
Granary: Comprehensive Kernel Module Instrumentation
University of Toronto

Peter Goodman* Angela Demke Brown
{pag, demke}@cs.toronto.edu

Akshay Kumar* Ashvin Goel
{akshayk, ashvin }@eecg.toronto.edu

Kernel modules extend the functionality of operating sys-
tems (OSes). Modules are used to support new devices (e.g.
network and graphics cards) and provide new features (e.g.
file systems). The kernel and its modules execute in a com-
plex and dynamic environment. Understanding how modules
behave in and affect this environment is important. However,
analyzing module behavior is challenging. Static analysis of
module source code is difficult because of the tight interac-
tion between modules and the kernel. Some modules, how-
ever, are only distributed in a binary format, which makes
static analysis intractable.

We created Granary to address the challenges of module
analysis. Granary is a framework that efficiently instruments
arbitrary, binary Linux kernel modules. Granary uses dy-
namic binary translation to dynamically rewrite and compre-
hensively instrument kernel modules. Our extensive use of
compile-time meta-programming enables efficient, dynamic
analyses that are driven by static kernel type information.

While designing Granary, we identified four goals for
practical module analysis: i) comprehensively analyze all
modules; ii) impose no performance overheads on non-
module kernel code; iii) require no changes to modules and
minimal changes to the kernel, and; iv) be easily portable be-
tween different hardware and kernel versions. Prior research
based on source code analysis and annotations [2] fails to
meet goals (i) and (iii), while work based on special hard-
ware features or virtualization [3] fails to meet goals (i) and
(iv), and work based on whole-OS or -system instrumenta-
tion/emulation [1] fails to meet goal (ii).

Granary meets all four stated goals:

i) Granary is comprehensive because it controls and in-
struments the execution of all module code. Granary
maintains control by ensuring that normal module code
is never executed. Instead, only decoded and translated
module code is executed. Translated module code con-
tains instrumentation and always yields control back to
Granary. All modules can be instrumented in this way
because dynamic binary translation operates on binaries
and does not depend on any hardware features.

ii) Kernel code runs without overhead because Granary re-
linquishes its control whenever an instrumented module

executes kernel code. Granary implements a novel tech-
nique for re-gaining control when kernel code attempts
to execute module code. Each time some instrumented
module code invokes a kernel function, each of that
function’s arguments are wrapped. Argument wrappers
are type- and function-specific, and ensure that potential
module entry points (e.g. module function pointers) are
replaced with behaviorally-equivalent values that first
yield control to Granary.

iii) We have changed less than 100 LOC in the Linux kernel
in order to support Granary.

iv) Granary’s wrapping mechanism is portable across dif-
ferent kernel versions because the majority of wrappers
are automatically generated by a GCC plugin and sev-
eral meta-programs.

Granary is a work in progress. It works on multi-core
processors with pre-emptive kernels, and incurs a modest
decrease in throughput of 10% to 50% for network device
drivers. We have used Granary to isolate and comprehen-
sively instrument several network device drivers (e1000,
e1000e, ixgbe, tg3) and file system modules (ext2, ext3).
We have used Granary to develop an application which en-
forces partial control-flow integrity policies. These policies
disallow modules from executing dangerous control-flow
transfers. As a future work, we plan on implementing more
optimizations and applications.

References
[1] P. Feiner, A. Demke-Brown, and A. Goel. Comprehensive

Kernel Instrumentation via Dynamic Binary Translation. In
ASPLOS. ACM, 2012.

[2] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F.
Kaashoek. Software fault isolation with api integrity and multi-
principal modules. In T. Wobber and P. Druschel, editors,
SOSP, pages 115–128. ACM, 2011. ISBN 978-1-4503-0977-6.

[3] D. T. Xi Xiong and P. Liu. Practical protection of kernel
integrity for commodity os from untrusted extensions. San
Diego, CA, USA, 2011. NDSS.

* Student

1 2012/9/27


