Database Replication Policies for Dynamic Content
Applications

Gokul Soundararajan, Cristiana Amza, Ashvin Goel
Department of Electrical and Computer Engineering
University of Toronto
Toronto, Canada

ABSTRACT

The database tier of dynamic content servers at large Internet sites
is typically hosted on centralized and expensive hardware. Re-
cently, research prototypes have proposed using database replica-
tion on commodity clusters as a more economical scaling solution.
In this paper, we propose using database replication to support mul-
tiple applications on a shared cluster. Our system dynamically allo-
cates replicas to applications in order to maintain application-level
performance in response to either peak loads or failure conditions.
This approach allows unifying load and fault management func-
tionality. The main challenge in the design of our system is the
time taken to add database replicas. We present replica allocation
policies that take this time delay into account and also design an
efficient replica addition method that has minimal impact on other
applications.

We evaluate our dynamic replication system on a commodity
cluster with two standard benchmarks: the TPC-W e-commerce
benchmark and the RUBIS auction benchmark. Our evaluation
shows that dynamic replication requires fewer resources than static
partitioning or full overlap replication policies and provides over
90% latency compliance to each application under a range of load
and failure scenarios.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; D.4.5
[Reliability]: Backup Procedures, Fault-tolerance; 1.2.8 [Problem
solving, Control Methods, and Search]: Control theory, Heuris-
tic methods; D.2.8 [Software Engineering]: Metrics—complexity
measures, performance measures

General Terms

Measurement, Management, Performance, Reliability

Keywords

Database systems, Adaptation, Fault-tolerance, Cluster

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EuroSys’06, April 18-21, 2006, Leuven, Belgium.

Copyright 2006 ACM 1-59593-322-0/06/0004 ...$5.00.

1. INTRODUCTION

Today, dynamic content servers used by large Internet sites, such
as Amazon and EBay, employ a three-tier architecture that consists
of a front-end web server tier, an application server tier that im-
plements the business logic of the site, and a back-end database
tier that stores the content of the site (see Figure 1). The first
two tiers, the web and the application server, typically use non-
persistent data and are generally hosted on inexpensive clusters of
machines. However, the database tier storing persistent data is cen-
tralized and hosted either on a high-end multiprocessor [15, 31]
or on specialized and expensive devices such as a shared network
disk [1].

HTTP Application sqQL
S R Jeees gt
> o
— “ -+
HTML Function Returns SQL Responses
Pages

Web Application Database
Server Server Server

Users

Figure 1: Architecture of dynamic content servers

Recently, several research prototypes have proposed using repli-
cated databases built from commodity clusters as a more econom-
ical solution. These replicated databases, which have been used
for running a single application, such as, an e-commerce bench-
mark [24, 6], have shown good performance scaling with increas-
ing replication. For example, a read-heavy workload can scale lin-
early to dozens of machines [4, 6].

In this paper, we investigate using database replication on a com-
modity cluster to run multiple applications. Our system dynam-
ically allocates machine replicas to each application to maintain
application-level performance. In particular, we use a predefined
latency bound to determine whether an application’s requirements
are being met. This approach provides several benefits. First, it
allows efficient resource management by avoiding per-application
over-provisioning, e.g., it allows reducing costs and/or energy con-
sumption. Second, dynamic replication enables a unified approach
to resource management as well as fault tolerance. Our system de-
tects load spikes and failures as a resource bottleneck and adapts in
the same manner by adjusting the number of replicas allocated to
an application. Third, the previous scaling studies have shown that
the optimal number of replicas allocated to an application depends
on the type of workload mix. For example, a read-heavy workload
scales to larger numbers of replicas than a write-heavy workload. A
database cluster shared among multiple applications allows tuning
the number of replicas for each application based on the workload
mix.

While dynamic database replication is appealing, it raises two
key issues: 1) the replica allocation policy and 2) the replica map-
ping policy. The replica allocation policy chooses the number of
replicas to allocate to an application. The replica mapping policy
maps an application’s allocated replicas to a set of machines. Be-
low, we first focus on the design of the mapping policy and then
describe the allocation policy.

The performance of our system depends on the delay associated
with adding a new database replica to an application, which can
be a time-consuming operation. Consider the case where different
applications are mapped to disjoint sets of machine replicas. When
an application requires an additional machine replica, it must use an
unallocated machine or a machine allocated to another application.
In either case, the database state of the new replica will be stale
and must be brought up-to-date, e.g., via data migration from an
existing replica, before it can be used. In addition, the buffer cache
at the new replica needs to be warm before the replica can be used
effectively.

Replica addition delay can be avoided altogether with fully-
overlapped replicas where all the database applications are repli-
cated across all the cluster machines. In this case, there is no replica
addition delay because replicas do not have to be added or removed.
However, this approach causes interference due to resource sharing.
For example, when multiple database applications run on the same
machine, their performance can degrade due to buffer cache inter-
ference. Such interference is avoided if using disjoint replica sets
across applications. This discussion shows that there is a trade-
off between using disjoint and fully-overlapped replica mapping.
Disjoint mapping reduces interference and thus improves steady-
state performance. Fully-overlapped mapping avoids replica ad-
dition delay and thus can speed up the system’s response to load
spikes and failures.

In this paper, we propose using an intermediate mapping policy
called partial overlap that provides fast response to overload and
minimizes interference across applications. In this policy, we dis-
tinguish between an application’s read and write replica sets, called
read set and write set respectively. The read (write) set is the set
of machine replicas from which an application reads (writes) data.
The read set of an application is a subset of its write set. In our
approach, the read sets are disjoint but the write sets of applica-
tions can overlap with each other. This policy allows fast response
to overload conditions in the common case, because additional re-
sources can be provided to an application by simply extending its
read set within the boundaries of its write set. This operation is
relatively fast because it does not require data migration, although
expanding the read set may require warming the buffer cache e.g.,
if switching the allocation of a a read set replica from another ap-
plication becomes necessary. Data migration is needed only if an
application’s write set needs to be expanded.

The partial overlap policy minimizes interference across appli-
cations because write queries in dynamic content applications are
typically lightweight compared to read queries [4]. For instance, in
e-commerce applications, an update query typically updates only
the record pertaining to a particular customer or product, while
read queries caused by browsing can involve expensive database
joins as a result of complex search criteria. The memory footprint
and complexity of read queries often exceed those of write queries.
Moreover, read queries are much more frequent than write queries.
Partitioning the read sets of applications across different machines
minimizes interference, while overlapping write sets causes little
interference and generally avoids replica addition delay.

In addition to the mapping policy, our replication system uses an
allocation policy that is designed to meet the application’s latency

requirements while providing system stability. To meet the latency
requirements, the policy should aggressively add machine replicas
when the application’s latency is close to its bound. However, a
simple reactive allocation policy that periodically measures appli-
cation latency to add replicas can cause instability. In particular, the
replica addition process can be long (either due to data migration or
buffer cache warm-up) and the application latency may remain high
during this process. A reactive policy that measures application la-
tency even during replica addition can therefore cause unnecessary
allocation and additional cross-application interference as well as
positive feedback and oscillation.

To meet the latency and stability goals, we use a delay-aware
allocation policy that has three novel features. First, the policy
typically suppresses allocation decisions while replica addition is
in progress. Second, it compensates for the delay during replica
addition by aggressively reacting to resource bottlenecks. Specifi-
cally, it uses early latency indications on the newly added replica to
trigger aggressive allocation. Finally, it uses a two-step conserva-
tive replica removal process to avoid oscillatory allocation behav-
ior. Initially, it stops read queries to a replica, hence removes the
replica from the application’s read set. If the application’s perfor-
mance is not significantly affected then write queries are stopped to
remove the replica from the application’s write set.

In our evaluation, we explore a number of replica mapping and
allocation policies for dynamic database replication. We charac-
terize the effects of the disjoint, full overlap as well as our partial
overlap replica mapping policies. In addition, we compare the re-
active and our delay-aware replica allocation policies. We evaluate
our system with two benchmarks: 1) the industry-standard, shop-
ping mix workload of the TPC-W e-commerce benchmark [30] that
models an on-line book store (called TPC-W in the rest of the pa-
per), and 2) the bidding mix workload of the RUBIS benchmark [3]
that models an on-line bidding system (called RUBIS). Our evalua-
tion shows that the partial overlap mapping policy is most effective
and requires fewer resources than the disjoint or full overlap repli-
cation policies. The partial overlap mapping policy together with
our replica allocation algorithm shows good scaling and provides
over 90% latency compliance for both applications when they are
run together under a range of load and failure scenarios.

The remainder of this paper is structured as follows. Section 2
provides the motivation for using dynamic replication, and Sec-
tion 3 describes the architecture of our system and provides some
background on our replication scheme. Section 4 describes our
replica allocation and mapping policies. Section 5 presents our ex-
perimental platform and the results of our experiments. Section 6
discusses related work and Section 7 concludes the paper.

2. MOTIVATION

Our previous work [4, 5, 6] has shown that database replication
on commodity clusters scales well and is a viable alternative to
using expensive multiprocessor and/or network storage hardware
configurations. Next, we present some results from this work to
motivate our dynamic replication approach. Figures 2 and 3 show
the performance scaling graphs for the TPC-W and the RUBIS
benchmarks. Each graph contains two curves, a scaling curve ob-
tained experimentally on a cluster of 8 database machines', and a
curve obtained through simulation for larger clusters of up to 60
database machines.

Our simulation with large numbers of replicas was calibrated us-
ing the real 8-node cluster. Figures 2 and 3 show that the simulated

!The machines are AMD Athlon MP 2600+ computers with
512MB of RAM, using RedHat Fedora Linux.

performance scaling graphs for TPC-W and RUBIS are within 12%
of the experimental numbers for both applications. The simulations
show that TCP-W scales better than RUBIS. The reason is that
replication allows scaling the throughput of read queries, and the
scaling limit depends on the ratio between the average complexity
of read and write queries. The time spent in executing reads versus
writes is 50 to 1 for TPC-W and 8 to 1 for RUBIS. These graphs
show that the knee of the scaling curve depends on the workload
and cannot be determined a priori. With a dynamic replication ap-
proach, each application could be assigned replicas based on its
scaling curve.

500

"Simulated ——
Measurod e

Throughput (WIPS)

0 10 20 30 40 50 60
Number of Database Replicas

Figure 2: TPC-W throughput scaling.

800

Simulated ——
700 - Measured = |

600 -
500 -
400 -
300

Throughput (WIPS)

200 b §
100 f47

0
0 5 10 15 20 25 30 35 40 45

Number of Database Replicas

Figure 3: RUBIS throughput scaling.

While database replication is appealing, it requires policies for
replica allocation and mapping. As described earlier, the two most
significant and competing challenges in the design of these policies
are the delay associated with replica addition and the buffer cache
interference with overlapping replicas. While it should be intu-
itively clear that adding a database replica can be slow, below we
show that buffer cache interference can also be a significant prob-
lem, which led us to investigate the disjoint and the partial overlap
mapping policies.

We conducted an experiment with the TPC-W and RUBIS work-
loads using two configurations on our experimental cluster. The
workloads are either run on two separate machines (Disjoint Map-
ping) or on both machines together (Overlap Mapping). When run-
ning together, we load balanced both the workloads on both the
machines. Table 1 shows the percent of total CPU time spent wait-
ing for I/O as reported by the vimstat Linux utility. In both con-
figurations, the results reported are after the buffer pool has been
warmed. With Disjoint Mapping, TPC-W experiences no wait time
because it has a small memory footprint that fits in available mem-
ory, while RUBIS waits for 31% time because its footprint exceeds
total available memory. However, when the workloads execute on
both the machines, the wait time for TPC-W increases dramati-

| | Disjoint Mapping | Overlap Mapping |
TPC-W 0 44
RUBIS 31 38

Table 1: Percent of total CPU time waiting for I/O

Auctions Query Scheduler

Database

)

O
&

G

Resource

o A

Servers

% Manager
Web/
Application

&

S

N
LIo

Users

E-Commerce Query
Scheduler

Figure 4: Cluster architecture

cally. The RUBIS workload evicts TPC-W'’s pages from the shared
buffer pool. This causes TPC-W to issue more I/O requests, which
degrades its performance severely. As a result, the TPC-W through-
put is halved with Overlap Mapping compared to Disjoint Mapping
and the query latency is doubled (numbers not shown here). While
it is possible to reduce interference effects by various tuning meth-
ods, such as by increasing available memory to the buffer pool and
by tuning per-application buffer pool sizes, this approach quickly
becomes infeasible as the number of overlapping applications is
increased.

3. REPLICATION ARCHITECTURE

The dynamic content server architecture consists of the web, ap-
plication and the database server tiers. In our system, interposed
between the application and the database tiers is a set of schedulers,
one per application, that distribute incoming requests to a cluster of
database replicas. Figure 4 shows the architecture of our system.
In our system, the web and the application tiers are combined but
separating these tiers would have no effect on our dynamic replica-
tion architecture. Each scheduler? upon receiving a query from the
application server sends the query using a read-one, write-all repli-
cation scheme to the replica set allocated to the application. The
replica set is chosen by a resource manager that makes the replica
allocation and mapping decisions across the different applications.
The resource manager is described in the next section.

The application scheduler provides consistent replication, i.e.,
one-copy serializability [8], by assigning a global serialization or-
der to all transactions and ensuring that transactions execute in this
order at all the replicas allocated to its workload.

For scalability, the scheduler uses our Conflict-Aware replica-
tion scheme [5, 6]. With this scheme, each transaction explic-
itly declares the tables it is going to access and their access type.
Conflict-aware replication uses this information to detect conflicts

2Each scheduler may itself be replicated for availability [4, 5].

between transactions and to assign the correct serialization order
to these conflicting transactions. The transaction serialization or-
der is expressed by the scheduler in terms of version numbers. The
scheduler tags queries with the version numbers of the tables they
need to read and sends them to the replicas. Each database replica
keeps track of the local table versions as tables are updated. A
query is held at each replica until the table versions match the ver-
sions tagged with the query. As an optimization, the scheduler also
keeps track of versions of tables as they become available at each
database replica and sends read-only queries to a single replica that
already has the required versions. The scheduler communicates
with a database proxy at each replica to implement replication. As
a result, our implementation does not require changes to the appli-
cation or the database tier.

4. DYNAMIC REPLICATION

In this section, we provide an overview of the resource manager
that implements dynamic replication and then present the replica
allocation and the mapping policies used by the manager. Finally,
we present an efficient data migration algorithm that is used during
replica addition and that has minimal impact on transaction pro-
cessing.

4.1 Overview

The resource manager makes the replica allocation and mapping
decisions for each application based on the performance needs and
the current performance level of the application. The performance
needs are expressed in terms of a service level agreement (SLA)
that consists of a latency requirement on the application’s queries.
The current performance level is measured in terms of the average
query latency observed at the application. This latency is main-
tained at the application scheduler and periodically sent to the re-
source manager. The resource manager uses the average latency
and the application’s latency requirement to make the allocation
decisions periodically. This period is the same for all applications.
The allocation decisions are communicated to the respective sched-
ulers, which then allocate or remove replicas from their replica sets.

The resource manager operates in two modes, underload and
overload. During underload, the number of replicas is sufficient
to handle the overall demand and allocation decisions per applica-
tion are made independently. During overload, the total demand
exceeds the capacity of the cluster. In the latter case, the system
uses a simple fairness scheme that allocates an equal number of
replicas to each application.

4.2 Replica Allocation Policy

The resource manager uses average query latency to make
replica allocation decisions. The averaging is performed at ev-
ery query using an exponentially weighted mean [35] of the form
WL = axL+(1—a)x W Lwhere L is the current query latency.
The larger the value of the o parameter, the more responsive the av-
erage is to current latency. The resource manager uses a threshold
scheme for replica allocation. The manager periodically compares
the average latency to a high threshold value (HighSLAThreshold)
to detect imminent SLA violations and adds a replica when the
average latency is above the high threshold. Similarly, when the
average latency is below a low threshold (LowSLAThreshold), it
detects underload and removes a replica. This basic technique is
similar to overload adaptation in stateless services [35], where sim-
ple smoothing of latency and thresholding have been reported to
give acceptable stability.

Unfortunately, this technique by itself does not provide satisfac-
tory performance in our system due to the delay associated with

Data Load
Migration Balance
+
Buffer Pool
Warmup
%)
S SLA
— H ess osss s o hp— s -
—
; j
-
\/‘—"
-

-

Figure 5: Typical replica addition process

adding database replicas. Below, we describe modifications to the
technique to improve the stability and the performance of the sys-
tem during replica allocation. These modifications are discussed
as part of the replica addition and the removal process. Figure 6,
shows our replica allocation logic and the conditions under which
a database replica is added to or removed from an application allo-
cation.

4.2.1 Replica Addition

Figure 5 shows a typical replica addition process, which consists
of two phases: data migration and system stabilization. Data mi-
gration involves applying logs of missing updates to the new replica
to bring it up-to-date. System stabilization involves load balancing
and warmup of the buffer pool on the new replica. While these
stages may overlap, replica addition can introduce a long period
over which query latencies are high. The simple allocation policy
described above based on periodically measuring violations of the
latency requirement can thus trigger unnecessary replica allocation
as well as interference with other applications.

The resource manager makes two modifications to the basic allo-
cation algorithm to account for replica addition delay. First, it stops
making allocation decisions until the completion of the replica ad-
dition process. Second, since this wait time can be long and can
impact reaction to steep load bursts, the resource manager uses the
query latency at the new replica to improve its responsiveness. The
state transitions on the left side of Figure 6 show the replica ad-
dition logic in detail. Specifically, in the Steady State, the
resource manager monitors the average latency received from each
workload scheduler during each sampling period. If the average
latency over the past sampling interval for a particular workload
exceeds the HighSLAThreshold, hence an SLA violation is im-
minent, the resource manager places a request to add a database to
that workload’s allocation. The resource manager tracks the replica
addition process until the request has been fulfilled and the result of
the change can be observed. This implies potential waiting in two
states, corresponding to adding the new replica to the write set and
the read set of the application, respectively. When adding a replica
to the write set of the application, data migration to bring up a new
database for that workload may be necessary. We transition out of
the corresponding state only when data migration is finished.

The second state corresponds to adding the replica to the read set

If Avg. Latency > If Avg. Latency <
HighSLAThreshold Steady LowSLAThreshold
State
r 3 r 3 Iy
A4 A 4
. Remove
Add Replica .
>) Replica from
to Write Set If Avg. Latency > Read Set
HighSLAThreshold

Data Migration
Done
If Avg. Latency <
LowSLAThreshold

<

A 4

If Latency(newDb) >
HighSLAThreshold

A

Add Replica Done Done Re_move
| to Read Set Replica from
Write Set

Figure 6: Replica allocation logic

of the application, which includes waiting for system stabilization,
i.e., load balancing and buffer pool warmup. The resource man-
ager compares average statistics collected by the scheduler from
the old read replica set and the new replica in order to determine
when system stabilization is complete. Since this wait may be long
and will impact system reactivity to steep load bursts, we optimize
waiting time by using the individual average latency generated at
the newly added database as a heuristic. Since this database has no
load when added, we use its latency exceeding the SLA as an early
indication of a need for even more databases for that workload and
we transition directly into adding another replica in this case.

4.2.2 Replica Removal

The resource manager removes a database from an application’s
allocation in two cases. First, the application is in underload for
a sufficient period of time and does not need a replica (voluntary
remove). Second, the system as a whole is in overload and fairness
between allocations needs to be enforced (forced remove).

In the former case, the right branch of Figure 6 shows that the
removal path is conservative and involves a tentative remove state
before the replica is finally removed from an application’s alloca-
tion. The allocation algorithm enters the tentative remove state
when the average latency is below the low threshold. In the ten-
tative remove state, a replica is removed from an application’s read
set but not from its write set. If the application’s average latency
remains below the low threshold for a period of time, the replica
is removed from the write set also. This two-step process avoids
system instability by ensuring that the application is indeed in un-
derload, since a mistake during removal would soon require replica
addition, which is expensive. For a forced remove during overload,
we skip the tentative removal state and go directly to the removal
state. In either case, the database replica is removed from a appli-
cation’s replica write set only when ongoing transactions finish at
that replica.

4.3 Replica Mapping

Dynamic replication presents an inherent trade-off between min-
imizing application interference by keeping replica sets disjoint
versus speeding replica addition by allowing overlapping replica
sets. Below, we describe three replica mapping schemes that we
analyze in this paper: disjoint, full overlap and partial overlap.

4.3.1 Disjoint

In this scheme, each application is assigned a disjoint replica set
from the machines in the database cluster. An application updates

only the replicas in its replica set and any replica within the replica
set can be selected to service a read. The benefit of this approach
is that it has minimal cross-application interference during periods
of stable load. However, when adding a replica, data migration
can take a while if the new replica has not been updated for a long
time. We call this migration to a potentially stale replica with a cold
buffer cache a cold migration.

4.3.2 Full Overlap

With full overlap, writes of all applications are sent to all the
databases in the cluster. Each read query of any application can
be sent to any replica and the read sets and the write sets of all
applications are never changed. This approach allows maximum
sharing of resources across applications and obviates the need for
replica addition (or data migration) or deletion. However, the reads
and writes of all applications share the buffer-cache at each replica
which can cause cross-application interference and poor perfor-
mance when the buffer-cache capacity is exceeded. Furthermore,
with large clusters, the large write set can exceed the scaling limit
for some applications (e.g., see Figure 3). Finally, if a large number
of applications are sharing the cluster, the execution of all writes on
all nodes may ultimately cause interference.

4.3.3 Partial Overlap

The partial overlap scheme lies in between the disjoint and the
full overlap mapping schemes. Each application is assigned a dis-
joint primary replica set. However, write queries of an application
are also periodically sent to a secondary set of replicas. This sec-
ondary set overlaps with the primary replica set of other applica-
tions. The resource manager sends batched updates to the replicas
in the secondary set to ensure that they are within a staleness bound,
where the bound is equal to the batch size or the number of queries
in the batch. Although the batched updates to the secondary set can
cause cross-application interference, we expect this interference to
be small because dynamic content applications are typically read-
heavy and reads are not sent to the secondary replicas.

The secondary replicas are an overflow pool that allow adding
replicas rapidly in response to temporary load spikes since migrat-
ing data to them involves sending no more than a batch size of
updates and is expected to be a fast operation. We call this data mi-
gration strategy warm migration. A special case of warm migration
occurs when the batch size is one. In this case, which we call hot
migration, update queries are sent immediately to all the replicas
in the primary and the secondary set. Then a replica is added (i.e.,
a replica is moved from the secondary set to the primary set) by
simply issuing read queries to the secondary replica.

The secondary replica set is configurable in our system. How-
ever, to simplify analysis, we will henceforth assume that the sec-
ondary set of an application consists of all replicas in the system
outside the application’s primary set.

4.4 Data Migration Algorithm

In this section, we describe our data migration algorithm that is
designed to bring a new replica up-to-date while minimally disrupt-
ing transaction processing on the current replicas in the applica-
tion’s replica set. With this goal, the migration is performed using
data stored at the scheduler rather than from an existing replica.
The scheduler maintains persistent logs of write queries and their
version numbers per table and updates the log at each transaction
commit point. These logs are replayed during data migration to up-
date a new replica and the version numbers at the new replica are
used to detect the set of missed updates. For efficiency, we allow

transaction processing to occur at the current replicas while data
is being migrated to the new replica. The challenge with this ap-
proach is that the updates made by these new transactions need to
be incorporated at the new replica. If transactions arrive continu-
ally, the data migration process, which itself takes time, would lag
behind the new transactions and the new replica would never be
up-to-date. To avoid this problem, data migration is performed in
a batched fashion until the remaining logs reach below a threshold
size. At this point, the new replica is considered added. Then the
remaining logs and the new transaction updates are sent to the new
replica using the same method as for existing replicas. The replica
orders the log entries and the updates and applies them in version
number order. At this point, the replica is up-to-date. To limit
the number of log updates that need to be sent, the threshold size
should be large. However, it should be chosen so that the updates,
which are stored in memory, do not exceed the memory available
at the replica machine.

The logs for a transaction are maintained at the scheduler at least
until the transaction either commits or aborts at all databases in the
replica set. In addtion, the logs are garbage collected after their
size exceeds a certain bound. Occasionally, replica addition may
require migrating updates that have been garbage collected. In this
case, data migration consists of installing a snapshot of the entire
database for that application from an existing replica.

S. EVALUATION

In this section, we evaluate the performance of our system to
show that dynamic replication enables handling rapid variations in
an application’s resource requirements while maintaining quality of
service across applications. Our evaluation consists of four differ-
ent sets of experiments. First, we use a single application to clearly
illustrate the impact of replica-addition delay on dynamic database
replication. Second, we evaluate the performance of our system un-
der heavy and varying load by using two benchmark applications,
TPC-W and RUBIS, that are described in detail below. Third, we
evaluate the effect of database faults on our system. Finally, we
perform sensitivity analysis and show that the system is robust and
does not require careful parameter tuning to achieve good perfor-
mance. Below, we first describe the benchmarks and the experi-
mental setup and then present our evaluation.

5.1 Benchmarks

The TPC-W and the RUBIS benchmarks used in our experiments
are implemented using three popular open source software pack-
ages: the Apache web server, the PHP web-scripting/application
development language [23] that implements the business logic of
the benchmarks, and the MySQL database server with InnoDB ta-
bles [22].

5.1.1 TPC-W E-Commerce Benchmark

The TPC-W benchmark from the Transaction Processing Coun-
cil [30] is a transactional web benchmark designed for evaluating
e-commerce systems. Several interactions are used to simulate the
activity of a retail store such as Amazon. The database size is de-
termined by the number of items in the inventory and the size of
the customer population. We use 100K items and 2.8 million cus-
tomers which results in a database of about 4 GB.

The inventory images, totaling 1.8 GB, are resident on the web
server. We implemented the 14 different interactions specified in
the TPC-W benchmark specification. Of the 14 scripts, 6 are read-
only, while 8 cause the database to be updated. Read-write inter-
actions include user registration, updates to the shopping cart, two
order-placement interactions, two interactions that involve order in-

quiry and display, and two that involve administrative tasks. We use
the same distribution of script execution as specified in TPC-W. In
particular, we use the TPC-W shopping mix workload with 20%
writes which is considered the most representative e-commerce
workload by the Transactional Processing Council. The complexity
of the interactions varies widely, with interactions taking between
20 ms and 1 second on an unloaded machine. Read-only interac-
tions consist mostly of complex read queries in auto-commit mode.
These queries are up to 50 times more heavyweight than read-write
transactions.

5.1.2 RUBIS Auction Benchmark

We use the RUBIS Auction Benchmark to simulate a bidding
workload similar to EBay. The benchmark implements the core
functionality of an auction site: selling, browsing, and bidding. We
do not implement complementary services like instant messaging,
or newsgroups. We distinguish between three kinds of user ses-
sions: visitor, buyer, and seller. For a visitor session, users need not
register but are allowed to browse only. Buyer and seller sessions
require registration. In addition to the functionality provided during
the visitor sessions, during a buyer session, users can bid on items
and consult a summary of their current bid, rating, and comments
left by other users. We use the default RUBIS bidding workload
that contains 15% writes. This mix is considered the most repre-
sentative of an auction site workload according to an earlier study
of EBay workloads [27].

5.2 Experimental Setup

Our experimental setup consists of web servers, schedulers (one
per application), the resource manager, database engines and client
emulators that simulate load on the system. All these components
use the same hardware. Each machine is a dual AMD Athlon MP
2600+ (2.1GHz CPU) computer with 512MB of RAM. We use
the Apache 1.3.31 web server [2] and the MySQL 4.0.16 database
server with InnoDB tables [22]. All the machines use the RedHat
Fedora 3 Linux operating system with the 2.6 kernel. All nodes are
connected via 100Mbps Ethernet LAN.

To demonstrate the scaling and the performance behavior of the
database backend, the Apache web/application servers are run on a
sufficient number of machines so that these servers do not become
a bottleneck for either application. The MySQL databases are run
on 8 machines.

5.2.1 Client Emulator

We have implemented a session emulator for the TPC-W and the
RUBIS applications to induce load on the system. A session is a
sequence of interactions by the same customer. For each customer
session, the client emulator opens a persistent HTTP connection to
the web server and closes it at the end of the session. Each emu-
lated client waits for a certain think time before initiating the next
interaction. The next interaction is determined by a state transition
matrix that specifies the probability of going from one interaction
to another. The session time and think time are generated from a
random distribution with a given mean.

The load induced by the client emulator depends on the number
of clients emulated and the application. To ease representing this
load for both the TPC-W and the RUBIS applications on the same
graph, we normalize the input load to a baseline load. The baseline
load is the number of clients that saturate a single machine. In our
setup, the baseline load was roughly 25 clients for TPC-W and 150
clients for RUBIS.

5.2.2 Experimental Parameters

Our experiments use 600 ms for the HighSLAThreshold and
200 ms for the LowSLAThreshold parameters. The High-
SLAThreshold parameter value was chosen conservatively to
guarantee an end-to-end latency at the client of at most one second
for each of the two workloads. The low threshold parameter is cho-
sen to be less than 50% of the high threshold parameter, which pro-
vides stability in small database configurations (i.e., when adapt-
ing from 1 to 2 databases). We use a latency sampling interval of
10 seconds for the schedulers. This value does not require careful
tuning because the replica allocation policy accounts for the delay
during replica addition or deletion. As a result, the sampling inter-
val can be relatively short and the schedulers can respond rapidly
to changes in load. The value of the smoothing parameter o, which
affects the system response, is set to 0.25. Section 5.6 shows that
these parameters do not require extensive tuning.

5.3 Single Application Workload

In this section, we use a single TPC-W benchmark application to
show the effect of replica-addition delay on both the replica alloca-
tion and the mapping policies.

5.3.1 Replica Allocation

Figure 7 shows the results of using two replica allocation poli-
cies. The input load function is shown in Figure 7(a). The first
policy uses continuous latency sampling and triggers replica addi-
tion or deletion when the average latency rises above the High-
SLAThreshold parameter or falls below the LowSLAThresh-
01d parameter. The second policy is delay-aware and implements
the replica allocation policy described in Section 4.2.

In this experiment, we use partial overlap with hot migration as
the replica mapping scheme. This scheme ensures that replica ad-
dition is a relatively fast operation. Even so, Figure 7(b) shows that
oscillations occur when the replica-addition delay is not taken into
account by the allocation policy. These oscillations occur because
the latency does not become normal until the queries that caused
the spike in latency finish executing. During this period, this pol-
icy overallocates replicas, which subsequently causes the latency
to dip below the LowSLAThreshold. As a result, the resource
manager then deletes replicas. This situation would be even worse
when the replica-addition delay is longer, such as with warm or
cold migration. Our delay-aware policy avoids these oscillations as
shown in Figure 7(c). This figure shows that the resource manager
adds databases to meet demand without overallocation.

5.3.2 Replica Mapping

Figure 8 compares the results of using the cold and warm replica
mapping policies. We initially subject the system to a load that re-
quires 3 databases to satisfy the SLA. After 2 hours (7200 seconds)
of elapsed time, we increase the load to 7.

Figure 8(a) shows the load function, while Figure 8(b) shows the
latency spikes caused by the two policies. Both the intensity and
the duration of the spike is smaller for warm migration compared
to cold migration because the replicas are maintained relatively up-
to-date through periodic batched updates. Figure 8(c) shows the al-
location of replicas during cold migration. The width of each adap-
tation step widens with each replica addition because, in addition to
the application of the two hour log of missed updates, the amount
of data and the number of queries to be transferred and executed on
the new replicas accumulates with the incoming transactions from
the new clients. Hence, the system has a difficult time catching up.
Figure 8(d) shows that warm migration is able to quickly adapt to
the spike in load.

5.4 Multiple Application Workload

In this section, we use both the TPC-W and the RUBIS bench-
mark applications to evaluate our replication system. Initially, we
consider a simpler scenario, where the load for only the TPC-W
workload is varied, while the RUBIS load is constant throughout
the experiment. Then we consider scenarios when both loads vary
dynamically.

5.4.1 TPC-W Workload Adaptation

Section 5.3 showed that delay-aware allocation reduces oscilla-
tory allocation behavior and warm migration outperforms cold mi-
gration. Our system uses this combination together with the par-
tial overlap mapping policy described in Section 4.3. Below, we
compare our system against two alternatives, static partitioning that
uses disjoint mapping and the full overlap mapping policies. These
schemes represent opposite end points of the mapping schemes.
Static partitioning assigns a fixed, disjoint and fair-share partition
of the database cluster to each workload, while full overlap map-
ping allows both the applications to operate on all the machines
in the system. These schemes, unlike partial overlap mapping, re-
quire no dynamic allocation or migration, and serve as good base-
line cases for comparison.

Figure 9 shows the results of running the two benchmarks. Fig-
ure 9(a) shows that the load function for TPC-W changes over time
while the RUBIS load is kept constant. The TPC-W normalized
load function varies from one to seven, while the RUBIS load is
kept at one. Note that load steps are roughly 2.5 minutes wide,
so a sharp seven-fold load increase occurs within a short period of
15 minutes. The number of replicas allocated to TPC-W under the
partial overlap policy is shown in Figure 9(b). Note that the read
and write sets of the workloads do not change for the other policies.
The three graphs at the bottom of Figure 9 show the query latency
with the three mapping policies.

The latency results show that partial overlap mapping substan-
tially outperforms both the static partitioning and the full overlap
mapping schemes which exhibit sustained and much higher latency
SLA violations. The poor performance of the static partitioning
scheme occurs as a result of insufficient resources allocated to TPC-
W since this scheme splits resources fairly across workloads (4 ma-
chines per workload). Full overlap performs poorly due to the in-
terference caused by the overlapping read sets of the two workloads
in the buffer cache of the database, since requests from either ap-
plication can be scheduled on any database replica at any point in
time.

Figure 9(c) shows that the latency in our system briefly exceeds
the TPC-W SLA of 600 ms as the system receives additional load
while adapting to previous increase in load. However, the system
catches up quickly and the latency target is met immediately after
the last load step. Figure 9(b) shows that machines are gradually re-
moved from the TPC-W allocation as load decreases in the last part
of the experiment. The write-set removal lags behind the read-set
removal because of our two-step removal process (see Section 4.2)
where replicas in the write set are removed more conservatively
than replicas in the read set.

Table 2 shows the percentage compliance and the average num-
ber of replicas used by the three schemes in this experiment. To
calculate compliance, we divide the experiment into 10 second
intervals and consider an interval as non-compliant if the latency
rises above the HighSLAThreshold value even once in the in-
terval. While static partitioning uses fewer machines, it only has
36% compliance. Similarly, the full overlap scheme has 31% com-
pliance although it uses 8 machines. On the other hand, our partial
overlap, warm migration scheme uses 5.2 machines on average and

READ-SET 10 READ-SET
8 8 8
3 6 T 6 T 6
E 2 >
E 4 5 4 5 4
2 — £ £ 4I_I—I7
z 4
2 — 2 2 1
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (minutes) Time (minutes) Time (minutes)
(a) Load function (b) Basic allocation policy (c) Delay-aware allocation policy
Figure 7: Comparison of replica allocation policies
10 2500 T
SLA mmmm
8 2000 -
3 B
Q =3
- 6 B 1500 |
= =
E 4 = 1000 |
S g
“ &
2 _IJ 500
0 20 40 60 80 100 120 140 160 180 0 20 40 60 8 100 120 140 160 180
Time (minutes) Time (minutes)
(a) Load function (b) Average query latency
10 10
READ-SET READ-SET ——
WRITE-SET erweeeee WRITE-SET wwereeees
8 8 r
k- S 6t
a8 8
3 3
ER 2 4
E] E
E El
z 4
2 ol
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (minutes) Time (minutes)
(c) Cold migration (d) Warm migration
Figure 8: Comparison of replica mapping policies
| Scheme | % compliance | Allocated replicas | experiments also show how our resource manager handles the un-
Partial overlap 92% 5.2 derload and overload conditions.
Static partitioning 36% 4 Figure 10 shows the complete set of results when running the two
Full overlap 31% 8 varying load benchmarks. Figure 10(a) shows the input load func-

Table 2: Percent compliance and number of allocated replicas

provides 92% SLA compliance.

5.4.2 TPC-W and RUBIS Workload Adaptation

In this section, we show the robustness of our system when both
the TPC-W and the RUBIS workloads vary dynamically. These

tion for the two benchmarks. These loads vary so that the system is
in underload initially but becomes overloaded roughly 50-60 min-
utes into the experiment when the total number of machines needed
by the two benchmarks is approximately 11 (load levels 6 and 5)
which exceeds the allocated capacity of 8 database machines.
Figures 10(b) and 10(c) show the number of replicas allocated to
the TPC-W and the RUBIS benchmarks by our partial overlap map-
ping scheme. These figures show that the allocations closely follow
the load increase during underload. However, the lightweight and
irregular nature of the RUBIS workload leads to some oscillation

TPCW LOAD
RUBIS LOAD ==sseeseees

Normalized Load

0 10 20 30 40 50 60

Time (minutes)

(a) Load function

2000

2000

Number of Databases

READ-SET ——
WRITE-SET =seeseees

0 10 20 30 40 50 60
Time (minutes)

(b) Replica allocation

1500 - 1500 -

1000 - 1000 -

Latency (ms)

Latency (ms)

Latency (ms)

2000

1500 -

1000 +

o v \/\’\Aﬁ—\/—/\ 7

v }

0 10 20 30 40 50 60 0 10 20

Time (minutes)

(c) Partial overlap mapping

3

Time (minutes)

(d) Static partitioning

0 40 50 60 0 10 20 30 40 50 60

Time (minutes)

(e) Full overlap mapping

Figure 9: Multiple application load, TPC-W load adaptation

in allocation between one and three replicas (mostly in the RU-
BIS read set) when two replicas appear to be sufficient for RUBIS.
Once the system is in overload (roughly after 60 minutes), the sys-
tem enforces fairness in replica allocation across workloads. In this
case, Figure 10(b) shows there are two consecutive forced replica
removals from TPC-W so that TPC-W eventually has 4 replicas
allocated to it. The TPC-W write set lags behind the read set be-
cause ongoing update transactions need to finish on the removed
replicas. The two machines removed from the TPC-W workload
are added to RUBIS as they become available, and as a result, our
dynamic partitioning scheme behaves similar to static partitioning
during overload.

The rest of the graphs in Figure 10 show the query latency for
TPC-W and RUBIS for the three mapping policies. Figures 10(d)
and 10(g) show that our system keeps the query latency under the
SLA for almost the entire underload period. During overload, our
scheme performs comparably with static partitioning. However, the
two consecutive spikes in RUBIS latency during this period are due
to misses in the buffer cache in the two machines that were previ-
ously running TPC-W. This penalty occurs as a result of a real load
change in the system. However, it shows that any unnecessary os-
cillation in replica allocation is expensive for database replication.

The remaining latency graphs show the impact on varying load
on the two static mapping policies, static partitioning and full over-
lap. Static partitioning performs worse than our scheme in under-
load for TPC-W because this policy allocates resources equally to
both applications immaterial of their needs. Full overlap performs
poorly for both applications. The high latency is caused by buffer-
cache interference, especially during overload.

5.5 Adaptation to Failures

Our dynamic replication system adapts replica allocation to meet
application requirements and it uses partial overlap mapping to-
gether with warm migration to speed the replica addition process.
This approach enables handling database failures as well. In partic-
ular, our system treats failures simply as load-inducing events and
adds new replicas to meet current demand.

Figure 11 demonstrates the fault-tolerant behavior of our system
with a simple, single workload experiment. Figure 11(a) shows the
input load function for the TPC-W benchmark. Figure 11(b) shows
that the replica allocation matches the input load until 20 minutes
into the experiment when a fault is injected into one of the TPC-W
replicas. At this point, the TPC-W latency is approximately 300
ms, which is lower than the SLA and therefore the resource man-
ager does not take any action. However, Figure 11(c) shows that
the TPC-W latency increases rapidly (as a result of the fault) un-
til it violates the SLA at roughly 22 minutes into the experiment.
When the SLA is violated, the resource manager adapts its alloca-
tion by adding another replica. At this point, the latency drops to
pre-fault levels.

5.6 Sensitivity Analysis

This section shows that our system is robust and does not re-
quire careful hand tuning of parameters to achieve good perfor-
mance. The main parameters in our system are the low and high
SLA thresholds and the smoothing parameter ««. The high SLA
threshold is specified by the application. Below, we show the ef-
fects of varying the other two parameters.

For this study, we use the TPC-W workload, and we designed
an input load function that simulates various workload scenarios

TPC-W READ-SET READ-SET
RUBIS WRITE-SET - WRITE-SET
8 8 8 -
2 8 8
5 g ER
2 < <
0 . . . 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time (minutes) Time (minutes) Time (minutes)
(a) Load function (b) TPC-W replica allocation (c) RUBIS replica allocation
2000 2000 2000
SLA smmmm SLA smmmm SLA smmmm
1500 + 1500 + 1500 +
2 1000 1000 1 2 1000
3 5 3
E N 3 M\ d
500 NV 500 | v — 500
0 0 0 . . .
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time (minutes) Time (minutes) Time (minutes)
(d) Partial overlap mapping (e) Static partitioning (f) Full overlap mapping
2000 . 2000 ; 2000 .
SLA smmmm SLA mmmmm SLA smmmmm
1500 + 1500 + 1500
1000 1000 1000
g 5 g
) - -
500 f /\/\/W/\/J \M"\V‘ 500 - 500 | /\/ \/
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Time (minutes)

(g) Partial overlap mapping

Time (minutes)

(h) Static partitioning

Time (minutes)

(1) Full overlap mapping

Figure 10: TPC-W and RUBIS workload adaptation

including changes in load, transient spikes, and regions of constant
load. This load function, which stresses the system with frequent
and high amplitude changes in load, is shown in Figure 12(a).

5.6.1 Variation in the LowSLAThreshold parameter

Figure 12 shows the output of our replica allocation scheme
for the TPC-W workload as the LowSLAThreshold parameter
is varied from 0.75 x SLA to 0. Intuitively, higher values of
LowSLAThreshold cause more aggressive replica removal and
thus the number of machines allocated to a workload will be more
precisely matched with the number of machines needed to meet the
SLA. However, aggressive removal can lead to oscillatory alloca-
tion which is expensive because of buffer-cache interference. To
reduce this problem, the allocation policy described in Section 4.2
separates replica removal for the read set and the write set of an ap-
plication. Removing a replica from the write set can be much more

expensive because a later replica addition will require data migra-
tion, and hence this removal is performed more conservatively than
removing a replica from the read set.

Figures 12(b) through 12(f) show the number of replicas allo-
cated to the read and the write sets of the application. These figures
show that higher values of LowSLAThreshold cause more re-
sponsive read-set allocation (thin lines in the figures), but the more
expensive write-set allocation is stable (thick lines in the figures).
Small values of LowSLAThreshold cause read-set allocation to
become less responsive and eventually replicas are never removed
unless the system is in overload and a removal is forced to ensure
fair allocation.

Table 3 shows the average number of replicas allocated to the
read and the write sets and the average TPC-W latency. We
see that the average number of replicas grows minimally with
decreasing LowSLAThreshold and the average latency rises

2000
READ-SET

WRITE-SET eeseeseess

1500 - Fault Time

1000 - l

Latency (ms)

500 - || | b

8 8
.
9 2
g 2
2 6 R
3 2
= =)
-
E 4 ER
z E
z
2 2
0 L 0 .
0 5 10 15 20 25 30 0 5 10

Time (minutes)

(a) Load function

15

Time (minutes)

(b) Replica allocation

20 25 30 0 5 10 15 20 25 30

Time (minutes)

(c) Query latency

Figure 11: Adaptation to replica failure

| LowSLAThreshold | Read Set | Write Set | Latency |

0.0 x SLA 2.51 2.51 213 ms
0.1 x SLA 1.74 2.14 251 ms
0.4 x SLA 1.56 2.09 277 ms
0.5 x SLA 1.55 2.08 309 ms
0.75 x SLA 1.41 2.08 303 ms

Table 3: Number of allocated replicas and average latency vs.
the LowSLAThreshold parameter

| Smoothing parameter o | % Compliance |

1 93
0.5 91
0.25 96
0.125 92
0.0625 89

Table 4: Percent compliance vs. the smoothing parameter «

slowly with increasing LowSLAThreshold. Finally, it should
be clear that when two or fewer replicas are allocated to the read
set then a LowSLAThreshold value greater than 0.5 x SLA
causes unnecessary oscillation. As a result, any non-zero value for
LowSLAThreshold that is below 0.5 x SLA will yield reason-
able performance.

5.6.2 Variation in the Smoothing Parameter o

The smoothing parameter o controls the response of the sys-
tem. Higher values of o cause the system to react faster to the
current value of latency, while lower values of o give more weight
to the latency history. While a larger value of « speeds replica ad-
dition which helps maintain the SLA, aggressive replica removal
can cause oscillatory and expensive re-allocation.

Table 4 demonstrates this trade-off. It presents the percentage
compliance for the input load shown in Figure 12(a) as the o pa-
rameter is varied. The best compliance is achieved when o = 0.25.
However, the table also shows that compliance does not vary signif-
icantly and is over 90% for any value of the smoothing parameter.

6. RELATED WORK

This paper addresses the hard problem of resource allocation and
scaling within the database tier of dynamic content applications.
This work builds on recently proposed techniques for transparent

scaling via content-aware scheduling in replicated database clus-
ters [16, 9, 21, 26], and in particular, uses the infrastructure from
our previous work on asynchronous replication with conflict-aware
scheduling [4, 5].

The main contribution of this paper is the exploration of database
replication schemes in the context of dynamic provisioning. While
Kemme et al. [16] propose algorithms for database cluster recon-
figuration, the algorithms are not evaluated in detail. This paper
proposes and evaluates efficient methods for dynamically integrat-
ing a new database replica into a running system and provides a
detailed evaluation using realistic benchmarks.

Similar to our work, the Middle-R [21] replicated database sys-
tem targets adaptation to changing load. Middle-R is a primary-
copy replicated system. The adaptation is done at two levels: lo-
cal adaptation and global adaptation. The local adaptation controls
the transaction concurrency level at each database replica using the
throughput as a feedback mechanism. The global adaptation varies
the assignment of object sets to replicas to reduce the load variance
across servers. The main difference compared to our work is that
the authors assume that all replicas are always up-to-date, hence
the system incurs little or no adaptation delay. Furthermore, the
Middle-R system is used with a single application and workload
mix. Hence, interference between applications for resources is not
considered in the design of the adaptations.

Modeling-based approaches have proved very successful for pro-
visioning the web and application server tiers in dynamic content
servers. These existing approaches treat the system as a set of black
boxes and simply add boxes to a workload’s allocation based on
queuing models [7, 36], utility models [29, 34] or marketplace ap-
proaches [10].

These analytic performance models have been shown to have
good accuracy for dynamic resource allocation of web and appli-
cation servers [7, 36]. On the other hand, to the best of our knowl-
edge, most of these techniques [7, 34, 36] assume a single database
back-end for the data center. The exception is a recent study by
Urgaonkar et al. [32], which models generic multi-tier data cen-
ters using the G/G/1 queuing model. This model captures any ar-
rival distribution and arbitrary service times at each server. Us-
ing this basic block, a dynamic resource allocation algorithm deter-
mines the number of servers needed at each tier in order to handle
the arriving load while satisfying the response time service level
agreement. While this work studies allocating web and applica-
tion servers on demand, it does not study the dynamic allocation of
database servers, which require state consistency maintenance. In

READ-SET ——
WRITE-SET

READ-SET ——
WRITE-SET

Normalized Load

Number of Allocated Databases

|

Number of Allocated Databases

15 20 25

Time (minutes)

10 30

(a) Load function
SLA

Time (minutes)

(b) LowSLAThreshold

15 20 25

Time (minutes)

25 10 30

(¢) LowSLAThreshold =0.5 SLA

0.75

READ-SET ——
WRITE-SET

READ-SET ——
WRITE-SET

READ-SET ——
WRITE-SET

0

Number of Allocated Databases
Number of Allocated Databases

Number of Allocated Databases

15 20 25

Time (minutes)

10 30

(d) LowSLAThreshold =04 SLA

Time (mi

(e) LowSLAThreshold=0.1 SLA

15 20 25

Time (minutes)

25 10 30

nutes)

(f) LowSLAThreshold =0.0 SLA

Figure 12: Replica allocation with different LowSLAThreshold parameters

contrast, our work focuses on aspects specific to dynamic alloca-
tion of database replicas, including data migration to bring a stale
replica up to date and awareness of the lag between the adaptation
decision time and the time when the results of the decision are seen.

There is a large body of literature related to dynamic resource
allocation. Scheduling policies for proportional share resource al-
location include Lottery scheduling [33] and STFQ [14]. Steere et
al. [28] describe a feedback-based real-time scheduler that provides
reservations to applications based on dynamic feedback, eliminat-
ing the need to reserve resources a priori. Control-based resource
allocation algorithms [12, 18] use models and select various pa-
rameters to fit a theoretical curve to experimental data. These ap-
proaches are not generic and need cumbersome profiling in systems
that run many workloads. For example, the PI controller parameters
can be tuned [12], but these parameters are only valid for the tuned
workload and not applicable for controlling other workloads. In
comparison, our system does not require careful tuning to achieve
good performance across applications with widely varying resource
needs. Furthermore, unlike most control systems, our system must
deal with long delays in the control loop.

Our work is related but orthogonal to ongoing projects in the
areas of self-managing databases [20, 13, 19] and automatically
reconfigurable static content web servers [25] and application
servers [17].

For scaling, an alternative to replication is data partitioning.
However, partitioning complicates reconfiguration because it re-
quires global data reshuffling [11] which prohibits processing of
common queries such as table joins during reorganization. In con-
trast, replication allows transparent reconfiguration since replicas
can be added without significantly disrupting transaction process-

ing at existing replicas.

7. CONCLUSIONS

In this paper, we propose using database replication to support
multiple dynamic content applications on a commodity cluster. Our
system dynamically allocates replicas to each application to main-
tain per-application performance. This dynamic replication ap-
proach enables a unified approach to load management as well as
fault tolerance.

We use the shopping workload mix of the TPC-W benchmark
and the RUBIS on-line auction benchmark to evaluate the response
and the stability of our dynamic replication protocol. The evalua-
tion compares alternate replica allocation and mapping policies in
detail and shows that our system can handle rapid variations in an
application’s resource requirements while maintaining quality of
service across applications. This is achieved by using 1) a partial
overlap replica mapping scheme that minimizes cross-application
interference since the read sets of applications are disjoint, and 2)
a warm migration algorithm that reduces the replica addition delay.
We also show that our replica allocation algorithm avoids expen-
sive replica addition and removal oscillations by taking the replica
addition delay into account, and it does not require careful tuning
of any parameters. Finally, we show that warm migration works
well for scenarios both with and without faults.

Our system avoids modifications to the web server, the applica-
tion scripts and the database engine and uses software platforms in
common use. As a result, our techniques can be easily applied to
real web sites.

8.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and the systems group at
University of Toronto for their detailed comments and suggestions
for improvement on the earlier versions of this paper. We further
acknowledge the generous support of IBM Centre for Advanced
Studies (CAS) Toronto, IBM Research, the Natural Sciences and
Engineering Research Council of Canada (NSERC), Communica-
tions and Information Technology Ontario (CITO) and Canadian
Foundation for Innovation (CFI).

9.
(1]

(2]
(3]

(4]

(5]

(6]

[7

—

(8]

(9]

(10]

(11]

(12]

(13]

REFERENCES

Oracle Real Application Clusters (Oracle RAC) 10g.
http://www.oracle.com/technology/
products/database/clustering/.

The Apache Software Foundation. http://www.apache.org/.
AMzA, C., CECCHET, E., CHANDA, A., C0X, A.,
ELNIKETY, S., GIL, R., MARGUERITE, J., RAJAMANI, K.,
AND ZWAENEPOEL, W. Specification and implementation of
dynamic web site benchmarks. In 5th IEEE Workshop on
Workload Characterization (Nov. 2002).

AMzA, C., COX, A., AND ZWAENEPOEL, W.
Conflict-aware scheduling for dynamic content applications.
In Proceedings of the Fifth USENIX Symposium on Internet
Technologies and Systems (Mar. 2003), pp. 71-84.

AMZA, C., COX, A., AND ZWAENEPOEL, W. Distributed
versioning: Consistent replication for scaling back-end
databases of dynamic content web sites. In 4th
ACM/IFIP/Usenix International Middleware Conference
(June 2003).

AMZA, C., COX, A., AND ZWAENEPOEL, W. A
Comparative Evaluation of Transparent Scaling Techniques
for Dynamic Content Servers. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE)
(April 2005).

BENNANI, M. N., AND MENASCE, D. A. Resource
allocation for autonomic data centers using analytic
performance models. In Proceedings of the 2nd International
Conference on Autonomic Computing (ICAC) (2005).
BERNSTEIN, P., HADZILACOS, V., AND GOODMAN, N.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

CECCHET, E., MARGUERITE, J., AND ZWAENEPOEL, W.
C-JDBC: Flexible database clustering middleware. In
Proceedings of the USENIX 2004 Annual Technical
Conference (Jun 2004).

COLEMAN, K., NORRIS, J., CANDEA, G., AND FOX, A.
Oncall: Defeating spikes with a free-market server cluster. In
In Proceedings of the 1st International Conference on
Autonomic Computing (ICAC) (2004).

COPELAND, G., ALEXANDER, W., BOUGHTER, E., AND
KELLER, T. Data placement in Bubba. In Proceedings of
ACM SIGMOD (June 1988), pp. 99-108.

Diao, Y., HELLERSTEIN, J. L., AND PAREKH, S.
Optimizing quality of service using fuzzy control. In DSOM
'02: Proceedings of the 13th IFIP/IEEE International
Workshop on Distributed Systems: Operations and
Management (2002), Springer-Verlag, pp. 42-53.
ELNAFFAR, S., MARTIN, P., AND HORMAN, R.
Automatically Classifying Database Workloads. In
Proceedings of the ACM Conference on Information and
Knowledge Management (Nov. 2002).

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]
(23]
[24]

[25]

[26]

[27]

(28]

GOYAL, P., Guo, X., AND VIN, H. M. A Hierarchical CPU
Scheduler for Multimedia Operating System. In Proceedings
of the 2nd USENIX Symposium on Operating Systems
Design and Implementation (Seattle, WA, Oct. 1996).
JHINGRAN, A. Anatomy of a real e-commerce system. In
Proceedings of the ACM SIGMOD (May 2000).

KEMME, B., BARTOLIL, A., AND BABAOGLU, O. Online
reconfiguration in replicated databases based on group
communication. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN)
(2001), IEEE Computer Society, pp. 117-130.
LASSETTRE, E., COLEMAN, D. W., D1AO, Y.,
FROEHLICH, S., HELLERSTEIN, J. L., HSIUNG, L.,
MUMMERT, T., RAGHAVACHARI, M., PARKER, G.,
RUSSELL, L., SURENDRA, M., TSENG, V., WADIA, N.,
AND YE, P. Dynamic surge protection: An approach to
handling unexpected workload surges with resource actions
that have lead times. In DSOM (2003), M. Brunner and

A. Keller, Eds., vol. 2867 of Lecture Notes in Computer
Science, Springer, pp. 82-92.

L1, B., AND NAHRSTEDT, K. A control-based middleware
framework for quality of service adaptations. /EEE Journal
on Selected Areas in Communications (1999).

MARTIN, P., POWLEY, W., L1, H., AND ROMANUFA, K.
Managing database server performance to meet qos
requirements in electronic commerce systems. International
Journal on Digital Libraries 3 (2002), 316-324.
MICROSOFT RESEARCH. AutoAdmin: Self-Tuning and
Self-Administering Databases.
http://www.research.microsoft.com/research/dmx/AutoAdmin,
2003.

MILAN-FRANCO, J. M., JIMENEZ-PERIS, R.,
PATIO-MARTNEZ, M., AND KEMME, B. Adaptive
middleware for data replication. In Proceedings of the 5th
ACM/IFIP/USENIX International Middleware
Conference,pp. 175-194, (Oct. 2004),

MySQL. http://www.mysql.com.

PHP Hypertext Preprocessor. http://www.php.net.
PLATTNER, C., AND ALONSO, G. Ganymed: Scalable
Replication for Transactional Web Applications. In
Proceedings of the 5th ACM/IFIP/Usenix International
Middleware Conference (Oct. 2004).

RANIJAN, S., ROLIA, J., Fu, H., AND KNIGHTLY, E.
QoS-Driven Server Migration for Internet Data Centers. In
10th International Workshop on Quality of Service (May
2002).

ROHM, U., BOHM, K., SCHEK, H.-J., AND SCHULDT, H.
FAS - a freshness-sensitive coordination middleware for a
cluster of olap components. In Proceedings of the 28th
International Conference on Very Large Databases (Aug.
2002), pp. 134-143.

SHEN, K., YANG, T., CHU, L., HOLLIDAY, J. L.,
KUSCHNER, D., AND ZHU, H. Neptune: Scalable replica
management and programming support for cluster-based
network services. In Proceedings of the Third USENIX
Symposium on Internet Technologies and Systems (Mar.
2001), pp. 207-216.

STEERE, D. C., GOEL, A., GRUENBERG, J., MCNAMEE,
D., Pu, C., AND WALPOLE, J. A Feedback-driven
Proportion Allocator for Real-Rate Scheduling. In
Proceedings of the 3rd USENIX Symposium on Operating
Systems Design and Implementation (Feb. 1999).

[29]

(30]
(31]

(32]

(33]

[34]

(35]

(36]

TESAURO, G., DAS, R., WALSH, W. E., AND KEPHART,
J. O. Utility-function-driven resource allocation in
autonomic systems. In Proceedings of the 2nd International
Conference on Autonomic Computing (ICAC) (2005),

pp. 70-77.

Transaction Processing Council. http://www.tpc.org/.
Reported configurations from industry for running the
TPC-W e-commerce benchmark. http://www.tpc.org/.
URGAONKAR, B., AND CHANDRA, A. Dynamic
provisioning of multi-tier internet applications. In
Proceedings of the 2nd International Conference on
Autonomic Computing (ICAC) (June, 2005).
WALDSPURGER, C. A., AND WEIHL, W. E. Lottery
Scheduling: Flexible Proportional-Share Resource
Management. In Proceedings of the 1st USENIX Symposium
on Operating Systems Design and Implementation
(November, 1994).

WALSH, W. E., TESAURO, G., KEPHART, J. O., AND DAS,
R. Utility functions in autonomic systems. In In Proceedings
of the 1st International Conference on Autonomic Computing
(ICAC) (2004).

WELSH, M., AND CULLER, D. Adaptive overload control
for busy internet servers. In Proceedings of the Fifth USENIX
Symposium on Internet Technologies and Systems (March
2003).

ZHENG, T., YANG, J., WOODSIDE, M., LITOIU, M., AND
IszLAI, G. Tracking time-varying parameters in software
systems with ex-tended kalman filters. In Proceedings of the
International Conference of the Centre for Advanced Studies
on Collaborative Research (CASCON) (2005).

