 2.81

Fig. 14. Recorded desktop energy savings along with estimates showing with fine granularity the savings
a desktop can expect as a function of the duration of the idle period.

The desktops were Dell Studio XPS 7100 systems, with a 3GHz quad-core AMD
Phenom II X4 945 processor and 6GiB of RAM. Table III presents the desktop’s power
profile obtained with a GW Instek GPM-8212 power meter. These numbers are com-
parable to those of other published systems [Agarwal et al. 2009; Das et al. 2010]. The
server was a Sun Fire X2250 system with two quad-core 3GHz Intel Xeon CPUs and
16GiB of memory. Its idle power averaged 150.70W. The desktops connected to the
server over a GigE switch shared with approximately 100 other hosts. We measured
the effective throughput between the desktops and servers to be 813.44Mbps. Power
use of the desktops during the deployment was measured with Watts Up? PRO power
meters.

6.2.2. Energy Savings. Figure 14 shows energy savings experienced by desktop users
during the deployment. Energy savings are normalized over the energy these desktops
spend if left powered during those idle periods. The figure also shows two estimates.
The first is a finer grained estimate of expected energy savings for the desktops used
in the deployment over varying lengths of consolidation time. The second estimate
computes the energy savings with a desktop with suspend and resume times of just 2s
(faster than the 8.5s of our desktops.) These estimates were computed from memory
access traces, as described in Section 5.3. The estimate for the existing desktops match
our experimental data well.

The experimental results show that our users were able to see reductions on their
desktop energy use from idle periods as short as 4min. While short idle times of under
10min show savings of 7%–16%, in longer idle times the savings were significant. In
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Fig. 15. Power usage of a desktop and server during partial migration. The figure shows a reduction in the
average energy use over time.

idle times of 67min, we see 78% savings, and in idle times of 308min, we see even
higher savings of 91%.

In too-short idle times, the energy expended by the desktop going to sleep and waking
up is not offset by the energy savings of the short microsleeps available because the
desktops we use have very slow suspend and resume times (nearly 8.5s). Still, we can
see that, in sufficiently long idle times, where faults are extremely rare (not recorded),
the energy savings converge toward (Pi − Ps)/Pi = 96.82%.

The estimate for a desktop with 2s suspend and resume times simulates the per-
formance on next-generation PCs with faster system power state transitions. This
estimate shows improved energy savings, especially in short idle times. Intervals un-
der 10min show savings that are closer to 30%. Several computers already provide
resume times close to 2s, including the MacBook Air [Apple, Inc. 2012] and Acer Aspire
S3 [Acer, Inc. 2012], and we show in Section 7 that such latencies are achievable even
with existing desktop PCs.

Figure 15 shows detailed power usage of one desktop and the consolidation server
over a 30min period in which the VM is consolidated to the server for 25min. The
figure shows the power usage patterns as the desktop performs microsleeps. At 1min
57s, the VM begins migration to the server. This event is represented by the first
spike in power use in both the desktop and server. As the server runs the VM, we
note two additional spikes as batches of pages are fetched for the VM. From 4min 21s,
the desktop performs a series of microsleeps until VM resume time. While initially the
energy use of the desktop nominally exceeds its idle use, as soon as the first microsleeps
take place, the average energy use of the desktop drops below idle, and it continues
to drop over the course of the idle period. As a result, the average power use of the
desktop over the idle period drops from 61.4W to 43.8W, a reduction of 28.8%. The
energy savings of the desktop and the length of each microsleep increase over time.

Although the server adds to energy use over an environment in which no consolida-
tion is performed, it is worth noting that with our VM’s working set sizes, each server
is capable of hosting at least 98 VMs, so its power use per VM amounts to less than
2W. This power can be driven down further by increasing only the memory capacity of
the server.
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Fig. 16. Distribution of migration sizes for VMs with 4GiB of memory.

6.2.3. Network Load. Figure 16 shows the distribution of disk and memory state mi-
grated during consolidation and resume stages. The results show that partial VM
migration makes frugal use of the network. Overall, the average size of memory mi-
grated (including data migrated by on-demand prefetching) to the consolidation server
was 242.23MiB, a mere 6% of the VMs’ nominal memory. The migration avoidance
optimization, which ensures that pages being overwritten in the partial VM are not
migrated, avoided fetching an average of 9.06 ± 25.94MiB.

The average size of migrated disk state to the consolidation server was much smaller
at 0.50MiB. Similarly, on average, each VM migrates 114.68MiB of memory and
6.81MiB of disk state back to the desktop, thus confirming that VMs do not gener-
ate much dirty state while idle. This dirty state is generated by all processes that run
in the VM independent of user activity, including always-on applications, but also tasks
that run periodically, such as OS daemons and user tasks (e.g., browser JavaScript).

6.2.4. Migration Latencies. User-perceived latency is important because it directly af-
fects the user’s experience and his willingness to accept any approach that relies on
migration. Of particular importance is reintegration latency, the time it takes for a con-
solidated VM to migrate to the desktop and resume execution on user request. Users
of VM migration solutions will wait first for the desktop hardware to resume from low
power and then for the VM to migrate back to the desktop. Our experiments show that
partial VM migration delivers small migration times. On average, VMs migrate to the
desktops in 4.11s. Similarly, the average time to consolidate a VM is 3.78s. The bulk of
waiting is needed for the desktop to resume from low-power. For our desktops, resume
times equal 8.58s. Best-in-class machines, such as those discussed in Section 6.2.2,
can deliver resume times of about 2s. Hardware resume times affect all energy-saving
approaches that use low-power states.

6.3. Challenges with Partial VM Migration

Although the results presented show that partial migration of desktop VMs achieves
substantial energy savings with high consolidation ratios and low migration latencies,
several challenges emerge from its use of microsleeps, which cause frequent transitions
between power states on the PC.
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(i) Limited energy savings during short idle periods. Power state transitions reduce
total sleep time and energy savings of the PC. As discussed in Sections 5.2 and 5.3,
the PC tries to reduce the number of power state transitions by servicing consecutive
page requests at a time and prefetching likely page candidates for future requests be-
fore returning to low power. Even so, results from our deployment of Jettison, presented
in Section 6.2, found that, during short idle times when faults are frequent, the energy
savings are low. For example, although Jettison achieved savings of up 78% in idle pe-
riods lasting an hour, in idle periods of about 30 min, savings ranged from 20% to 31%.

In idle periods of under 10min, energy savings ranged from 7% to 16%.
Over what idle periods to consolidate? Short idle periods present considerable oppor-

tunities to conserve energy. For example, the traces of desktop user activity presented
in Section 2.1 indicate that idle periods of under an hour correspond to 17% of the
total idle times (including overnight hours). In taking advantage of short idle peri-
ods, a balance must be reached between energy conservation and ensuring that the
impact on user experience is minimal. We looked at best practices from industry for
guidance on the duration of idle periods that are attractive for energy conservation.
The Energy Star program mandates that compliant PCs be configured to switch the
display off within 15min of user inactivity and transition into low-power mode within
30min [U.S. Environmental Protection Agency 2013]. The U.S. Department of Energy
recommends that users actively turn off their monitors whenever they will be away
from the computer for more than 20min and turn off the computer when away for at
least 2 hours [U.S Department of Energy 2013]. The default power management plan
for Windows 7 PCs (the balanced plan) turns the display off after 10min of inactivity
and enters low-power mode after 30min. For the Mac OS X 10.6, these defaults are
both of 10min. These policies make a distinction between power management modes
that allow applications to run (turning off the monitor) and those that do not (PC
off or sleep mode). Because partial VM migration enables applications to run during
sleep modes, we apply the policies designed for modes in which applications can run.
While the various policies and guidelines dictate different thresholds of inactivity for
engagement of power management, the apparent consensus is between 10 and 20min.
We must, therefore, ensure that partial VM migration can deliver savings, even during
idle periods of 10min. As we have shown so far, the savings have been modest during
such periods.

(ii) Reduced hardware reliability. The second challenge is that frequent power state
transitions may lead to reduced life span of hardware components not designed for
frequent power cycles. The potential impact on the life span of system components may
arise particularly because, on system wake-up, current desktops power up all devices,
independent of whether they are required. For most instances of system wake-up in
partial VM migration, the majority of devices are not needed. Indeed, most desktop
wake-ups require only access to CPU, memory, and network card.

(iii) Long response times. The third challenge is that slow PC wake-up times reduce
responsiveness of applications running in the consolidation server during faults, and,
for networked applications, this may cause unintended side effects on connections.
In terms of software reliability, the desktop applications we used were able to contend
gracefully with the increased latency required to fulfill a remote fault when the desktop
is microsleeping. In our experience, applications that rely on TCP and do not expect
real-time network performance can function reliably even during short absences of an
end point. For example, the default Linux configuration for TCP allows for retries for
up to 13–30min which, in our usage of the system, has proved far more than sufficient
to deal with the 8–17s remote fault latency in the worst case.
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In Section 7, we present context-aware selective resume, a solution that addresses
many of the problems caused by on-demand memory migration. It bypasses initial-
ization of hardware and software components that are not relevant to handling page
faults during PC wake-up. This approach allows the application causing the wake-up
to specify the context for the wake-up request anytime it wakes the PC. It has the dual
benefits that wake-ups are fast, thus increasing energy savings, and most hardware
components are not reinitialized for on-demand page migration.

6.4. Summary

In this section, we presented Jettison, our implementation of partial migration of idle
desktop VMs. Jettison extends the functionality of the Xen hypervisor and enables idle
desktops to save energy while the consolidated VM runs in a shared server. It migrates
state on demand and allows the desktop to microsleep when not serving requests. We
presented results from our deployment that show that Jettison provides significant
energy savings with the dual benefits that network and server infrastructure can scale
well with the number of users, and migration latencies are very small. We showed that
a desktop can achieve energy savings of 78% in an hour of consolidation and up to
91% in longer periods while maintaining migration latencies of about 4s. Finally, we
discussed the challenges of the approach, which we address in the next section.

7. EFFICIENT ON-DEMAND MIGRATION OF PAGES WITH CAESAR

On-demand migration of pages enables partial VM migration to limit network traffic
and deliver high consolidation ratios on the server. At consolidation, it transfers only
VM configuration and vCPU context necessary to initiate execution of the VM on the
server. VM execution on the server leads to accesses to memory pages (and disk blocks)
that are not present—remote page faults. The hypervisor traps these faults and fetches
the pages from the PC. To do so, the hypervisor must wake the PC from low-power mode,
retrieve the page, and instruct the PC to return to low-power mode. The result is PCs
that cycle from low-power to full-power and back to low-power mode dozens of times
per hour.

Our experience with Jettison, our partial VM migration prototype, has shown that
energy saving ACPI power states have not been designed for frequent transitions.
Although the ACPI standard makes provisions for low-latency states such as S1 and S2,
these have little effect in reducing energy use and are not widely available. Transition
times between energy saving states (S3, S4, and S5) are slow, lasting up to tens of
seconds (Section 2.2) and result in high rate of power use (Section 5.2).

In a previous study [Wright et al. 2011], we found that 87% of resume-suspend cycle
times on commodity PCs is taken by OS and BIOS activity, and only 13% comprises
hardware suspend and reinitialization. Resume-suspend cycle time is the time taken by
PCs to resume from low-power state, send a network packet, and return to low-power
state, as is done to service page faults of VMs that have been partially consolidated.
When suspending into S3 low-power state, the OS iterates through devices and saves
their state in DRAM. When resuming, first, the BIOS identifies system devices and
performs initializations of low-level devices, such as system chipsets and CPUs. Subse-
quently, the OS iterates through peripheral devices, restoring their presuspend state.
Our observation is that applications providing intermittent services require functional-
ity from only a few devices and exercise only a small fraction of the OS code. Therefore,
suspend and resume times can be reduced by saving and restoring state of only those
OS subsystems and devices required to provide the service. We present context-aware
selective resume, an approach that selectively suspends and resumes devices and OS
subsystems based on the wake-up context. The wake-up context informs the PC of the
service causing the wake-up. The context for partial VM migration informs the PC on
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wake-up that only the memory server functionality is needed, and, as a result, the PC
needs only to reinitialize DRAM, CPU, and the network interface.

In this section, we introduce context-aware selective resume and show that it re-
duces the cost of on-demand page migration (the energy cost of taking the PC out of
low-power mode.) High cost of on-demand page migration makes saving energy from
consolidations over short intervals (when faults are frequent) only a modest success.
We introduce CAESAR, our implementation of the context-aware selective resume
framework, and experiment with a memory server built on CAESAR. CAESAR reads
the wake-up context from the Wake-on-LAN packet payload sent by the consolidation
server; initializes the CPU, DRAM controller, and NIC interface; and invokes an appro-
priate context handler. For page migration, this handler is the memory server, which
sends the requested page and returns control to the framework. CAESAR then returns
the PC to low-power state.

Our experiments show that context-aware selective resume effectively reduces
resume-suspend cycles by 65%, from 9.0s to 3.2s, and increases desktop sleep time
over an hour-long consolidation by 26%–103%. As a result, context-aware selective re-
sume increases energy savings over the full resume approach throughout the hour-long
interval. For consolidations lasting 5 min, it increased energy savings by 13%–66%. In
10min, the increase was by 43%–54%. In 20min, it increased savings by 38%–49%, and
finally, over an hour, the approach increased energy savings by 14%–65%.

The remainder of this section is organized as follows. In Section 7.1, we discuss
the architecture of the context-aware selective resume framework and present our
implementation of a fast memory server. In Section 7.2, we present experimental results
demonstrating the benefits of context-aware selective resume when migrating memory
on demand. Finally, in Section 7.3, we conclude the section.

7.1. The Context-Aware Selective Resume Framework

Context-aware selective resume expedites resume-suspend cycle times of desktop PCs.
When an event causes the PC to wake from a low-power state, the firmware is noti-
fied of the context or cause of the wake-up, and, based on this context, the firmware
re-initializes only the necessary devices and invokes code relevant to the context. Appli-
cations that require context-aware functionality when the PC enters low-power mode
install context vectors with the context-aware selective resume framework. Each con-
text vector maps a numerical context ID to the memory address containing the context
handling code.

While we envision an implementation of context-aware selective resume within the
firmware of PCs, due to the proprietary nature of PC firmware, CAESAR, our context-
aware selective resume prototype, was built on the Xen hypervisor. During desktop
resume, CAESAR is invoked after BIOS initialization but before OS invocation. Based
on context ID received, CAESAR decides whether to invoke a context handler or the full-
fledged OS. Our hypervisor-level implementation does not apply the selective resume
approach to BIOS initialization. However, we have reported previously [Wright et al.
2011] that BIOS initialization takes under 1s—limiting, as a result, the additional
gains from a firmware-level implementation.

CAESAR is capable of inspecting context IDs embedded in Wake-on-LAN packet
payloads. Absence of a context ID in the Wake-on-LAN packet or system wake-up from
peripherals other than the NIC cause a full OS resume. The Wake-on-LAN packet is an
Ethernet broadcast frame (with any network and transport layer protocol) containing
six set bytes (0xFFFFFFFFFFFF) and the 48-bit MAC address of the destination net-
work interface repeated 16 times. CAESAR packets are UDP packets with at least 118
bytes of payload. In addition to the Wake-on-LAN packet payload of 102 bytes, CAE-
SAR packets carry 16 bytes of context data. The first eight bytes are the context-aware
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magic number (0x53524d50), which is used to validate that this is a context-aware
selective resume packet. The remaining eight bytes provide the context ID, specifying
the relevant application. Beyond these, the application may use the remainder of the
packet payload to pass arguments to the context handler, such as the Physical Frame
Number for the memory server application.

To intercept suspend and resume tasks, CAESAR modifies Xen’s enter state function,
responsible for invoking the low-level ACPI call that puts the PC in suspend mode
and where execution returns on resume. It is in this function that CAESAR inspects
wake-up context and invokes the appropriate context vector. CAESAR’s context vector
interface supports four application-defined functions: (i) presuspend, which provides
functionality that is invoked after the OS suspends but before the hypervisor invokes
low-level ACPI suspend calls; (ii) resume, invoked when the received context matches
the application; (iii) resuspend, invoked after the context handler’s resume function
exits; and (iv) postsuspend, invoked before full OS resume.

CAESAR implements basic NIC driver functionality in order to access Wake-on-LAN
packets without OS support. Our implementation supports the Intel 82574L controller
based Gigabit CT Desktop NIC, which was achieved by porting the Linux-based Intel
e1000e driver into the hypervisor. When the desktop resumes from low-power mode, the
BIOS performs initialization of low-level devices, which include the CPU and chipsets,
and powers up the memory controller from self-refresh mode. Subsequently, it transfers
execution to the hypervisor, which invokes the e1000e driver code to read the NIC’s
Wake-Up Packet Memory (WUPM), a set of registers that store the Wake-on-LAN
packet. CAESAR then invokes the resume function of the context handler, passing to it
any remaining data in the Wake-on-LAN packet.

To ensure rapid reinitialization of the NIC, CAESAR locks the NIC’s link speed at
suspend time, which avoids renegotiation during resume. Normally, when the desktop
enters low-power mode, the Intel NIC reduces its link speed from 1Gbps to 10Mbps,
which uses marginally less energy. At resume time, the NIC renegotiates the link
speed with the switch at the opposite end of the wire in a process known as Ethernet
autonegotiation. We found this renegotiation to cause a delay in NIC initialization of
up to 4–6s. CAESAR prevents link speed renegotiation by setting NIC registers that
disable resetting of link speed at suspend time.

Fast Memory Server. We have implemented a memory server that serves VM pages
upon receipt of context-aware Wake-on-LAN request packets. The Wake-on-LAN packet
payload contains an 8-byte PFN, which CAESAR passes on to the memory server’s
resume function. During the initial suspend of the desktop, CAESAR invokes the mem-
ory server’s presuspend function to map in the VM’s PFN-to-MFN translation table.
When the memory server’s resume function is invoked with a PFN, it looks up its mem-
ory address in the PFN-to-MFN translation table so that it can read the requested page
and send it over the network. Before resuming the OS, CAESAR invokes the memory
server’s postsuspend function, which unmaps the PFN-to-MFN translation table.

7.2. Experimental Evaluation

In this section, we show with an experimental evaluation that context-aware selective
resume increases energy savings in desktops using partial VM migration. We specifi-
cally answer the following questions:

(1) How effective is context-aware selective resume in reducing resume-suspend cycle
times?

(2) Are desktops able to sleep longer with context-aware selective resume?
(3) What is the improvement in energy savings, particularly during short idle times?
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Table IV. Power Profile of the Custom PC

State Time (s) Power (W)
Suspend 3.0 ± 0 61.07 ± 1.15
Resume 6.33 ± 0.58 65.39 ± 0.82
Idle N/A 55.50 ± 0.04
Sleep (S3) N/A 5.06 ± 0.05

Table V. Resume-Suspend Cycle and Page
Response Times

Full Resume CAESAR
Cycle time (s) 9.0 ± 0.0 3.17 ± 0.41
Page time (s) 6.53 ± 0.0 1.49 ± 0.0

7.2.1. Methodology. To evaluate the benefits of CAESAR, we collected traces of page
requests during the deployment of Jettison described in Section 4.2. These traces con-
tain time-stamped sequence of page numbers (PFNs) requested each time VMs were
consolidated. Recall that in our initial deployment of Jettison, three university re-
searchers were given desktops running Jettison and employed these as their primary
desktops. Each desktop ran a VM configured with 4GiB of memory and 12GiB of disk
image. The VMs were configured with Debian Linux 5.0 and ran the GNOME desktop
system, along with desktop applications such as Mozilla Firefox, Mozilla Thunderbird,
and OpenOffice.org office suite.

For these experiments, we developed an emulator that runs in the consolidation
server and replays page requests in the traces while being faithful to the page request
interarrivals. In replaying the requests, the emulator wakes up the desktop if it is
in low-power mode and retrieves the page before the desktop returns to low power.
The emulator enables a direct comparison of the energy savings with and without
context-aware selective resume for the same consolidation.

Recall from the discussion in Section 5.2 that we use a wait timer (tw) that keeps the
desktop awake for a predetermined number of seconds after servicing a page request
before returning to sleep mode. This is done to anticipate consecutive page requests that
have interarrival times that are too low to permit the desktop to microsleep long enough
to offset the energy used in the transition to and from low power. In the experiments
that follow, the full resume configuration used a wait timer of 6s. Because context-aware
selective resume lowers suspend and resume cycle times, and therefore the energy used
for transitions, we found that a wait timer of 2s was sufficient to ensure that minimal
energy is wasted in transitions for microsleeps that are too short to save energy.

For these experiments, we used a custom desktop PC with a 2.70GHz Dual-Core
Intel Celeron CPU and the power profile described in Table IV. The PC was equipped
with an Intel Gigabit CT Desktop NIC adapter. Power use of the desktop was measured
with a Watts Up? PRO power meter. We ran our experiments on sample traces from all
three users over a period of 1 hour.

7.2.2. Resume-Suspend Cycle Times. A basic measure of the energy cost of serving pages
on demand is the duration of cycle times, the time the PC takes to resume from low-
power mode, serve a page, and return to low-power mode. To measure cycle times,
we suspended the desktop and allowed it to idle for 1min. The consolidation server
then issued a page request, forcing the PC to resume, serve the page, and immediately
return to low-power state. We repeated this experiment five times.

Table V shows the cycle times of the desktop using either full resume or context-
aware selective resume. With full resume, the desktop spends, on average, 9.0s out
of low-power to serve a single page. CAESAR reduces cycle times by 64.78% to 3.17s.
This result demonstrates that CAESAR is effective in reducing the penalty for serving
pages on demand.

The page response times, measured in the consolidation server as the time between
issuing a page request and receiving the page, dropped accordingly from 6.53s to 1.49s.
Table V also shows the response times measured on the consolidation server. Short
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Fig. 17. Desktop sleep times over hour-long consolidations.

response times lower performance degradation of applications running in the consoli-
dation server.

7.2.3. Sleep Times. Shorter cycle times increase the total sleep the desktop can perform
during consolidation. Sleep time refers to the time in which the desktop is in low-power
mode while its VM is consolidated. Figure 17 shows increases in desktop sleep times
with the use of CAESAR over an hour-long consolidation of the VMs for the three users.
Sleep times aggregate all intervals of at least 1s in which the desktop used less than
8W of power. The figure shows that, for User 1, CAESAR increases total sleep time from
39.19 to 51.01min. For User 2, it increases total sleep time from 41.41 to 52.32min. And
finally, for User 3, CAESAR increases total sleep time from 15.24 to 30.98min. Across
all users, CAESAR increases sleep times by 26%–103% during the hour-long period of
consolidation.

7.2.4. Energy Savings. We now show that context-aware selective resume increases
energy savings of idle desktop systems, which is of particular importance during short
periods of consolidation. Figures 18(a), 18(b), and 18(c) compare energy savings when
desktops resume fully to serve pages, with savings obtained when CAESAR invokes
only the memory server. The figures show the energy savings of the desktop when its
VM is consolidated over a period of 1 hour.

Figure 18(a) shows that for User 1, CAESAR increased energy savings from 17% to
28% in the first 5min. At 10min, the savings increased from 28% to 44%. At 20min,
CAESAR increased the savings from 44% to 61%, and, finally, at the end of the hour, the
savings increased from 61% to 74%. Initially, during the first minute, CAESAR leads to
increased energy usage as our implementation first transitions the PC into low-power,
which invokes the memory server presuspend function to map the VM’s memory and
incurs the transition cost before it can start serving pages. This initial penalty can
be avoided by serving pages from the administrative domain (as done by Jettison) at
the start and transitioning to the CAESAR-based memory server only after the first
microsleep.

Figure 18(b), shows that for User 2, CAESAR increased energy savings from 18% to
28% in the first 5min. At 10min, the savings increased from 29% to 42%. At 20min,
CAESAR increased the savings from 39% to 57%, and, finally, at the end of the hour,
CAESAR increased from 66% to 75%.

Figure 18(c), shows that for User 3, CAESAR increased energy savings from 14% to
16% in 5min. In 10min, it increased savings from 17% to 24%. In 20min, it increased
energy savings from 21% to 31%. And, finally, over the course of an hour, savings
increased from 26% to 42%. The figure shows that although savings for User 3 are
lower across the consolidation, CAESAR is still able to improve savings significantly.
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Fig. 18. Desktop energy savings for page access traces from three users of our initial deployment of Jettison.

Across users, CAESAR delivers improvements of 13%–66% over 5min, 43%–54% in
10min, 38%–49% in 20min, and 14%–65% in an hour.

7.3. Summary

In this section, we presented context-aware selective resume, an approach that reduces
desktop resume suspend cycles. Current desktops have slow power state transition
times with a high rate of power use. We observed that the high cost of on-demand
page migration is a limiting factor to achieving considerable savings in short idle
times, where faults are frequent. Context-aware selective resume speeds up resume
and suspend cycles by initializing only devices and code that is necessary for the wake-
up task. The approach allows applications to supply a context ID to the waking PC that
informs it of the task causing the wake-up. We presented CAESAR, a framework that
implements context-aware selective resume and uses the Wake-on-LAN packet payload
to define the wake-up context. We evaluated the performance of a CAESAR-based
memory server with traces of VM page requests from VMs of three users. Our results
show that CAESAR reduces resume-suspend cycle times by 67% from 9s to 3.17s. It
increases total desktop sleep time by 26%–103% over an hour-long consolidation. Most
importantly, our experiments show that CAESAR increases energy savings over short
idle times between 5min and an hour by up to 66%.

8. SCALABILITY AND COMPARISON WITH FULL VM MIGRATION

In this section, we extrapolate the benefits of partial migration for settings with
hundreds of desktops using user-idleness traces collected from real users in an office
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environment together with the migration and energy-saving performance of Jettison
that we measured in the deployment of Section 6.2. We address the following
questions:

(1) How does partial migration compare against full migration in terms of network
usage, overall energy savings, and the desktop reintegration latency experienced
by users?

(2) Do the techniques scale with the number of desktops?
(3) Can they weather “resume storms” present in actual usage patterns?
(4) Most importantly, do the energy savings exceed the capital costs required to deploy

each technique?

These experiments are conservative in that they exclude the additional energy savings
offered by context-aware selective resume.

Simulation Environment. Our evaluation uses simulation driven by real user traces
collected using a Mac OS X-based tracker that runs on a desktop and tracks whether the
user is active every 5s. Users are said to be inactive if they are not using the keyboard
or mouse and no program (e.g., a video player) has disabled the OS screen saver timer.
We deployed the tracker for 4 months at an industrial research lab on 22 researchers’
primary work Macs, including both desktops and laptops. The machines had user-
controlled software environments—there were no corporate lockdowns in place. We
collected 2,086 person day traces from which a sample of 500 are shown in Figure 1. Of
the full traces, 1,542 days were weekdays and 544 were weekends. Because a number
of traces were from laptops that users take home, usage patterns in the evenings and
nights were heavier than would be expected of office desktops. Furthermore, since the
lab has flexible work hours, the data do not show tightly synchronized resume storms
at the beginning of the workday; the most highly correlated period of inactivity was the
lunch hour. Therefore, we expect this dataset to provide fewer sleep opportunities but a
somewhat friendlier environment for migration than a traditional office environment.

The traces were fed into a simulator that simulates consolidation and reintegration
activity over the course of a single day for a given number of users (traces) and a given
value of the idle timeout, the time of user inactivity the system waits before consoli-
dating a VM. Because of qualitatively different user behavior on the weekends, we ran
simulations using weekday and weekend data separately. We report only on weekday
results unless otherwise stated. The simulations assume a shared GigE network, desk-
top VMs with 4GiB of RAM, and the same energy profile as the desktops used in our
experiments (Table III). The simulator takes into account network contention due to
concurrent VM migrations when computing consolidation and reintegration latencies.
It also takes into account energy use during migrations and desktop sleep periods when
computing energy savings. We bias the results in favor of full migration by ignoring iter-
ative precopy rounds or disk accesses and by assuming exactly a 4GiB network transfer
per migration for both consolidation and reintegration. Finally, we assume that full mi-
gration saves 100% of the desktop’s idle power when the VM executes on the server.

For partial migration, we used the distributions of VM memory and disk migration
sizes for consolidations and reintegrations shown in Figure 16. Even though partial
migration consolidations create network traffic on demand, we assumed bulk trans-
fers on consolidations for ease of simulation. This creates more network congestion
and biases results against partial migration. To estimate energy savings for partial
migration while accounting for the energy costs of consolidation, reintegration, and
servicing of faults, we scale the time the VM remains on the server by a factor obtained
from Figure 14 that estimates the savings as a function of consolidation time for our
desktops.
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Fig. 19. Energy savings in kW-h per day vs. reintegration latency and network utilization for 100 desktops
and varying idle timeout values.

Is Partial VM Migration a Real Improvement? Section 6.2 suggests that when com-
pared to full migration, partial migration significantly improves the network load and
user-perceived reintegration latency at the expense of reduced energy savings. The
question then arises whether full migration can be made competitive simply by in-
creasing the idle timeout to migrate less aggressively, thus reducing network load and
improving reintegration latencies, but reducing sleep opportunities and energy sav-
ings. Figure 19 shows that the answer to this question is an emphatic no. It shows
a scatterplot of energy savings per day against network load (left graph), and energy
savings per day against reintegration latency (right graph) for different values of idle
timeout in an office with 100 desktops. While partial migration does not match the
highest energy savings possible using full migration in this setting (although it gets to
within 85%), for an equal amount of energy saved, it has over an order of magnitude
lower network load and reintegration latency.

The graphs also show that for both full and partial migration, there is a sweet-spot
between 5 and 10min for the idle timeout. Higher values significantly reduce energy
savings, whereas lower values dramatically increase network load and reintegration
latency without increasing energy savings much. For full migration, energy savings
actually decline for small idle timeouts because the aggressive migrations led to a
lot of energy wasted in aborted migrations and oscillations between the desktop and
consolidation server. Similar graphs for 10–500 desktops show that an idle timeout
between 5 and 10min provided the best balance of energy savings and resource usage
across the board.

Scaling with Number of Desktops. Next, we show how the benefits of partial migration
scale with the number of users. We use an idle timeout of 5min for these experiments.

Figure 20 shows a greater than two orders of magnitude reintegration latency advan-
tage for partial migration at 100 users that grows to three orders of magnitude at 500
users. Increased congestion and resume storms cause the performance of full migration
to degrade with scale. In contrast, the latency of partial migration remains very stable.
We contend that even at 100 users, the 151s reintegration latency of full migration
could be intolerable for users. Das et al. [2010] propose using a remote desktop solution
to provide immediate reintegration access to users to mask long reintegration latencies
of full migration. However, remote desktop access has many limitations, such as the
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Fig. 20. Reintegration latency of partial migration
and full migration as desktops increase. The error
bars show the standard deviations.

Fig. 21. Network load of partial migration and full
migration. Aborted migrations occur when a new
migrations overrides an ongoing one.

Fig. 22. Total energy savings in kWh and USD by partial migration and full migration.

inability to seamlessly access local devices such as graphics cards and the reliance on
the performance of an overburdened network that is the cause of the long reintegration
latencies in the first place. We show that partial migration offers a superior alternative.

Figure 21 shows that network utilization of partial migration is an order of magni-
tude lower than full migration and remains low even as the number of users grows.
Due to the fast consolidation and reintegration times, there are few aborted migrations.
Aborted full migrations result from long migration times that increase with network
congestion, and these reduce successful attempts and, ultimately, energy savings. The
y2 axis of the figure shows the average daily network utilization in terms of total
network capacity. Full migration quickly dominates the network (65% utilization at
100 users) and, as a result, often requires dedicated network infrastructure to prevent
interfering with other applications.

Cost Effectiveness. Figure 22 shows the overall energy savings in kWh per day for
partial and full migration for both the weekday and weekend datasets. The y2 axis
shows the corresponding annualized energy savings using the average July 2011 US
price of electricity of USD 0.1058 per kWh.1 As the number of desktops increase,

1US Energy Information Administration: http://www.eia.gov/electricity/.
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partial migration becomes more efficient than full migration (85% of full migration at
10 users to 104% at 500 users) because the large consolidation times for full migration
on an increasingly congested network significantly reduce sleep time opportunities.
Weekends are better, but weekdays have significant savings as well: With an idle
timeout of 5min, VMs spend an average of 76% of a weekday on the server. With
at least 100 desktops, energy savings increase almost linearly with the number of
desktops, at a rate of USD 37.35 and 33.95 per desktop per year for partial and full
migration, respectively.

We can compare these savings to the yearly depreciation costs for the consolidation
servers to determine whether the schemes can pay for themselves. The question we
ask is: Assuming a 3-year depreciation window, can each migration scheme justify
the purchase of a server with energy savings alone? We assume a server with 16GiB
of memory, similar to our testbed system. Since fully migrated idle VMs are memory
constrained on the server side, we assume four 4GiB VMs on a single server, giving us a
breakeven server budget of USD 33.95×4 VMs×3 years, or USD 407.40. In comparison,
the results from Section 6.2 show that we can fit 98 partial VMs on a 16GiB server when
using partial migration, giving partial migration a budget of 37.35×98 VMs ×3 years,
or USD 10,980.90. To put these numbers in context, we priced the SunFire X2250 server
used in our testbed at USD 6,099.2 In conclusion, given existing server and electricity
prices, a large consolidation ratio is required to make consolidation of idle desktop VMs
cost effective, and partial VM migration is able to provide this high consolidation.

8.1. Considerations for Deployment of Partial VM Migration

There are three additional considerations that implementers must make when deploy-
ing partial migration of idle desktop VMs in enterprise environments: (i) where to
place VM storage, (ii) how to handle device accesses, and (iii) what happens in case of
failures.

Storage Placement. As described in Section 1, partial VM migration is data-placement
agnostic. Disk state can be placed either in network servers or locally on the desktops.
The benefit of partial VM migration is in reducing migration of run state, and, as we
have shown in Section 5, more than 99% of state accessed by idle VMs is memory
(165.63MiB), whereas disk represents less than 1% (1.16MiB). An environment with
shared network storage reduces the number of faults that must be serviced from the
desktop and potentially increases the energy savings with partial VM migration, albeit
minimally. In our deployment, we used desktop local storage, which supports legacy
environments where shared storage is not always available.

Device Support. Thick-client desktops can provide access to dedicated hardware de-
vices to applications and users. The use of devices such as webcams, microphones,
sound cards, GPUs, fingerprint readers, and even network interfaces can complicate
the migration of VMs for two reasons. First, some devices found on the desktops may
not be available on the consolidation server. Second, for high-performance applications,
or in order to protect hypervisors from unstable or untrusted device drivers, VMs may
be given direct access to devices via passthrough [LeVasseur et al. 2004; Xia et al.
2008; Advanced Micro Devices, Inc. 2009; Intel Corporation 2011a]. In these instances,
the hypervisor is unable to capture and migrate the state of devices, and the in-VM
device driver is exposed to any mismatch between device models on the server and the
desktop. Solutions have been proposed to support migration of passthrough devices

2https://shop.oracle.com.
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[Kadav and Swift 2008; Zhai et al. 2008], and some newer devices provide support
for Single-Root I/O Virtualization and Sharing (SR-IOV) [Intel Corporation 2011b;
Dong et al. 2008], which virtualizes the device itself, allowing context switching be-
tween VMs, and, more importantly, allows the hypervisor to capture and restore device
state.

Even if devices can be migrated, it is well worth considering when it is appropriate for
a consolidated VM to: (i) access the device on the server, (ii) forward device accesses to
the desktop, or (iii) migrate back to the desktop whenever it requires access to a device.
For example, although it is sensible for the consolidated VM to access the network
interface of the server, accesses to the sound card may be more useful when forwarded
to the desktop. This could enable a VoIP or IM client to notify a nearby user of an
incoming call or message. Similarly, access to a 3D acceleration interface may require
the VM to be migrated back to the desktop. An emulated device backend is needed on the
consolidation server to capture access events and forward them to the physical device on
the desktop. This approach may also be used to address device heterogeneity by forcing
the VM to only use the device on the desktop, when an incompatibility is detected.
Finally, a given device type may support different access modalities, and a policy needs
to be in place to determine how best to access the device. For example, disk accesses
may be forwarded to the desktop when infrequent. However, frequent accesses caused,
for example, by a running virus scanner, could force the VM to migrate to the desktop
because they do not allow the desktop to sleep. Our prototype implementation supports
paravirtualized devices that make migration simple and provide a consistent interface
across hosts. We have also implemented an emulated back end on the consolidation
server that forwards block accesses on the disk device to the desktop, and we found
this configuration to work well in our deployment. More work is needed to support VM
migration in environments with heterogeneous devices where VMs are configured with
device passthrough.

Failure Semantics. The semantics of failure of a consolidated VM on storage consis-
tency is similar under local or network storage configurations and is based on check-
pointing. When a VM is consolidated, memory and disk state are checkpointed on the
desktop. Disk changes made by the partial VM are stored in the per-disk dirty slice
held as a file in the server. If a failure occurs on the server, Jettison resumes the VM
from checkpointed state on the desktop. The benefit of this approach is that, in case of
server failure, the desktop resumes from consistent disk and memory state. The disad-
vantage is that state generated on the server and that may otherwise be useful may be
lost. This loss can be limited by periodically propagating resume-consistent disk and
memory checkpoints to the desktop or replicating this state across multiple servers. In
cases of server-side failures that do not corrupt the host’s file system and from which
the host can recover (e.g., by rebooting), dirty disk state may still be recovered. We
have implemented server-side disk writes buffering, which enables desktop recovery
from checkpoint only for the local disk driver. Adding a similar functionality to shared
storage drivers is left for future work.

In cases of network failures, the hypervisor suspends each faulting vCPU until it
is able to fetch the missing pages from the desktop. Memtap is configured to retry
to fetch pages for a period of up to 3 hours. Guests experience vCPU suspend events
as they do with VM checkpointing and resumes, which are widely used in virtualized
environments. Faulting vCPUs are not rescheduled until outstanding page faults can
be serviced, and, when network failures persist, the partial VM remains in suspend
state. It is possible to reintegrate the partial VM state back to the desktop if an out-of-
band channel is available to transfer the state, or the partial VM can be discarded and
the desktop VM resumed from its own checkpoint state.
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8.2. Summary

With traces of PC user activity, we showed that in small to medium-sized offices, partial
migration provides energy savings that are competitive with full VM migration (85% of
full migration at 10 users to 104% at 500 users) while providing migration latencies that
are two to three orders of magnitude smaller and network utilization that is an order
of magnitude lower. We also identified considerations that implementers must make
when deploying partial migration of idle desktop VMs in enterprise environments.

9. RELATED WORK

This article introduces partial desktop VM migration, an approach that consolidates
idle desktop VMs and places desktop PCs in low-power state to reduce their energy
use. This approach migrates VM memory pages to the consolidation server on demand
while maintaining state residues on the desktop. Migrations are fast and do not congest
enterprise networks, and consolidation ratios on servers are high. When migrating the
VM back to the desktop PC, the approach transfers only deltas consisting of state
that has been updated while the VM ran on the server. We introduced context-aware
selective resume, a framework that reduces desktop resume and suspend times by
reinitializing only devices and code necessary for a given wake-up context.

In this section, we discuss prior art in two areas to which our contributions apply:
energy conservation in desktop systems and migration of VMs and processes. We build
on the discussions of Section 2 and Section 3, discuss how our approach relates to
previous work, and identify the challenges with existing solutions.

9.1. Energy Conservation

Early approaches to energy conservation have been motivated by the limited battery
life of mobile devices [Noble et al. 1997; Flinn and Satyanarayanan 1999; Zeng et al.
2002]. Recently, energy usage and heat generation have become a concern in data
centers [Barroso and Hölzle 2007; Meisner et al. 2009; Fan et al. 2007; Tolia et al.
2008]. In more recent years, energy use of desktop computers has also garnered the
interest of researchers, motivated by rising energy costs and the environmental impact
of electricity generation [Webber et al. 2006; Gunaratne et al. 2005; Agarwal et al.
2009; Nedevschi et al. 2009; Agarwal et al. 2010; Das et al. 2010; Sen et al. 2012].

9.1.1. Thin Clients. Thin clients, such as VNC [Richardson et al. 1998] and SLIM
[Schmidt et al. 1999], place low-power stateless clients on the user’s desk and run
their applications remotely on shared servers. The thin client is only responsible for
displaying the output of the user session running on the remote server and forwarding
user input to the server. Because thin clients are low-power devices, the energy wasted
when idle is relatively small. However, thin clients remain unpopular due to reduced
interactive performance, lacking crispness in response to user interaction, and lack of
access to acceleration in local hardware. In addition, whereas thin clients reduce client
energy use, they do little to improve server energy efficiency because these run user
sessions with full state. Servers must also be provisioned to accommodate the peak
workloads of each user, thus limiting the number of concurrent sessions a single server
can run. In contrast, our approach delivers the performance of local hardware when-
ever the user is active and, when the user is inactive, runs the session remotely with
minimal state and transitions the desktop into low-power state. Only idle workloads
run on the shared server, and, as a result, hardware resources can be shared among
many more users.

9.1.2. Energy Proportionality in Data Centers. Studies of data centers have found that idle
servers draw about 60% of their peak power and that the average server utilization is
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only 20%–30% [Barroso and Hölzle 2007; Meisner et al. 2009; Fan et al. 2007]. A recent
study commissioned by the New York Times found that between 88% and 94% of the
power used by IT data centers is wasted in idle servers [Glanz 2012]. Although frequent,
idle periods in data centers can be short, often lasting a few seconds or less. These
findings have prompted calls for a fundamental redesign of system components so they
consume energy in proportion to their utilization [Barroso and Hölzle 2007]. Rather
than requiring fine-grain power performance tuning from all components, PowerNap
[Meisner et al. 2009] calls for systems that transition between high-performance active
state and low-performance nap state rapidly in response to instantaneous load changes
and for systems that support energy-efficient sleep states. Experiments conducted in
the PoweNap project show that, for this approach to work, state transitions must
take no more than 10ms; obviously, a challenge with existing hardware. In contrast,
our approach works well with existing hardware for which transition times last up
to tens of seconds. Dynamic voltage and frequency scaling combined with opportune
consolidation of idle VMs (which enables server shut off) have been used to approximate
energy proportionality at the data center scale [Tolia et al. 2008]. This approach relies
on full migration of VMs, which we have shown to be slow, cause large network traffic,
and not lead to high consolidation ratios.

We expect improvements in hardware performance, either with energy-proportional
components or with fast power state transitions, to benefit our approach considerably.
Energy-proportional components can mean that serving pages on demand uses only a
fraction of power needed by the components used to transmit the pages (CPU, memory,
and NIC). Similarly, fast transition times ensure that PCs spend much of their time in
low-power and not in transition, again, lowering the cost of serving pages on demand.

9.1.3. Opportunistic Sleep in Desktop PCs. Early approaches based on opportunistic sleep
sought to provide support for LAN-based remote access applications such as file access
or system management. Wake-on-LAN [Lieberman Software Corporation 2006] was
developed by the Intel and IBM Manageability Alliance to allow system administra-
tors to wake sleeping computers and perform maintenance tasks. At a high level, when
a computer goes to sleep, it maintains its network interface powered on and constantly
scanning for packets on the network. When the NIC receives a specially crafted “magic
packet” containing its own MAC address, it generates a power management event that
wakes the host. Wake-on-Wireless-LAN [Intel Corporation 2006] extends this function-
ality to 802.11 wireless networks. Wake-on-Wireless [Shih et al. 2002] is targeted at
mobile computers such as laptops. It supplements the mobile device with a low-power
radio that is used to wake the host in lieu of keeping the 802.11 NIC powered during
sleep time. An external proxy is used to signal the device over the low-power radio
interface.

CellNotify [Agarwal et al. 2007] substitutes the low-power radio interface for a cel-
lular radio, enabling it to work over a wide area. Although acceptable to mobile com-
munication devices with a cellular interface, widespread adoption of the approach is
infeasible in desktop environments.

Although Wake-on-LAN and, to some degree, Wake-on-Wireless LAN are widely
available on modern PCs, these techniques are seldom used. Approaches that wake
the PC on demand do not work well with applications that must run while the PC is
in low-power state. Fundamentally, all opportunistic sleep-based techniques described
thus far do not support applications with always-on semantics that need to maintain
Wide Area Network (WAN) presence from within the desktop.

Exploiting short opportunities for sleep while a host is waiting for work is also ex-
plored in Catnap [Dogar et al. 2010]. Catnap exploits the bandwidth difference between
WLAN interface of end hosts and the WAN link to allow idle end hosts to sleep during
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network downloads while content is buffered in network proxies. That approach is fo-
cused on energy reduction in ongoing network transfers and not in providing continued
execution of desktop applications during sleep.

9.1.4. Protocol Proxies. Low-power protocol proxies have been used to maintain network
presence of always-on applications whenever the PC goes to sleep, only waking the PC
when its resources or attention are required [Gunaratne et al. 2005; Jimeno et al. 2008;
Nedevschi et al. 2009; Reich et al. 2010]. The GreenUp decentralized wake-up service
[Sen et al. 2012] develops a distributed architecture that enables participating PCs to
act as proxies for sleeping hosts in the same subnet. Somniloquy [Agarwal et al. 2009]
delegates basic application functionality to application stubs that run on a smart NIC
of the desktop whenever the desktop is idle. The NIC is capable of operating when
the main processor is asleep and can wake the desktop when necessary. Turducken
[Sorber et al. 2005] is a more general instance of the proxy-based approach that relies
on a hierarchical power management architecture in which each tier is incrementally
more powerful and more energy taxing. For example, the top tier may consist of a full-
size desktop capable of running rich graphical applications. The next tier may consist
of an embedded processor with flash storage and networking capabilities that runs
application stubs. A third tier may consist of a sensor whose job is to detect network
availability and wake tier two accordingly.

Proxy-based approaches require that always-on applications be reengineered to sup-
port bimodal operation between the host and proxy; thus, even for solutions whose
proxies only handle simple protocols and wake the desktop on more sophisticated re-
quests [Nedevschi et al. 2009; Reich et al. 2010], they are unable to support the plethora
of cloud applications with client-driven architectures. For example, Reich et al. found
that for cloud storage applications Microsoft LiveMesh and Microsoft LiveSync, the
client needed to periodically retrieve file updates from the cloud, which was not sup-
ported with the simple proxy employed. Similarly, asynchronous JavaScript and XML
(AJAX) applications such as Facebook Chat [Facebook, Inc. 2012], Google Docs [Google,
Inc. 2012b], and Gmail Chat [Google, Inc. 2012a], are just few examples of applications
that are growing in popularity and for which proxy-triggered wake-on-demand does
not work.

SleepServer [Agarwal et al. 2010] bears some similarity to our approach in that
application presence of the sleeping desktop is maintained in VMs running remotely.
However, this approach differs from ours because the VM runs instances of purpose-
engineered application stubs separate from the main instance of the application
running in the desktop. Our approach migrates the VM instance running on the
desktop into the cloud. The SleepServer approach presents the same drawbacks as the
proxy-based approaches described previously. Either applications are re-engineered,
or client-driven cloud applications with network presence do not work.

9.1.5. VM Consolidation. Consolidation of VMs has been used in the data center to in-
crease server efficiency [Tucker and Comay 2004; Badaloo 2006; Marty and Hill 2007].
Early approaches made permanent assignments of VMs to hosts and only rarely revised
those assignments. More recently, however, with the development of live migration of
VMs [Clark et al. 2005], consolidation has been performed dynamically, allowing server
footprint to expand and shrink as a function of workload. Dynamic VM consolidation
has been used to consolidate workloads and power off underutilized servers to deliver
data center energy proportionality [Tolia et al. 2008].

VDI, discussed in Section 3, is an approach that permanently runs user VMs from
shared server infrastructure. Users connect to their VMs from either thin or thick
clients. VDI has been designed to simplify enterprise desktop management and deliver
enterprise-class storage characteristics such as high reliability. By running hundreds

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 2, Publication date: March 2015.



2:44 N. Bila et al.

of desktop VMs from a single on-disk system image, the “golden image,” VDI enables
IT administrators to propagate system updates by patching only the golden image.
Because servers are provisioned to run the peak desktop workloads of all users, and
VDI imposes high storage performance requirements [Spruijt 2010], it delivers low
consolidation ratios, has high infrastructure cost, and its servers use power inefficiently.
VDI also limits access to dedicated local hardware on the user’s client, such as 3D
acceleration and dedicated media encoding hardware. These challenges have led to a
slow adoption of VDI [Fograrty 2011].

A recent proposal by Intel [Intel Corporation 2011c] places VMs on PCs while main-
taining VM provenance from a golden image stored on a server. The IDV provides the
ease of management benefits of VDI but makes no provision for idle energy conser-
vation. Partial migration of idle desktop VMs can deliver the energy savings for idle
desktops in these environments.

LiteGreen [Das et al. 2010], which we discuss in detail in Section 3, uses consolidation
of idle desktop VMs to reduce energy use. Active VMs run on desktop PCs, and idle
VMs run on consolidation servers. This approach uses full migration of VMs, which
we show to be slow, congest enterprise networks, and to not inherently lead to high
consolidation ratios. We showed in Section 8 that migration patterns in offices with 300
users lead to migration latencies that exceed 17min when full VM migration is utilized.
Users must wait that long before they can access their VMs. Partial VM migration
delivers the energy savings of this approach while maintaining low migration latencies
of less than 5s, migrating less than 10% of the VM’s memory state, and delivering high
consolidations ratios.

9.2. Migration of Virtual Machines and Processes

Migration is an inherent benefit of machine virtualization. Virtualization enables the
serialization of full machine execution state, including CPU registers, memory, and
device state, via checkpointing. Once serialized to persistent storage, this state can be
used to resume execution of the VM at a later time. Execution may be resumed on the
same or a different physical host. Previous work has taken advantage of this ability
to enable VM mobility [Sapuntzakis et al. 2002; Kozuch and Satyanarayanan 2002;
Whitaker et al. 2004].

In an effort to reduce migration sizes, record and replay of UI interactions was
proposed to synchronize two VMs over a wide area [Surie et al. 2008]. A log of user-
generated UI events is recorded on the source VM and replayed on an outdated copy
of the VM at destination. Although this approach can reduce synchronization time,
especially in low-bandwidth environments, as the authors found, replay of interactions
is insufficient to eliminate divergent VM state. There are many events that lead to
diverging state, including timer events, interrupts, and other external stimuli such as
network activity. Also, its performance is bounded by the speed of replay, which in turn
depends on the speed with which applications can perform the task caused by each
interaction.

9.2.1. Live Migration of VMs. Precopy live VM migration [Clark et al. 2005] improved the
state of the art by migrating most state while the OS continues to run at the source to
ensure minimal down times (as low as 60ms). Precopy live VM migration is performed
iteratively in three phases. In the first, it copies all memory to the destination and
tracks any pages dirtied by the running VM at the source in the interim. In the second
phase, it copies the dirty pages to the destination, tracking additional pages that get
dirtied. This step is repeated until only a small set of dirty pages remains. The third
phase consists of suspending the VM’s execution at the source, copying all remaining
dirty pages and CPU context to the destination, and beginning execution there. To
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reduce migration sizes during the second phase of live migration (which can be large if
the running workload is write heavy), per-page deltas can be computed and compressed
[Svärd et al. 2011]. CloudNet [Wood et al. 2011] reduces the number of copy iterations
by detecting when consecutive iterations no longer reduce the number of dirty pages
copied and switching to the final phase of migration as soon as a local dirty page
minimum is reached. It also uses content-based redundancy elimination and subpage
delta transmission to reduce migration sizes.

Remus [Cully et al. 2008] and SecondSite [Rajagopalan et al. 2012] take advantage
of precopy live VM migration to perform rapid replication of VMs and deliver fault
tolerance and high availability for critical services. They aggressively checkpoint and
replicate the state of an executing VM by migrating only the updated state to the desti-
nation. VMsync [Bickford and Cáceres 2013] considers replication of a live VM between
mobile devices by distributing a base VM image across the devices and incrementally
propagating deltas of the running VM with subpage granularity.

Postcopy live VM migration [Hines and Gopalan 2009] inverts the migration order
of precopy live VM migration. First, it halts execution of the VM at the source and
transfers the CPU state to the destination, where it initiates VM execution immedi-
ately. Then, in the background, it migrates all memory pages. When the running VM
accesses a missing page, postcopy live VM migration, pages in the missing page from
the source. To do so, postcopy live VM migration implements a network device to which
pages are swapped out at the source and swapped in at the destination.

The live migration approaches discussed are designed to migrate the VM to the
destination in full. Our work has demonstrated that migrating VMs in full is unneces-
sary, and indeed does not scale well for energy-oriented idle desktop consolidation in
enterprise networks.

9.2.2. Fine Grain Migration of VMs. SnowFlock [Lagar-Cavilla et al. 2009] has demon-
strated the benefits fine-grain migration of VM state in the data center. SnowFlock
implements the VM fork abstraction, which enables server VMs to create incomplete
stateful replicas of themselves to take advantage of additional processors in dealing
with increased workloads. Each replica, referred to as a clone in SnowFlock parlance,
is created with minimal amount of state, consisting of vCPU state, page tables, and de-
vice configuration metadata. The clone migrates pages on demand as it accesses them.
Because the source of the migration, known as the master VM, continues to run, it uses
copy-on-write on its memory and disk to preserve its migration time state for use by its
clones. Upon completion of their tasks, clones must use an out-of-band mechanism to
communicate their results because SnowFlock does not persist their state in the mas-
ter VM. The challenge with SnowFlock has been that on-demand state propagation
causes an extended warm-up period over which network page faults are frequent and
the performance of the clone is significantly degraded.

Kaleidoscope [Bryant et al. 2011] uses SnowFlock to enable cloud microelasticity.
Clouds grow and shrink at will in support of the changing workloads. An enabler of
cloud microelasticity is state coloring. State coloring classifies memory into sets of
semantically related regions and optimizes propagation and deduplication of the state
among the clones. Coloring enables prefetching of related pages that may be placed in
disjoint physical memory locations.

Partial VM migration uses the same mechanisms as SnowFlock to migrate pages on
demand from the desktop to the consolidation server. However, partial VM migration
provides the mechanisms to reintegrate replica state back to the desktop by preserving
VM residues on the desktop and tracking and migrating dirty state back from the
server. Our work shows that on-demand migration is suitable for reducing energy use
of idle desktops.
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9.2.3. Process Migration. Work on process migration predates live VM migration. The
goal is similarly to migrate running processes from one machine to another without
significant disruption to the processes’ execution. Process migration differs from live
VM migration in migration granularity: Instead of migrating VMs (OS and all), it mi-
grates individual processes. Many systems have been developed that provide process
migration capabilities, including DEMOS [Powell and Miller 1983], V [Theimer et al.
1985], Mach [Accetta et al. 1986], Condor [Michael J. Litzkow and Mutka 1988], Sprite
[Douglis and Ousterhout 1991], Accent [Zayas 1987], MOSIX [Barak et al. 1993], and
the Load Sharing Facility [Zhou et al. 1993]. Several studies have demonstrated the
need to migrate processes for delivering good interactive performance, especially in
compute clusters with mixed parallel and interactive workloads [Arpaci et al. 1995;
Anderson et al. 1995]. Despite the large body of work, process migration has not
achieved widespread use [Milojicic et al. 2000]. Reasons for failure to gain widespread
acceptance include function-level residual dependencies on the source of the migra-
tion and lack of compatibility between kernel versions, libraries, and devices across
hosts. Migrated processes have residual dependencies to in-kernel context that may
not be migrated, such as open sockets and file descriptors. Systems such as Condor
and Sprite try to address residual dependencies by forwarding some system calls of
processes running on foreign hosts back to the hosts where they started, which at best
leads to degraded I/O performance.

Partial VM migration combines the benefits of process migration (namely, small
migration footprints) with the reliability of VM migration. It deals with residual de-
pendencies at the page granularity, which limits access to the source to, at most, once
per page and does not introduce remote function call dependencies. Partial VM migra-
tion migrates all dependencies accessed by migrated processes (including OS objects)
transparently, thus avoiding the problems of heterogeneity in OS, libraries, and (vir-
tualized) devices across hosts. For large processes, much like the lazy page copying
mechanisms in Accent and Sprite, partial VM migration reduces migration payload to
only those pages accessed during idle execution.

10. CONCLUSION AND FUTURE WORK

This article introduced partial migration of VMs. An important use of this capability
is for energy savings through consolidation of idle desktops in the private cloud of an
enterprise to support applications with always-on network semantics. When the user
is inactive, partial VM migration transfers only the working set of the idle VM for
execution on the consolidation server and puts the desktop to sleep. When the user
becomes active, it migrates only the changed state back to the desktop. It is based on
the observation that idle Windows and Linux desktops, in spite of background activity,
access only a small fraction of their memory and disk state: typically less than 10%
for memory and about 1MiB for disk. It migrates state on demand and allows the
desktop to microsleep when not serving requests. Partial VM migration reduces idle
time energy use with the dual benefits that network and server infrastructure can scale
well with the number of users and migration latencies are small. Our results show that
migration latencies of partial VM migration are low, averaging 4s.

Results with our prototype show that partial VM migration is effective in reducing
energy use even in short idle periods. In contrast, commercial systems limit energy
savings in short periods of inactivity (10–20min) to display management only because
of their inability to maintain application network presence when the PC is in low-
power mode (e.g., default behaviors of Windows 7, Mac OS X 10.6, and guidelines of the
EPA [U.S. Environmental Protection Agency 2013] and the Department of Energy [U.S
Department of Energy 2013]). Partial VM migration not only turns the monitor off,
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but also transitions the PC into low-power mode because it is able to keep applications
running and can transition back to local execution quickly.

Our initial deployment results with Jettison show that, excluding monitor savings,
our desktops saved 78% of the energy used in an hour, and 91% in 5 hours. These results
also showed that, in small to medium-sized offices, partial VM migration provides
energy savings that are competitive with full VM migration (85% of full migration at
10 users to 104% at 500 users), with migration latencies that are two to three orders
of magnitude smaller and network utilization that is an order of magnitude lower.

We identified the cost of servicing page faults on demand as a challenge to achieving
substantial energy savings in short idle periods, as well as a potential challenge to
the reliability of hardware and timing-sensitive software systems. During our initial
deployment, energy savings in idle periods up to 10min remained less than 16%. To
address these challenges, we developed context-aware selective resume, a software-
only solution for legacy desktop PCs that improves power state transition times by
providing a wake-up context and initializing only devices and code needed for the task
of the context. Our experiments with a memory server based on CAESAR, the context-
aware selective resume framework, show that this approach increases energy savings
in idle intervals of under an hour by up to 66%. In idle intervals of 10min, it delivers
energy savings of 24%–44%, and, in intervals of 20min, it produces savings of 31%–
61%. Context-aware selective resume makes saving energy during short idle intervals
attractive.

Additional improvements are needed to make partial VM migration practical in
production environments. Improvements to hardware power state transition and rein-
tegration times are needed to reduce worst-case resume times; additional studies are
needed to better understand the tradeoffs between the goals of energy conservation
and usability, as well as any long-term effects of the use of our approach on user be-
havior; finally, additional studies of page-level OS behavior may improve page prefetch
performance, thus resulting in improved energy savings.
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improved system dependability via virtual machines. In 6th Symposium on Operating Systems Design
and Implementation (OSDI’04).

Lieberman Software Corporation. 2006. White Paper: Wake on LAN Technology. Retrieved from http://www.
liebsoft.com/pdfs/Wake_On_LAN.pdf.

Michael R. Marty and Mark D. Hill. 2007. Virtual hierarchies to support server consolidation. In 34th
International Symposium on Computer Architecture (ISCA’07).

David Meisner, Brian T. Gold, and Thomas F. Wenisch. 2009. PowerNap: Eliminating server idle power.
In 14th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’09).

Miron Livny, Michael J. Litzkow, and Matt W. Mutka. 1988. Condor—A hunter of idle workstations. In 8th
International Conference of Distributed Computing Systems (ICDCS’88).

Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian Zhou. 2000. Process
migration. Computer Surveys 32, 3 (Sep 2000), 241–299.

Sergiu Nedevschi, Jaideep Chandrashekar, Junda Liu, Bruce Nordman, Sylvia Ratnasamy, and Nina Taf.
2009. Skilled in the art of being idle: Reducing energy waste in networked systems. In 6th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’09). Boston, MA.

Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. 2006. Intel R© Virtualization Tech-
nology: Hardware support for efficient processor virtualization. Intel R© Technology Journal 10, 3
(Aug 2006).

Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn, and Kevin R.
Walker. 1997. Agile application-aware adaptation for mobility. In 16th ACM Symposium on Operating
System Principles (SOSP’97).

Oracle Corporation. 2012. Oracle Virtual Desktop Infrastructure. Retrieved from http://www.oracle.com/
us/virtual-desktop-infrastructure-ds-067844.pdf.

M. L. Powell and B. P. Miller. 1983. Process migration in DEMOS/MP. In 9th Symposium on Operating
Systems Principles (SOSP’83).

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 2, Publication date: March 2015.

http://www.acpi.info/DOWNLOADS/ACPIspec40.pdf
http://www.intel.com/network/connectivity/resources/doclibrary/techbrief/wowlantechbrief.pdf
http://www.intel.com/network/connectivity/resources/doclibrary/techbrief/wowlantechbrief.pdf
http://goo.gl/VscXC
http://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/intelligent-desktop-virtualization-overview-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/intelligent-desktop-virtualization-overview-paper.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec10b.pdf
http://www.liebsoft.com/pdfs/WakeOnLAN.pdf
http://www.liebsoft.com/pdfs/WakeOnLAN.pdf
http://www.oracle.com/us/virtual-desktop-infrastructure-ds-067844.pdf
http://www.oracle.com/us/virtual-desktop-infrastructure-ds-067844.pdf


2:50 N. Bila et al.

Shriram Rajagopalan, Brendan Cully, Ryan O’Connor, and Andrew Warfield. 2012. SecondSite: Disaster
tolerance as a service. In ACM SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments (VEE’12).

Joshua Reich, Michel Goraczko, Aman Kansal, and Jitendra Padhye. 2010. Sleepless in Seattle no longer. In
2010 USENIX Annual Technical Conference.

T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A. Hopper. 1998. Virtual network computing. IEEE Internet
Computing 2, 1 (Jan/Feb. 1998).

Michiel Ronsse, Koen De Bosschere, Mark Christiaens, Jacques Chassin de Kergommeaux, and Dieter
Kranzlmüller. 2003. Record/Replay for nondeterministic program executions. Communications of the
ACM 46, 9 (Sep. 2003), 62–67.

Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S. Lam, and Mendel Rosenblum.
2002. Optimizing the migration of virtual computers. In 5th Symposium on Operating Systems Design
and Implementation (OSDI’02).

Brian K. Schmidt, Monica S. Lam, and J. Duane Northcutt. 1999. The interactive performance of SLIM: A
stateless, thin-client architecture. In 17th ACM Symposium on Operating Systems Principles (SOSP’99).

L. H. Seawright and R. A. MacKinnon. 1979. VM/370—A study of multiplicity and usefulness. IBM Systems
Journal 18, 1 (Mar. 1979), 4–17.

Siddhartha Sen, Jacob R. Lorch, Richard Hughes, Carlos Garcia Jurado Suarez, Brian Zill, Weverton
Cordeiro, and Jitendra Padhye. 2012. Don’t lose sleep over availability: The GreenUp decentral-
ized wakeup service. In 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’12).

Eugene Shih, Paramvir Bahl, and Michael J. Sinclair. 2002. Wake on wireless: An event driven energy saving
strategy for battery operated devices. In 8th Annual International Conference on Mobile Computing and
Networking (MOBICOM’02).

Jacob Sorber, Nilanjan Banerjee, Mark D. Corner, and Sami Rollins. 2005. Turducken: Hierarchical power
management for mobile devices. In 3rd International Conference on Mobile Systems, Applications and
Services (Mobisys’05).

Ruben Spruijt. 2010. Local Storage for VDI Done Right–Part 1. Retrieved from http://www.brianmadden.
com/blogs/rubenspruijt/archive/2010/11/27/vdi-and-storage-deep-impact.aspx.

Etienne Le Sueur and Gernot Heiser. 2010. Dynamic voltage and frequency scaling: The laws of diminishing
returns. In Workshop on Power Aware Computing and Systems (HotPower’10).

SunSpider Benchmark. 2012. SunSpider 0.9.1 JavaScript Benchmark. Retrieved from http://www.webkit.org/
perf/sunspider-0.9.1/sunspider-0.9.1/driver.html.

Ajay Surie, H. Andrés Lagar-Cavilla, Eyal de Lara, and M. Satyanarayanan. 2008. Low-bandwidth VM
migration via opportunistic replay. In 9th Workshop on Mobile Computing Systems and Applications
(HotMobile’08).
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