Granary: Comprehensive Kernel Module Instrumentation

Peter Goodman Akshay Kumar Angela Demke Brown Ashvin Goel

University of Toronto

Modules are hard to analyse A module analyser should...

Debugging, testing, and securing modules is challenging + Comprehensively instrument all binary modules

* Tight interaction with the kernel * Impose no performance overhead on non-module kernel code
* Sometimes distributed as binaries * Require no changes to existing or future modules
* Asynchronous and concurrent execution * Require minimal changes to the kernel

Approach: mixed-mode execution

® ©,

Motivation: Comprehensive module instrumentation Exit Instrumentation via Wrapped Functions

with no overhead to kernel code. Granary relinquishes control when an instrumented module
calls a kernel function. Before doing so, Granary needs to

Key Idea: Use dynamic binary translation to control and ensure that it can regain control when module code is

instrument all module code; don't instrument kernel code. invoked.

Challenges: When/how to take and relinquish control. * Finds kernel interface functions dynamically; recursively

wraps argument data structures
@ @ * The wrappers change pointers to module functions passed
_ : I:l to the kernel into pointers to shadow module functions
Enter Instrumentation via
Shadow Modules D[]

Granary regains control when the
kernel returns to the module or
invokes a shadow module pointer.

@ Kernel Code Executes Natively
@ All non-module kernel code, including interrupt and
exception handlers, runs without instrumentation.

Wrapping Avoiding redundant argument wrapping
Problem device driver
* Granary does not control the execution of kernel code int (*probe jmp 1000 probe el000 probe:

push %rbp
mov %rsp,%rbp
push %rl5
push %rl4

* Modules share function pointers with the kernel
* Granary must gain control when the kernel invokes any
module function pointer

hash

sjze

used?

device driver *

Solution
* All arguments to kernel functions are wrapped
* Wrapping changes function pointers in arguments into Problem
shadow function pointers so that Granary regains control * Deeply linked/nested data structures passed as arguments can
device driver contain function pointers
5 .-l * Wrapping these arguments is expensive
p---"| Solution
* Wrap an argument only if the value it points to has changed
o * Store a hash of the data structure passed as an argument to

check if it has changed
* Override a function pointer in the argument to store a hash

Performance benchmarks

DRK . Granary . Native We benchmarked Granary against:

* Native: Uninstrumented e1000e network driver
* DRK: DynamoRIO Kernel-instrumented Linux kernel

UDP Throughput and the e1000e network driver
1,000 oo 300
soof ;(5)8 If the CPU is fully utilized then Granary incurs a 0% to 50%
oo e - 150 decrease in UDP throughput. If the CPU is not fully utilized then

4008 ------------------ 100

50

Granary has no effect on TCP throughput.

Mbit/sec

200

64 128 256 512

usec/transmission

TCP UDP With a message size of one byte, network latency with Granary
Packet Size (bytes) increases by at most 20%.





