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Most people are thermometers

that record or register the temperature of majority opinion,

not thermostats that transform and regulate the temperature of society.

- Rev. Martin Luther King, Jr.
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View Consistency for Optimistic Replication
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An important objective of distributed and replicated systems is providing highly

available data while preserving data consistency. Conservatively replicated sys-

tems maintain data consistency but severely limit the availability of data during

network partitions. This makes them unsuitable in environments where network

partitions occur frequently, or for long periods of time. Optimistically replicated

systems allow updates to any available copy of the data. This provides high data

availability. However, updates to older copies of data (or conicting updates) can

be made, thereby causing data inconsistency. Such inconsistencies are resolved

when the network partitions heal, and copies exchange the new updates that have

been generated. The time lag between an inconsistent update and its resolu-

tion depends on the length of the network partition. During this period, users

may access intermediate states of data. This problem of accessing intermediate

data states arises because optimistic systems provide consistency guarantees when

copies communicate with each other and resolve their di�erences, and not when

updates are generated.

We examine the consistency guarantees that can be provided when updates are
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made in optimistic systems. These are called immediate consistency guarantees.

A view consistency model that provides consistent views of data on a per-user

basis is proposed. Maintaining data consistency is the responsibility of the cli-

ents, rather than the data servers in the view consistency model. The consistency

criterion is enforced at each client based on information stored at the client. This

consistency model is scalable to large numbers of data replicas since no global in-

formation is required for maintaining view consistency. It is well integrated with

the optimistic consistency model, and provides high data availability. Optimistic

systems that incorporate the view consistency model o�er enhanced immediate

consistency guarantees, at a low cost, and without signi�cantly a�ecting availab-

ility.
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CHAPTER 1

Introduction

Many distributed applications require highly available data. Data is highly avail-

able if it can be accessed at any time. The connectivity of the network a�ects

the availability of data. For example, data can become unavailable when network

partitions occur. To increase availability, data is often replicated. This allows

an application to access data replicas that are present locally, or are present in a

local partition.

Data must be quickly accessible in addition to being highly available. If several

replicas are available, data should be provided from the best available replica. The

choice of the best replica depends on factors such as bandwidth and latency of

access to the replica.

Accessing distributed or replicated data introduces the data consistency prob-

lem. Data accesses are consistent when they do not reect the intermediate states

of data between accesses. For example, if replica A has been updated and the

update has not reached replica B, then accesses to replica B may be inconsistent.

An important objective of distributed and replicated systems is providing

highly available (and quickly accessible) data while preserving data consistency.

The goal of maintaining data consistency conicts with providing highly avail-

able data. Consistency allows access to consistent replicas only; availability (and

accessibility) improves if any replica can be accessed.
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Although numerous replicated systems have been built, most are suited for

small numbers of nodes that are tightly connected together. The focus of this

work is providing both availability and consistency to large numbers of nodes

that are weakly and intermittently connected. Examples of such an environ-

ment include mobile, or highly geographically distributed systems. The next two

sections present the conservative and optimistic consistency schemes that lie at

opposite ends of the availability-versus-consistency spectrum. Both schemes are

shown to be inadequate in a weakly connected environment. Then we present

motivations for view consistency. View consistency uses a limited form of con-

servative consistency to provide improved consistency guarantees in an otherwise

highly available optimistic system.

1.1 Instantaneous Data Consistency

A consistency scheme provides instantaneous data consistency if each access

provides consistent data. In this section, we discuss some schemes that provide

instantaneous data consistency. Section 1.2 below describes eventual data con-

sistency where each access may not provide consistent data but data eventually

converges to a consistent state.

Strong Consistency Traditionally, one-copy serializability has been used as a

consistency criterion for replicated data [Pap79, BG81]. One-copy serializability

ensures that the execution of a program does not a�ect or is not a�ected by

the execution of other programs. In other words, each program (transaction) is

isolated from the e�ects of other programs. One-copy serializability uses a strong

consistency replica control algorithm to map logical data into physical replicas,

and a concurrency-control algorithm (such as two-phase locking) to implement
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program isolation.

Strong consistency ensures that programs access the latest data, and all data

copies see the same order of updates. It provides instantaneous data consistency

since each access yields consistent data. Moreover, an access yields the same data

as is obtained in a non-distributed or a single copy system. This makes strong

consistency an attractive consistency model.

Unfortunately, strong consistency requires reliable communication links for

high data availability [FM82, All83]. When a network becomes partitioned, data

cannot be accessed in more than one partition. For example, suppose the network

is partitioned into two sets of replicas, A and B. If updates are allowed in partition

A, then access must be denied to replicas in partition B. Otherwise these accesses

may operate on old copies of data. Note that strong consistency is conservative

and does not allow accesses to partition B, even if partition A is never updated.

This consistency model considers partitions to be failures. In some cases, these

failures are rare and can be corrected quickly. Under such conditions, strong

consistency is a useful consistency constraint.

Often communication links are inherently unreliable in mobile and highly dis-

tributed systems. In such situations, an application using the strong consistency

criterion will not be able to access data, although the data is available in its par-

tition. For several applications such as banking applications, reservation systems,

and personal applications like appointment calendars, design documents, meet-

ing notes, and in general, mobile �le accesses, continued access is critical even

during network partitions [PWC81, FM82, Sat89, GHM90, TTP95]. In mobile

environments, network partitions are a normal mode of operation, rather than

a failure condition that must, or can be immediately corrected [HPG92, KS92].

Mobile computers may not frequently connect with stationary networks, either be-
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cause of the cost or the bandwidth restrictions of wireless communication. With

strong consistency, either none of the disconnected mobiles will be able to access

locally-stored replicated data, or at most, one of the mobiles will be allowed ac-

cess. Similarly, communication links may by unreliable in highly geographically

distributed systems. Moreover, the synchronization cost is high in such systems.

Since strong consistency severely restricts availability when communication is un-

reliable, it is unsuitable as a consistency criterion in mobile or highly distributed

systems.

Weak Consistency Strong consistency always provides the latest data ver-

sion. However it does so by sacri�cing availability. Several consistency schemes

that enhance availability have been proposed. These schemes trade availability

against consistency. One such scheme, weak consistency, is similar to strong con-

sistency except that it ignores read dependencies [GW82]. Thus weak consistency

provides instantaneous data consistency with respect to writes only. Writes up-

date the latest copy of data, but reads can return older copies. This increases read

availability of data. However, writes can only occur in a single partition. If write

availability is essential, this consistency scheme su�ers from the same problems

as strong consistency. Moreover, in dynamic partitioning situations, even worse

is possible: weak consistency will allow a reader to switch from a newer version

to an older data version.

1.2 Eventual Data Consistency

The purpose of providing consistency guarantees is to maintain the semantics of

data. Data accesses do not have to be serialized for maintaining the semantics

of several types of data [FM82, All83, GAB83]. For other data types, some
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minimal inconsistency, or external intervention to restore the semantics of the data

is often considered more acceptable than entirely inhibiting data accesses when

communication is not possible [Sat89, GHM90, TTP95]. Consider a calendar

that is shared by several users and replicated on each user's portable. A user

can schedule meetings in his personal replica of the calendar, even when other

replicas are not available. Later, if it is found that a conicting meeting has

been scheduled, one of the users can manually change the meeting time. Manual

intervention may be preferable to disallowing accesses to the calendar until all (or

a majority) of the replicas are available. This example shows that for e�ective

use of weakly connected systems, update generation must be made independent

of update integration (at other sites).

This approach is taken by optimistically replicated systems. An access can be

made to any �le replica at any time in optimistic systems. Updates are generated

at a site, and integrated at other sites as data propagates to them. Unlike instant-

aneous data consistency schemes, no consistency is enforced during accesses. This

can lead not only to reads returning old data, but also to conicting updates, or

updates being made to old copies. These inconsistencies are detected and resolved

when data is integrated, rather than when it is generated. The resolution is done

either automatically or manually depending on the semantics of the data type.

The integration and resolution of data at other sites ensures that replicas even-

tually reach identical states or become mutually consistent if no new updates are

generated in the system [WB84, HHW89]. This consistency approach, which guar-

antees eventual consistency of data, is called eventual data consistency. Eventual

data consistency provides high availability by allowing updates to be made in

any order. This consistency approach is attractive when it is essential to provide

access to data, and the network connectivity is unreliable or not present. Thus,
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optimistic or eventual data consistency schemes solve the availability problem of

the instantaneous data consistency schemes.

However, eventual consistency schemes raise a di�erent problem; they do not

provide any consistency guarantees during accesses. It has been observed that

this does not necessarily cause serious problems for shared �les [KS92, RHR94].

Often, �les that are heavily shared are not frequently updated by multiple users.

Since the level of write-sharing is low, few consistency conicts are generated.

Unfortunately, this argument ignores read-dependency issues for shared �les.

Moreover, it does not take non-shared �les into account.

When read-dependencies are ignored, older versions of �les can be read.

Moreover, data that is older than the last version accessed by a user may also

be read. Since reads do not generate conicts, eventual consistency schemes do

not detect old reads, or provide any guarantees when the data is read. Users

may remember the last version they had accessed in the past and use that version

for future accesses. An example illustrates the problem. Suppose a user edits a

replicated �le and checks-in it using a source code control system. The replica

crashes before it can propagate its changes to other replicas. The user gets an old

version of the �le from another replica when the �le is checked-out again. Often,

users do not update this old copy of the �le. They must remember that this copy

of the �le is old and should not be updated. Moreover, if they do update the �le,

a conict will necessarily happen. Worst of all, the user gets no hint that these

problems might arise.

Eventual consistency ignores write-dependencies also. Thus writes can be

made to older copies of data. This is uncommon for many shared �les [KS92,

RHR94]. However, often a single user may update multiple copies of data and

thereby cause conicts. This is di�erent from the old read problem because the
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writes may be done without reading the data. Suppose a user is updating a

replicated �le on replica A. Replica A becomes heavily loaded after the �rst update

has reached it. The system switches to using replica B, and writes are sent to

replica B. This causes conicts since an older version of the �le at replica B gets

updated. Both the problems of old reads and old writes occur because consistency

guarantees are not provided when the access is done.

1.3 View Consistency

The optimistic or eventual data consistency model provides high availability, but

does not provide instantaneous consistency guarantees. We propose the view con-

sistency model that is built above an optimistic model, and provides instantaneous

consistency guarantees. Moreover, it maintains most of the availability bene�ts

of the optimistic consistency model. The instantaneous consistency guarantees

are provided during accesses.

View consistency provides guarantees to the user that depend on the actions of

the user and the type of the user. For example, consistent views can be provided

to a process, or a machine, or a group of processes. The implementation of

the consistency scheme may change with di�erent user types. Thus this model

consists of suite of consistency schemes. The next chapter describes this model

in detail.

The aim of this work is to provide instantaneous consistency guarantees at

a low cost in a highly available large-scale replicated environment. The view

consistency model provides instantaneous consistency guarantees to individual

users based on the past actions of those users. It is built above an optimistically

replicated substrate that provides high availability and eventual data consistency.

7



Switching access to the fastest available replica is integrated into this model.

The performance overhead of the view consistency model is small compared to

other instantaneous consistency models since no global information is required for

maintaining view consistency.

We describe two examples that illustrate the advantages of using view consist-

ency for replicated data. The �rst example presents consistent reads. Consider a

web or FTP site that replicates its data (for example, by mirroring) around the

world for fault tolerance and faster access. Suppose a user down-loads a new ver-

sion of his mailer from one of the sites. While installing the mailer, he discovers

that the new mailer requires a new mailsend program, and he does not have this

program. He tries to down-load the mailsend program, but the site from which he

down-loaded the new mailer is experiencing heavy loads. The user's web or FTP

client automatically switches accesses to another replicated site. View consistency

ensures that the new mailsend program is as consistent as that which the user had

seen at the previous site, or else denies access. This ensures that the user does

not get an old copy of the mailsend program. The web or FTP client checks each

replicated site until a consistent replica is found.

The next example presents consistent writes. Suppose a user edits a replicated

�le and he checks it back to his version control system. The site storing the �le

replica crashes before the check-in can �nish. The check-in therefore occurs on

another replica. If this replica is older than the replica on the crashed site, view

consistency denies the check-in since this would necessarily cause a conicting

update.

In Chapter 2, view consistency issues are discussed. Chapter 3 describes

the system on which view consistency has been implemented, and following this

Chapter 4 presents the view consistency implementation in detail. Replica switch-
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ing issues for improving availability and for providing view consistency are dis-

cussed in Chapter 5. Chapter 6 describes an algorithm for garbage collecting

the version information that is stored for implementing view consistency. The

performance and overhead of providing view consistency on an optimistic system

are shown in Chapter 7. Chapters 8 and 9 discuss related and future work.
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CHAPTER 2

View Consistency

Consider a set of cooperating processes accessing a replicated �le. Each process

is guaranteed access to some data replica. If the �rst data replica is not available,

the second data replica is accessed, and so on. The replica access order can be

chosen in several ways. For example, each process may access replicas in order

of geographic distance, or all the processes may access replicas in the same order.

Writes are propagated in the background on a best-e�ort basis and integrated at

other sites so that replicas eventually reach consistency. This scheme allows high

data availability since data is available as long as at least one replica is available.

There are several problems with this scheme. Inconsistent data can be accessed

when the current replica becomes unavailable. The next data replica may not have

data that is consistent with what the process has seen previously. Second, if a

process splits into or spawns multiple subprocesses, these subprocesses can access

di�erent replicas and see inconsistent data. Finally, multiple concurrent writer

processes (or concurrent reader-writer processes) cause conicting updates (or

stale reads). These problems motivate the need for consistent views.

The view consistency model provides a consistent view of replicated data to

a logical entity. The condition that must be satis�ed for a view to be consistent

is called the consistency criterion. As we will see, di�erent criteria can be used

to de�ne consistent views. One such criterion is that a view is consistent if it

provides a data version that is not older than what an entity has seen previously.
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Intuitively, a view is consistent if the data is consistent with the actions of the

entity or a set of entities.

In the previous example, a process is not guaranteed consistent views when

replicas become unavailable. Second, sub-entities of the process group entity do

not see consistent views. Finally, di�erent entities see non-consistent views.

Although each entity observes a consistent view of data in the view consistency

model, di�erent entities may see di�erent views or di�erent data. View consist-

ency does not guarantee consistent views across entities. For example, each entity

may see data that is the same as or newer than what it has seen previously. Thus

an entity that has never seen a particular �le may be provided any version of the

�le. However, an entity that has just created a new version of the �le only sees

the new version.

Entities in the view consistency model can be of di�erent types. Examples of

entities that see a consistent view include:

� a process, a group of processes

� a user on a machine, a user login session

� a machine, a group of machines, etc.

View consistency provides consistent data to an entity immaterial of the de�n-

ition of an entity. The view consistency algorithm must take the entity type

into account, since di�erent entities have di�erent properties and this a�ects the

implementation. Properties of entities are further discussed in Section 2.2.

Let us illustrate a view consistency scheme with an example. Let a process

be the entity. The consistency criterion is that the process will always read or

write a version of a �le that it had read or written previously. It will not be
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allowed access to a version that is older than or newer than what it had seen

previously (it can of course update and create newer versions itself). Notice that

the consistency criterion depends on the actions of the process: the process will

read or write what it has seen previously. Thus two processes reading from or

writing to a replicated �le might see di�erent data. Suppose a process accesses a

�le, and then another process writes to the same �le. The former process will no

longer be allowed access to the �le. This consistency criterion does not ensure

that the data itself is consistent, since di�erent processes may access and write

to di�erent replicas, and yet obtain view consistent data. Previous work on this

type of consistency criterion has also referred to it as a session guarantee.

Recall that the instantaneous data consistency schemes provide consistent data

on each access. View consistency is similar to these schemes since it also provides

consistent data on each access. However it di�ers from these schemes in four

important ways. First, while the data consistency model keeps the data in a con-

sistent state, and thus provides guarantees about the state of the data, the view

consistency model provides guarantees to the entity immaterial of the state of the

data. Even though the data may conict, view consistency will attempt to provide

data until the consistency criterion is not satis�ed. Second, the consistency cri-

terion is dependent upon the actions of the entity. For example, a consistency

criterion can be to provide data versions that the entity has seen previously. If

the data version does not exist, the criterion is not met, and data is not made

available. This criterion depends on the past actions of the user. Third, the view

consistency criterion is enforced by the entity, and not by the data servers. It

is this di�erence that makes view consistency signi�cantly cheaper to implement

than data consistency schemes that require consensus among the data replicas for

each access. Finally, although the consistency criterion may be the same, di�er-

ent entities may see di�erent versions of a �le. Again, this happens because the
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Instantaneous Data Eventual View

Consistency Consistency Consistency

(Conservative) (Optimistic)

Data Guarantees Consistent on Eventually Consistent on each

each access consistent access per entity

Guarantees depend

on actions of no no yes

entity

Consistency Server-based Server-based Entity-based

Enforcement

Availability Low High High

Table 2.1: Di�erences in the instantaneous data, eventual and view consistency

models

criterion applies to each entity, and not to the data. Table 2.1 shows these di�er-

ences. It shows the relationship among the data, eventual, and view consistency

schemes.

There are two factors that characterize a consistency scheme in the view con-

sistency model.

Entity: The entity is the smallest unit that observes a consistent view of data. In

the previous example, each process is the entity. Other examples of entities

include a user login process, a machine, etc.

Consistency Criterion: The consistency criterion is the speci�c guarantee that

is provided to each entity. The consistency guarantee in the previous ex-

ample is that each process sees a version of a �le that it has seen before.
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The view consistency model consists of a suite of consistency schemes that

di�er in the consistency criterion and the entity to which they provide consistency.

The rest of the chapter investigates di�erent types of useful consistency criteria

and entities in the view consistency model.

2.1 Consistency Criteria

A view is consistent with respect to a consistency criterion when it satis�es the

consistency criterion. A criterion can be a local, neighbor, or global one. A local

criterion allows an entity to access data that is consistent with its own actions.

A neighbor criterion ensures consistency with the actions of some small set of

entities. A global criterion allows an entity to access data that is consistent with

the actions of all entities that access that data.

The local criterion only depends on the actions of the entity. If an entity has

never accessed any version of the data, then any version satis�es this criterion. It

is relatively simple and cheap to implement since the criterion can be checked and

enforced by the entity itself. Entities do not have to coordinate among themselves

to ensure that they access data that is consistent across entities.

The neighbor criterion provides data to an entity that is consistent with the

accesses of a small group of known entities. Assuming that each entity (not just

some of them) requires consistency with all the entities in the entity group, then

this small set of known entities can be grouped together to form a single entity.

The neighbor criterion then becomes a local criterion for this single entity-group.

For example, a process may be neighbor consistent with all the processes in its

process group. If all the processes in the process group require neighbor consist-

ency, the process group can be considered a single entity, and local consistency
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can be enforced for the process group.

The global criterion requires that data is consistent with the actions of all

other entities. Since the number of entities that can access data and the data

replicas that these entities access is arbitrary, this criterion requires examining

all the replicas to see if any accesses have been made. In particular, it will only

allow access to the latest data. A global criterion is thus no di�erent from a

strong consistency scheme that provides the latest data on each access, and will

not provide high availability. We will not consider it any further.

As discussed above, the neighbor criterion is equivalent to the local criterion

when the granularity of the entity is changed to include its neighbors. Thus we

only study the local criterion. We have suggested that it is cheap to implement

because the criterion can be checked and enforced by the entity itself. The obvious

disadvantage of this scheme is that di�erent entities may access di�erent data. If

concurrent writes are not common, this scheme provides high data availability as

well as good consistency guarantees.

The di�erences in the consistency criterion that are discussed above result

from providing consistent views with respect to di�erent sets of entities. An-

other dimension along which consistency criteria can di�er is in the data that is

provided. In the later-version criterion, each read or write access provides data

that is the same as or newer than what the entity has read or written previously.

For brevity, we call the same or a newer version of data, a later-version. This

de�nition of view consistency serializes all the reads and writes of the entity. If

there are multiple sub-entities of an entity (for example, processes of a process

group entity), read-read dependencies can be excluded from the de�nition of a

later-version.

Alternately, a consistent view can be de�ned in terms of a same-version, where
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each read or write access provides data that is the same as what the entity had

accessed previously. This de�nition reduces availability as compared to the later-

version de�nition because newer data versions that satisfy the later-version cri-

terion do not satisfy the same-version criterion. An example where the same-

version consistency criterion is very useful is during the loading of an executable.

If successive reads during executable loading provide newer (and di�erent) ver-

sions of the executable, the executable will probably not run, if not crash the

application.

These examples of a consistent view have been de�ned in terms of the same

or later versions rather than in terms of the latest version. Both these de�nitions

are dependent on the actions of the entity. A latest version de�nition requires a

conservative consistency policy such as strong consistency. We will not study any

scheme that requires a conservative policy because it provides low availability.

For this same reason, we will only focus on the local criterion, and not the global

criterion. The local criterion can yield either the same-version or the later-version

of the data. The implementation of the two criteria does not di�er signi�cantly.

As discussed above, the same-version criterion reduces availability as compared

to the later-version criterion. We will therefore focus on the later-version criterion

in the rest of the thesis, mentioning the di�erences between the two criteria when

needed.

2.2 Entity De�nition

Until now, consistent views have been de�ned for a generic entity. In this section,

we describe a representative set of entity types that bene�t from consistent views.

The algorithms for implementing view consistency depend on certain attributes of

an entity. We will describe these attributes before discussing the di�erent entity
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types. The attributes determine the algorithm and thus the cost of implementing

view consistency.

2.2.1 Entity Attributes

Each entity exists for a certain period of time. Long-lived entities are persistent

entities while short-lived entities are transient entities. The distinction between

long and short-lived entities is arbitrary. One way to make this distinction is by

considering entities that survive machine reboots to be long lived. Extra e�ort

is needed to provide consistent views to a persistent entity. For example, the

information that is used to decide whether the consistency criterion is satis�ed for

a persistent entity must be kept on secondary storage.

An entity may be composed of sub-entities that can exist by themselves, and

that can access data independently of other sub-entities of the entity. Such an

entity is called complex. Entities that do not have sub-entities associated with

them are simple. A complex entity can access copies of the data via multiple

streams of execution. Thus complex entities need to coordinate their accesses to

see consistent views. For example, a process group entity is complex because it

consists of multiple threads of execution. These threads must coordinate their

accesses so that each process in the group always accesses (say) later versions of

data.

A complex entity is centralized if all its execution streams are con�ned to a

single machine. If the execution streams originate from di�erent machines, the

complex entity is distributed. It is simpler to coordinate the accesses of centralized

entities than distributed entities.

A distributed entity is identi�able if the execution streams originate from

a known or identi�able set of machines. If the distributed entity consists of
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Entity

Simple Complex

Centralized Distributed

Identifiable

A portable

 Group of
processes A process

PersistentTransient

Entity

 Single 
process

All processes of a 
             user

    Group
of  machines

All processes connected
 to a user’s login process

    Un−
identifiable

  A user, 
a machine

Figure 2.1: The entity hierarchy

sub-entities whose origins cannot be identi�ed, it is called unidenti�able. The

distinction between identi�able and unidenti�able entities is subtle. An identi�able

entity is denied access to data only when the same or newer (later) versions of data

are unavailable. An unidenti�able entity can be denied access either because later

versions of data are not available or because the sub-entities of the entity cannot

be coordinated at a particular time. Mechanisms such as primary coordinator,

token passing, or voting are needed to synchronize the distributed accesses of an

unidenti�able entity.

This entity hierarchy, along with examples of di�erent types of entities, is

shown in Figure 2.1 and Tables 2.2.
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Examples Transient Persistent

Single machine

Simple Single process A user on a

single machine

Group of Group of machines

Complex processes All processes of a user

Table 2.2: The persistence and divisibility attributes of an entity

2.2.2 Entity Types

The entities shown in Figure 2.1 can be categorized into three generic entity types:

processes, machines and users. The attributes of these entities are discussed

below. In the examples presented in this section, we assume the local later-version

criterion. As discussed at the end of Section 2.1, we believe that this criteria is

most useful for applications and provides the highest availability.

Process entity At each �le access, each process sees a later-version of the

�le. A process is a simple, transient entity, i.e., it is single and does not survive

machine reboots. A set of processes (for example, subprocesses of a process) is a

complex transient entity. This set of processes sees later-versions of the �le. The

subprocesses can belong to the same machine (centralized entity) or to di�erent

machines (distributed entity). An example of a distributed-process-group entity is

the set of processes (across all machines) that belong to a user in a login session. If

all these processes have a single controlling terminal, the set of machines on which

these processes are running is known, and this entity is identi�able. The processes

can be controlled from this single controlling terminal. This is an example of the
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primary coordinator approach to synchronizing distributed accesses of an entity.

Other solutions such as token passing or voting can also be used to coordinate the

accesses of the sub-entities.

Machine entity A machine is another type of an entity. The machine entity is

simple and persistent. All processes or users accessing data from a single machine

see a later version of the data. This is not equivalent to \all the processes on a

machine" entity because unlike processes, the machine entity is persistent. A

consistent view to the machine entity ensures that processes see later versions

even when the machine is rebooted.

A known group of machines is another type of entity. Here, all processes

on any of the machines in the group see later versions of data. This entity is

persistent, but distributed. Since the data access streams originate from a known

set of machines, the entity is identi�able.

User entity A user sees a consistent view when each access by any process be-

longing to the user provides later-versions of data. The user, unlike the process,

is a persistent entity and crosses login session boundaries and machine reboots.

It is a complex and distributed entity since it can own multiple processes which

access the same data, and these processes can originate from multiple machines.

Moreover, it may be an unidenti�able entity since these processes may not be

easy to locate and the data access streams can originate from an unknown set of

machines. As discussed earlier, unidenti�able entities require conservative con-

sistency schemes. Thus we will only consider a user entity on a single machine or

a known set of machines. All processes of the user accessing data from this set

of machines access later-versions of the data.

This chapter de�nes the view consistency model and shows its relationship to
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other consistency models. View consistency can be characterized by an entity

and a consistency criterion. The next chapter describes an optimistic replicated

�le system on which view consistency has been implemented.
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CHAPTER 3

System Model

Recall from Chapter 2 that we want to focus only on the local view consistency

criterion because it allows high availability of data. However, the local criterion

allows conicting updates. View consistency must therefore be implemented over

an optimistic system that detects and resolves conicting updates.

We have implemented view consistency on the Ficus optimistically replicated

�le system. This chapter presents the features of Ficus that are relevant to the

view consistency design or were changed for the view consistency implementation.

3.1 Stacking in Ficus

The Ficus �le system has been developed using a stackable layers approach for

modularity. Stackable layers allow third-party vendors to deliver shrink-wrapped

�le-system software modules that contribute �le-system functionality, and do not

require replacing or rewriting the existing parts of the �le system. The stackable

layers approach allows vertical composition of �le-system layers. Each layer must

adhere to a well-de�ned operation interface when making calls to lower layers.

Moreover, it can assume that calls from upper layers also follow this same inter-

face. This mechanism of �xing the interface between di�erent functionality layers

allows each layer to be developed independent of the other layers.

Figure 3.1 shows the layers in Ficus that are important for replication and
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Extended NFS

UFS UFS

SelectFS SelectFS ViewFS

Ficus LogicalFS

Ficus PhysicalFS Ficus PhysicalFS

Ficus LogicalFS

Figure 3.1: The basic layers in the Ficus stackable �le system

view consistency. The view consistency implementation resides in the ViewFS

layer. Either little or no changes were needed in other layers to support view

consistency. The implementation of the ViewFS layer is discussed in Chapter 4.

Here we briey describe the function of each Ficus layer and discuss some overall

features of the stackable layered Ficus implementation.

The Ficus physicalFS implements the Ficus directory structure and the Ficus

attribute storage service. It implements the functions for accessing each �le rep-

lica. The Ficus logicalFS knows about replication and maintains a mapping

between a �le and the �le replicas implemented by the Ficus physicalFS. Mount-

ing and unmounting of Ficus volumes and replica switching (the ability to switch

access from one replica to another) are implemented in the SelectFS layer. The

SelectFS layer functionality is discussed in more detail in the next sections.

Ficus stacks are dynamically composable at boot time. The position of the

layers in the stack does not have to be speci�ed at compilation. The layers that
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must be stacked, and the order in which they must be stacked, is speci�ed during

boot time. The Ficus stack is then built bottom-up. Layers can be switched

without a�ecting other layers. For example, the UFS layer can be replaced by a

log-structured �le-system layer (if its implementation out-performs the UFS im-

plementation) without a�ecting any other layer. There are some semantic limita-

tions to the stacking order. For example, the logicalFS and the physicalFS layers

in the Ficus stack cannot be interchanged because the logicalFS layer requires the

services of the physicalFS layer.

The ViewFS layer that implements view consistency is an enhancement of the

SelectFS layer. Today, both layers can be stacked in parallel in di�erent parts of

the Ficus name space. Files in the ViewFS name space are view consistent while

those in the SelectFS are not. This has several advantages, such as allowing easy

debugging of new �le-system code, and performance testing where both the old

and the new code can run in parallel.

Another feature of the Ficus stacks is fan-in and fan-out. In the �gure above,

Ficus stacks in di�erent address space boundaries are connected by stack fan-in

and fan-out. Fan-in and fan-out can occur within the same machine boundary

also. Fan-in allows clients on di�erent �le systems to access the same �le and

fan-out allows a single client to access �les in multiple �le systems. Ficus uses an

extended NFS layer to transport data between machines. This layer sits between

the logical and the physical layers and provides the logical layer at each site with

information about other replicas. No extra mechanism is required for adding the

NFS layer to the stack since fan-in and fan-out are part of stacking.

Another important feature of the Ficus stacking is that it is extensible. New

layers with custom operations can be supported anywhere in the stack. Earlier,

we had stated that the operation interface between layers is �xed. How is it
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possible to have a �xed interface and allow new operations be part of the interface?

The solution is to provide a catchall bypass operation in each layer that passes

operations to the lower layer if it does not understand the operation. An error

is returned if an operation is bypassed to the lowest level of the stack since the

operation cannot go down any further. The bypass operation allows, for example,

the extended NFS layer to pass Ficus operations (like getting Ficus attributes)

from the logical to the physical layer across machine boundaries. Layers that do

not add new functionality to an operation (such as getting UFS attributes in the

SelectFS) can simply bypass it down to the lower layers until the appropriate

layer (UFS) handles the operation. In general, the nature of the bypass operation

depends on the semantics of the layer. For example, the SelectFS layer may do

replica selection immaterial of the operation that is passed down to it. Thus,

replica selection must be part of the bypass code in the SelectFS layer. Other

layers may also have layer-speci�c code in the bypass routine of that layer.

3.2 Reconciliation and Conict Resolution

Ficus provides highly available data by allowing unsynchronized updates to dif-

ferent replicas of a �le. This can cause conicting updates or updates being made

to older copies of data. While a conservative system disallows conicting updates,

an optimistic system detects and resolves, or rolls back conicting updates. The

detection of conicting updates is done by using version vectors in Ficus.

There are six basic operations that can cause version vectors to change in Ficus.

At arbitrary times a user will update a �le. This action results in a �le replica

update which is immediately followed by Ficus update noti�cation. The update

noti�cation sends a message to all other currently accessible �le replicas. This

message is a one-shot, best-e�ort attempt to trigger Ficus update propagation by

25



other replicas. When a site receives an update noti�cation message, it invokes

update propagation from the updated replica to the old replica. This propagation

will fail if the versions conict or if some replicas are not currently available. Since

the update noti�cation and propagation operations can fail, we cannot depend on

these operations alone for �les to reach eventual consistency. To encourage �les to

reach eventual consistency, pairs of �le replicas are periodically compared using

Ficus reconciliation. Replicas pass information directly or indirectly through a

gossiping protocol [GPP93], ensuring that information exchanged in pairwise re-

conciliations eventually reaches all replicas. Replicas compare their data by using

vector timestamps. A vector timestamp A is later than another timestamp B, if

each of A's components is greater than or equal to the corresponding component

of B. Suppose A and B are the vector timestamps of the two replicas that are

reconciling. If A is not later than B, and B is not later than A, a conicting

update has been made to the �le. If conicting updates have been made to a �le,

the conict is reliably detected during reconciliation and Ficus automatic conict

resolution is attempted. When two �le replicas conict, the �le name and its type

are used to search for an applicable conict resolver [RHR94] that attempts to

merge the replicas into one version and distribute the new version. If a resolver is

not found or the merge is unsuccessful, the user must manually merge �le versions.

The view consistency implementation does not directly modify the reconcili-

ation and resolution operations in Ficus. However these operations are essential

because view consistency allows conicting updates and these must be resolved.

Ficus reconciliation is used for the garbage collection of view consistency inform-

ation. It is described in more detail in Chapter 6.
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3.3 Volumes and Location Information

A �le must be located before it can be accessed. Since �les are replicated in Ficus,

the location information consists of one or more tuples of host and pathname

information. Each host and pathname tuple uniquely determines a replica of a

�le. Ficus is a distributed �le system, and like other distributed �le systems, it

attempts to achieve name transparency, or provide the same view of the name

space from any site. Thus, a �le is named identically immaterial of the host from

which it is accessed. This requires the location information to be replicated, or

the site that stores the location information becomes a bottleneck and a single

point of failure. The replicated location database must be kept consistent like

other data.

NFS ignores the replicated location database problem by requiring the system

administrator to know the location of �les. The location information is kept at

a �le-system level rather than per-�le since there are large numbers of �les in a

system as compared to much fewer �le systems. System administrators know the

location of each individual �le system in the network and statically attach it to

individual hosts using a mechanism that is very similar to mounting in Unix.

However, if an administrator decides to mount a �le system at a di�erent point in

the name space, this information is not propagated to other sites that mount this

�le system. Ficus has been designed to scale to large numbers of hosts, replicas

and users. Clearly, a mechanism that requires agreement by human convention is

infeasible in such an environment.

Ficus has a novel solution to the replicated location database problem. To scale

well, Ficus maintains the location information at a mini �le-system level that is

called a volume. Each volume lies within a �le system and consists of a connected

set of about 100 to 10000 �les and directories. In a conventional single-host
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Unix system, a single mount table contains the mappings between the mounted-

on directories and the roots of the mounted �le systems. Ficus maintains a similar

location database for the root of the mounted volume in each of the mounted-on

directories. For example, volume A may be replicated at �ve sites and volume B

that is mounted on one of the directories of A may be replicated at seven sites.

The location information for B is then stored at the �ve sites at which volume A

is stored. If volume A must be traversed before B can be accessed, the location

information for B will always be available. Ficus assumes a global name space

and typically enforces the above restriction.

We have discussed where the replicated location information is kept. However,

the information must also be kept consistent. Typically, systems have maintained

the consistency of the location information by using a mechanism separate from

the one used for keeping the �le-system data consistent. This adds complexity to

the system. The Ficus location information is stored in �les in the mounted-on

directory. Thus the same mechanism that updates, reconciles and resolves �le

and directory information in the mounted-on volume can be used to maintain

the consistency of location information. Note that the location information is

maintained optimistically just like data. Once the location information is known,

switching to and accessing consistent replicas can be implemented as discussed

in the next section.

3.4 Replica Selection

The volume location information is optimistically maintained at mount points

in the Ficus volumes. This information contains a unique volume identi�er and

the hosts at which the volume replicas are stored. In order to access a �le in a

volume, the volume is �rst mounted using the location information. Initially, a
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single replica is mounted to speed up the mounting process. Later, other replicas

are mounted on demand.

Most �le operations do not specify the replica that must be accessed. The

system must choose and provide access to a speci�c replica of the �le. This

section provides an overview of the default replica selection process. Consistency

and availability criteria are not taken into account in the default replica selection

process. These criteria modify the default process and are described in detail in

the next two chapters.

Replica selection occurs for the �rst time during a kernel lookup operation.

The lookup operation is similar to a �le open but is also invoked for several other

�le operations. For example, a stat operation in Unix that gets �le attributes

invokes lookup, but does not open the �le. It takes a pathname of the �le as input

and returns a vnode or a �le handle for the �le. Two simple policies are used for

choosing a replica of the �le during lookup. First, the fastest available replica is

chosen when a volume root (root of the volume) is opened. The determination of

the fastest available replica is described in Chapter 5. Second, the replica of a

�le (or a subdirectory) is chosen to be the same as the currently accessed replica

of the parent directory. These rules ensure that the same replica is accessed for

all �les within a volume, and this replica is the fastest available replica. This

simple replica selection policy performs well for many applications; the number of

conicting updates that are generated is extremely low as reported in [RHR94]. A

complication occurs when �les are selectively replicated. Replicas of a selectively

replicated �le are stored at some subset of sites at which the volume is replicated.

Modi�cations to the replica selection process for selective replication are described

in [Rat95] and are not discussed here any further.

Default replica selection guarantees that �le operations will keep accessing
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the same �le replica until the replica becomes unavailable. In that case, the

replica is switched to some other available replica. After switching to the available

replica, the �le operation is attempted again. This process is done until either

the �le operation is successful, or there are no available replicas. Switching is

not attempted if a �le was open when the replica became unavailable. Instead,

the next operation on the open �le fails. This is done because the default replica

selection scheme does not guarantee anything about the consistency of the next

available replica. Here, availability is sacri�ced to avoid generating potentially

conicting updates.

When a �le replica becomes unavailable, it is added to a volume-speci�c down-

replica cache. There are two types of �le operations that are possible: operations

that create new �le handles (such as lookup), and operations that access existing

�le handles. Operations that create �le handles ignore the down-replica. If an

operation is invoked on an existing �le handle that references the down-replica,

and the �le has not been opened (as is the case with the stat operation explained

in the example above), the �le handle replica is switched to an available replica

even before the operation is attempted. This avoids long NFS timeout delays for

an operation that is very likely to fail. Eventually the volume-root replica also

gets switched to an available replica. After that, the rules for replica selection

described above ensure that all �les will access the available replica. A timeout

feature prevents a replica from being in the down-replica cache forever. Chapter 5

discusses a generalization of the down-replica cache.

A list of replicas is kept for each volume in the kernel. It is used to �nd

available replicas and is a copy of the location information stored in the mount

points of volumes. Recall that the location information is kept optimistically. This

implies that there may be times when a replica has been added, but the replica
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addition has not been noticed by a host. In that case, although the replica may

be available, switching to it is not attempted.

Although most �le operations do not specify the replica that must be ac-

cessed, there are some operations that require accessing a speci�c �le replica. For

example, �le reconciliation between pairs of replicas requires accessing speci�c �le

replicas. For such accesses, replicas are not switched even if the replica becomes

unavailable.
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CHAPTER 4

View Consistency Implementation

This chapter presents the view consistency algorithm for a generic entity and

then discusses the issues in the implementation of the algorithm for a centralized

entity. The distributed entity case has not been implemented, and issues related

to it are described in Section 9.2 on future work.

Recall that we only study the local view consistency criterion since it provides

high data availability and can be implemented relatively cheaply. The local cri-

terion allows an entity to access data that is consistent with its own actions, or

provides data versions that are later than what the entity has seen previously.

This requires keeping track of the data version that was last read or written by

an entity.

The basic view consistency algorithm involves tracking the last version of data

that was accessed and using this version to ensure that the next access yields a

later data version. Figure 4.1 shows this simple algorithm. The viewMediator

function is called by each �le operation that returns data as a result of the opera-

tion. The version and the replica (collectively called the view-entry) that was last

accessed for a particular �le is obtained from readViewEntry. This information

in the viewEntry is used to switch to a later �le replica in switchToLaterReplica.

If the view-entry for a �le does not exist, the �le has never been accessed.1 In

1Even if the �le has been accessed, the view-entry may not exist because it has been garbage

collected, as discussed in Chapter 6. Such a �le can be considered as never having been accessed.
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viewMediator(�le, entity, �leOperation)

f

viewEntry = (viewVersion, replica) = readViewEntry(�le, entity);

if (viewEntry != NULL) f

replica = switchToLaterReplica(�le, viewEntry);

g else f

replica = switchToAnyReplica(�le);

g

(data, newViewVersion) = �leOperation(�le, replica);

writeViewEntry(�le, entity, newViewVersion, replica);

return data;

g

Figure 4.1: The general view consistency algorithm
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this case, switchToAnyReplica is invoked, since any replica can be accessed.

The switching mechanism in the \switchTo" functions is described in detail in

Chapter 5 when we discuss the issues involved in switching for availability. The

�le operation is enhanced to return the data and the version of the data that

was accessed. This version and the replica that were accessed are stored by

writeViewEntry as the new view-entry for the �le, and are used for the next

access.

Note that only the readViewEntry and writeViewEntry routines require the

entity type. View consistency can be provided to di�erent entity types by ap-

propriately modifying these routines. The cost and the complexity of providing

a consistent view to an entity thus depends on the cost of reading and writing

view-entries.

4.1 Reading and Writing Version Information

The view-entry information must be stored and read as shown in Figure 4.1.

Several factors must be taken into consideration before designing a view-entry

storage and retrieval service. First, these operations are in the critical path of

a �le operation. For the view consistency overhead to be low, the cost of these

operations must be small compared to the cost of a �le operation. Second, this

informationmust be stored persistently for a persistent entity. Even for a transient

entity, this information may become large enough for it to be stored on disk.

Third, the storage and retrieval frequency of the view-entries are roughly the same,

since readViewEntry and writeViewEntry are invoked for each �le operation

that goes through the viewMediator. Finally, the view-entry information must

be stored for every �le that is ever accessed. The number of �les that have been

accessed and thus the number of view-entries grows with time. Therefore, the
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storage service must be able to handle large numbers of view-entries.

The system must delete view-entries that are no longer required, or else the

number of stored view-entries will increase with time. We note that view-entry

deletion is not in the critical path of a �le operation, and its execution can be made

relatively independent of the �le operation and the view consistency algorithm.

The truncation of this information is thus described separately in Chapter 6.

4.1.1 View-Entry Storage Service

The view-entry storage requirements are large storage, fast read and write access

and persistence. A good database satis�es all these requirements. We chose the

db package built at UC Berkeley by Margo Seltzer [Sel91]. The db package is

relatively small, provides compact persistent storage and caches large chunks of

the database in memory for e�cient access.

The view consistency implementation has been done within the Ficus kernel.

There were two choices regarding the placement of the database package. The

package can be run as a user-level daemon process, or be made a part of the

kernel. There are several advantages of using a daemon process. First, the

database package does not have to be ported to run in the kernel. A port involves

considerable e�ort since the �le-system interface exported by the kernel is very

di�erent from the interface within the kernel. Second, the kernel size is not a�ected

since the database package is a separate user-level process. This is especially

important because the package caches large parts of the database in memory.

Third, bugs in the database either do not a�ect the kernel or at most a�ect the

�le-system name space that is view consistent. The main disadvantage of using a

separate process is that at least one kernel-to-user and one user-to-kernel context

switch is needed every time the database is accessed. Since the view-entry must
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be read before, and written after a �le operation, four extra context switches are

done for any �le operation that goes through the viewMediator. Since this is

unacceptable, kernel caching is used in our implementation to solve this problem.

4.1.2 View-Entry Caching

The view-entry returned by readViewEntry can be cached in the kernel. The

user-level daemon does not have to be invoked as long as the view-entry of a

�le exists in the cache. If the cache hit ratio is high, the amortized per-�le-

operation overhead of the readViewEntry routine will be signi�cantly reduced.

This approach can potentially provide an e�cient solution to the view-entry access

problem with little extra e�ort.

Many �le operations require a �le handle or a vnode rather than the �le name.

The view-entry is cached with the �le handle and is available in the kernel as long

as operations occur on the �le handle. It is cached the �rst time the viewMediator

code is invoked on a �le handle and can be removed from the cache when the �le

handle is destroyed. In practice this implies that the view-entry is read from

the view-entry database on each �le open. After that the current value of the

view-entry is cached in the kernel until the database is updated with this cached

view-entry.

The readViewEntry operation involves context switches as well as reading

from the disk (assuming that the view-entry is not cached in memory in the

database). Thus each �le open requires an extra disk operation.2 Assuming

that normal opens require a single disk operation, the readViewEntry operation

adds 100 percent overhead to an open. This is very expensive in normal Unix

environments where opens can constitute 15 percent of the total time spent in �le

2We assume that the key of the disk block is in memory.
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operations [FE89].

The number of readViewEntry operations that go to disk can be reduced

by caching the view-entries more aggressively. Unix kernels already cache �le

handles in the dnlc or the name lookup cache. A mapping is maintained between

the �le name and its �le handle. Since we keep the view-entry with the �le handle,

it stays in the kernel as long as the �le handle stays in the cache. The e�ectiveness

of this cache depends on the locality of �le accesses. A more aggressive solution

caches the view-entries independent of the dnlc cache. However, we have not im-

plemented such a cache since it is not clear that a separate cache will signi�cantly

improve performance compared to a dnlc cache.

Another method of reducing the delay in reading view-entries is to perform

the �le operation optimistically. The �le operation can be done in parallel with

reading the view-entry. If the �le operation yields a data version that is later

than the version in the view-entry, the operation is successful. Otherwise, the

operation must be tried again with a consistent replica. We see in Chapter 5

that this optimism pays o� since the �le replica that will normally be accessed

by the �le operation in Figure 4.1 (even if switchToLaterReplica has not been

invoked) is the same replica as the one in the view-entry. Thus the replica will

be view consistent. The optimistic �le operation is especially useful for remote

data because the view-entry can be obtained from the local disk while the data

is obtained in parallel from a remote disk. Unfortunately, the viewMediator

function is in the Ficus kernel, which does not support kernel threads. Although

it is possible to implement parallel operations, the overheads of the implementation

are signi�cant.3 We have therefore not included optimistic �le operations in the

current implementation.

3A separate user-level context is needed. Its overheads include context switching, data

communication and synchronization.
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4.1.3 View-Entry Update and Storage

Figure 4.1 shows that both the data and its version are obtained from the �le

operation. The version information is then stored by writeViewEntry. Normally

�le operations return only the data. Obtaining both the data and its version from

a �le operation requires changes to the �le operation at the data servers. If the �le

operations cannot be changed at the data servers, the version information can be

obtained separately after getting the data. Such a version is the same as, or newer

than4 (later than) the data version that is obtained. Since the version information

is later than the accessed data, the next access also yields a later version. There

are two problems with getting the version information separately. First, the same-

version criterion can not be supported. The version information may be newer

than the data retrieved, and thus the next access does not yield the same data

version. Second, it necessitates going over the wire twice instead of just once, since

the version information must be obtained separately. We have modi�ed some of

the �le operations (such as lookup) in Ficus to return the data and the version

information. For other operations, the version information is obtained separately.

As an aside, some operations (e.g., lookup) can return cached data. In this case,

the version information does not have to be obtained from the remote servers

again since the cached data version is already known. The performance di�erence

between getting version information along with the data versus separately is shown

in Chapter 7. These �gures show that obtaining the version information together

with the data drastically reduces the view consistency overhead. We therefore

plan to change all the relevant Ficus operations to return the version information

and data together.

Once the data version is obtained, it must be stored in the view-entry. If

4The version is newer if the �le is updated by another entity after the data is retrieved, but

before the version is obtained.
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the �le has never been accessed, the view-entry does not exist, and it must be

initialized with the new data version. If the view-entry does exist, but the version

has changed (it can only have increased), or a new replica has been added or

deleted, the view-entry in the kernel is updated with the new version. A dirty bit

is set when the version is updated in the cached view-entry.

For view consistency, the updated view-entry (as determined by the dirty bit)

must be stored on disk before the data is returned to the user. This ensures that

the system records a �le version on persistent storage that is either the same as

or newer than (later than) what the user has seen. The next access yields data

that is later than this recorded version and is therefore view consistent. Note

that recording the view-entry before returning the data is similar to write-ahead

logging for providing atomicity in transactional systems.

Unfortunately, it is very expensive to write to disk after each version update,

since each �le write then incurs an extra disk operation. Moreover, many dir-

ectory operations also update versions, and this requires extra disk operations.

Further, in Unix kernels, writes are generally deferred for e�ciency. Thus imme-

diately writing an updated version does not necessarily achieve its desired e�ect

of recording a later version to disk before returning the data to the user.

We decided to write updated versions to disk on a �le close. However, there

are certain operations (such as directory operations) that update versions without

doing an explicit open. All such operations have a �le handle associated with the

�le. Therefore, updated versions are also stored to disk when �le handles are

destroyed. Since �les may remain open, or �le handles may exist for a long time,

updated versions are also periodically stored back to the view-entry database

every 30 seconds. The view-entry database ushes its own updated memory

entries to disk every 30 seconds. These mechanisms together ensure that every
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view-entry that was updated more than 60 seconds ago has been stored on disk.

Thus a 60-second window of vulnerability exists during which users may see a

data version that is not recorded persistently. After a machine crash and boot,

users may see older versions of those �les that they had been accessing a minute

before the crash.

4.2 Operations That Need Consistency

Until now, we have not speci�ed the �le operations that require view consistency.

Data operations like �le reads and writes clearly require view consistency since

only later �le data versions must be provided. However, �le operations also read

and modify �le attributes and the name space. Many users and applications

store important information in the �le attributes. Thus �le attributes must be

consistent with the �le data. For example, the Unix make command requires

consistent �le times or else it can miss �le dependencies.

Directory Consistency Directory operations modify the name space of the �le

system. For example, a rename changes the name of a �le or a directory. View

consistency is also useful for directory operations. For example, suppose a user

renames a �le. The replica that was being accessed then becomes unavailable,

and the system starts accessing an older replica of the directory. The new �le

name is no longer visible, and it causes confusion. View consistency on directory

operations disallows accesses to the older directory. Only later directory versions

are accessible.

Directory operations occur frequently in Unix environments. Thus direct-

ory view consistency can add signi�cant overhead in a view consistent system.

Chapter 7 presents the cost of providing �le and directory view consistency. The
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costs were measured separately for the �le and the directory operations.

Attribute Consistency View consistency is optionally provided for �le attrib-

utes in Ficus. This ensures that �le attributes are as consistent as �le data. It

is optional because of the heavy cost of providing view consistency for attrib-

utes. There are several commonly used Unix operations such as find and ls

-l that invoke large numbers of attribute operations without opening any �les.

View consistency for attributes imposes a heavy overhead on these operations.

Without attribute view consistency, users may see older attributes although the

data version is view consistent.

A problem that occurs with �le attributes in the later-version criterion is that

attributes may be from a later version of the �le than the �le data that has been

accessed. This is also possible in a single copy system. For example, a user reads

a �le and then reads the time at which the �le has been updated. If another user

updates the �le between these two operations, then the �le update time that is

read by the �rst user is later than the �le data that he has seen. In other words, �le

data and �le attributes are e�ectively separate objects. This is normally accepted

in most environments.

4.3 Local Replica Optimization

An optimization can be done in the view consistency algorithm for a centralized

entity when a �le replica is stored on the local host (a machine associated with

the centralized entity). If a replica exists on a host, the default replica selection

procedure ensures that entities on that host always access the local replica. If

the host crashes, the entities either die (such as processes on the host), or don't

function until the host comes up again (a user working from a portable). Thus
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entities never need to access remote data.

We assume that a replica does not undo the e�ects of an update that it has

incorporated. Therefore, the version of a �le increases monotonically at each

replica. Since entities always access the local replica, they access later versions

of the �le, or always obtain view consistent data. Therefore the view-entries do

not have to be accessed or kept at all. Thus, when a local replica exists, view

consistency can be provided to centralized entities at no cost.

Replica Addition and Deletion The discussion above assumes that a replica

is already present on the host at which the centralized entity resides. Some special

actions must be taken when the local replica is added or dropped. Suppose a

user decides to add a local replica of a �le that he has been accessing remotely.5

The local replica must be view consistent. This is not hard to ensure since the

remote replica from which the data was copied is view consistent. After the local

replica has been created, the view-entry can be removed from the database and

all accesses directed to the local replica.

A local �le replica deletion must record the version of the deleted data. The

next access to a remote replica uses this version to ensure view consistency.

5Replication agents have also been built at Ficus that automatically add (or drop) replicas

of �les [Kue94].
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CHAPTER 5

Replica Switching for Consistency and Improving

Availability

A distributed system provides data consistency as well as highly available data.

Chapter 4 describes the view consistency algorithm and several e�ciency issues

for a centralized entity implementation. However, it does not discuss replica

selection and switching issues related to providing consistency in the function

switchToLaterReplica shown in Figure 4.1. In this chapter, replica switching

issues for improving availability and for providing view consistency are discussed.

We will see that there are tradeo�s in providing high data availability and consist-

ency at the same time. Normally, view consistency does not signi�cantly reduce

availability. Moreover, non-view consistent data is very confusing to the user.

Therefore, we take the position that data must always be view consistent, even if

it implies reducing availability.

Section 5.1 presents replica switching to improve availability. It does not take

view consistency into account. There are three goals of switching for availability:

� Data is accessible as long as any replica is available.

� Data is accessed from the fastest available replica.

� The overheads of replica selection and switching are minimized.
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Suppose the access latency and bandwidth to replicas A and B are roughly the

same. If all accesses are being made from replica A, it may become overloaded

and appear to be slower than replica B. Suppose all accesses are then switched to

replica B. Replica B then behaves exactly the same as replica A. Thus, the system

pays a high switching cost, and accesses switch back and forth between A and

B without necessarily improving availability. Obviously, replica switching should

avoid this ping-pong e�ect and its associated costs. Ideally, replica switching

should occur when the availability bene�ts of switching to a faster replica outweigh

the costs of selecting the fast replica and switching to it. This discussion does

not take data consistency into account. Sometimes switching may not be possible

because the faster replica is inconsistent. Section 5.2 describes replica switching

for consistency and shows how it a�ects availability.

5.1 Switching to Improve Availability

Figure 5.1 shows the view consistency algorithm in a block diagram. The previ-

ous chapter discussed the readViewEntry and writeViewEntry modules. This

chapter discusses the shaded modules that perform the replica selection and

switching functions. The switchToReplicaOnError module was not shown in

Figure 4.1 in Chapter 4. This module switches accesses to an available replica

when the current replica becomes unavailable. Section 3.4, which presented the

default replica selection policy, discusses this functionality briey. The aim of

the switchToAnyReplica module is to provide the fastest available replica. The

switchToLaterReplica module is similar except that it provides view consist-

ency also. It is discussed in the next section.

The switchToAnyReplica module is misnamed. Although it allows switching

to any replica (as opposed to only a later replica), its main purpose is to select
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Figure 5.1: A block diagram of the view consistency algorithm. Replica switching

is done in the shaded modules.
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and switch to a highly available replica. It selects a highly available replica using

two criteria as shown in Figure 5.2. The �rst criterion, accessibility, selects a

replica that has a high probability of being available. Such a replica is called an

up-replica. The second criterion, optimality, selects the fastest available replica,

called the fast-replica. The precise de�nition of a fast-replica is given later. The

choice of a highly available replica is made using only one criterion at a time, i.e.,

either the up-replica or the fast-replica is chosen (also, neither may be chosen).

It may seem that the fastest available replica should also be highly avail-

able and thus the optimality criterion should include the accessibility criterion.

However, a distinction is made between the two criteria because they are used

under di�erent conditions. The accessibility criterion is used for short-term avail-

ability. When the replica from which data was being accessed becomes unavail-

able, accessibility ensures that data is provided from an up-replica. Therefore, the

up-replica must be highly available in the short-term failure mode of the system.

The optimality criterion is used for long-term availability. If the current replica

that is being accessed is relatively \slow," optimality selects and switches accesses

to the fast-replica. This switching is performed for overall long-term throughput

and e�ciency, and not for failure correction. Thus the fast-replica may not ne-

cessarily be highly available in the short term period. Each criterion optimizes

for a di�erent set of operating conditions. If the two criteria are combined into a

single one, the system will not be as e�ective. The next two sections describe the

two availability criteria in detail.

5.1.1 The Accessibility Criterion

The accessibility criterion accomplishes the �rst goal of switching for availability,

i.e., providing data as long as any replica is available. There are two steps in the
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process:

� Notice that a replica has become unavailable.

� Pick a replica that is available (the up-replica) and switch to this replica at

the appropriate time.

Nothing needs to be done as long as a replica is being successfully accessed.

The switchToReplicaOnError module notices that the current replica has be-

come unavailable when a �le operation returns with an availability error. The

current replica is marked a down-replica (a replica that has a high probability

of not being available). An up-replica must be chosen at this time. There is no

replica that is known to be highly available. Thus the replicas are tried in order

until an access to a replica is successful. The access order depends on several

factors such as knowledge of an up-replica (if it had been chosen earlier and is

not the current down-replica) and replica access times that are determined for the

optimality criterion. The chosen replica is marked the new up-replica and the �le

operation is attempted with this new replica. Note that the down-replica cache

has just one entry per volume. A replica is not marked a down-replica, even if

it is not available when di�erent replicas are tried. This would mask the original

(current) replica that was put in the down-replica cache.

When a �le operation fails, the switchToReplicaOnError module switches ac-

cesses to an available replica, and sets an up-replica and a down-replica. Presum-

ably other �les in the volume have also been accessing the down-replica. Accessib-

ility disallows any further accesses to the down-replica. The switchToAnyReplica

module uses the accessibility criterion at this time as shown in Figure 5.2. If a

down-replica is going to be accessed for some other �le in the volume, it switches

the �le operation to the up-replica. The switching is done aggressively before the
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Figure 5.2: The switchToAnyReplica module switches to a highly avail-

able replica based on the accessibility and the optimality criterion. The

switchToReplicaOnError module marks an unavailable replica as being a

down-replica and �nds an up-replica. An external availability server �nds a

long-term fast-replica. A replica that is switching-factor times slower than the

fast-replica is considered a slow-replica.
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�le operation can commence.

We had mentioned earlier that the accessibility criterion is used for short

term availability. A replica cannot be considered an up-replica if it has not been

accessed for a long period. Similarly, a replica is not considered a down-replica

for long periods, since machines generally go down for short periods. For example,

the replica that is typically the fastest available replica may currently be down.

We do not want to disallow access to it forever. Thus there is a user-changeable

timeout (default value is 5 minutes) after which the down-replica cache is cleared.

If the down-replica is still unavailable after the timeout period, the next attempted

access to it will put it back in the down-replica cache.

5.1.2 The Optimality Criterion

The optimality criterion accomplishes the second goal of switching for availability,

i.e., providing data from the fastest replica. This improves the overall long-term

throughput of the system.

The de�nition of the fastest available replica has not yet been made clear. Is it

a replica with the highest bandwidth connection to the client accessing the data,

or is it a replica with the lowest latency connection? The fastest available replica

may have to take both these factors into account. For example, a high bandwidth

connection is preferable for large �le transfers, while a low latency connection is

useful for small �le transfers. We assume that both these factors (and maybe

others) can be combined into a single availability value, and the replica with the

smallest positive such value is the fastest available replica. An interface and a

default method for calculating the availability values is provided in Ficus, and

is discussed below. It allows the user to easily modify the availability values

depending on the system requirements.
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The switchToAnyReplica module uses the accessibility criterion when the

replica that is going to be accessed is a down-replica. Otherwise the optimality

criterion is tried (Figure 5.2). If the availability value of the current replica is

greater than switching factor times the availability value of the fastest replica (or

the current replica is switching factor slower than the fastest replica), switching

to the fastest replica is attempted. If the switching factor is close to one, replica

switching occurs when the current replica is slower than the fastest one. This

ensures that the fastest replica is accessed all the time. Unfortunately, a slight (and

perhaps temporary) change in the availability value can induce switching between

replicas. If this occurs frequently, it adds excessive switching costs to the system.

Thus the value of the switching factor should take bandwidth and switching costs

into account. In Ficus, the switching factor is set to 2. Performance �gures in

Chapter 7 suggest that this factor can be set to a smaller value since the cost of

switching is very low in our system.

If switching to the fastest replica is successful, nothing else has to be done.

However, if the fastest replica is not available, then it is marked as a down-

replica and its availability value set to an unde�ned value of zero. An unde�ned

availability value signi�es that either the replica availability has not been measured

or the replica is unavailable. Switching (for optimality) to such a replica is never

attempted.

Maintaining Availability Values The availability values must be obtained

before they can be used to determine and switch to the fastest available replica.

Note that availability values are relative values since they are only compared

among themselves. The following should be kept in mind while calculating avail-

ability values:
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� Availability values should take their past values into account since sudden

uctuations in replica availability should not a�ect the values severely.

� The calculation of the values can be relatively complex because it does not

have to be done in the critical path of a �le operation.

� The values should be calculated for each replica in the same way as much

as possible.

� The values should be calculated with the same frequency for each replica.

This ensures that the availability values for di�erent replicas are equally

accurate or reliable.

� Increasing the calculation frequency improves the accuracy of the availability

values, but increases the calculation overheads also.

� Di�erent types of �le operations should be used for calculating the values,

and they should be weighted in proportion to their use during real system

operation. A single operation may emphasize a particular aspect of avail-

ability (such as latency).

� The interface should allow the user to easily modify the values for individual

systems.

The availability calculation code attempts to address these issues. Many of

these issues suggest that a separate process (and not the kernel) should be used

to calculate the availability values. This availability daemon calculates the values

independent of processes in the kernel and can be made as complex as required.

Also, it can easily be made user changeable.

Availability values are calculated in two steps. First the current availability

value (CAV ) of a replica is determined based on the round trip times of open,
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read and write since these form a representative set of �le operations. The

current availability value is calculated every ten minutes, and is an estimate of

the instantaneous replica quality. It takes both the bandwidth and the latency

into account. The replica bandwidth is determined by invoking read and write

operations on a relatively large-sized �le,1 while replica latency is measured by

invoking lookup on a zero-length �le. The �le operations are done several times

to get better averages.

After CAV has been determined, a smoothed (or mean) availability value

(SAV ) is calculated based on CAV and its past values. The smoothed availability

value is an estimate of the long-term average quality of a replica. The kernel uses

the smoothed availability value to determine the fast-replica. The calculation of

the SAV uses exponential means. Therefore SAV depends on the previous SAV ,

the current availability value (CAV ) and a constant reactivity factor Rf that lies

between 0 and 1. The relationship can be expressed with the following formula:

SAV = SAV � Rf + CAV � (1� Rf )

This mean is appropriate for most systems because it captures past values

reasonably well and requires little space or time overhead. Unfortunately, the

exponential mean depends very heavily on the choice of the reactivity factor. The

mean responds to the current value sharply when the reactivity value is small, but

becomes unresponsive when it is large. Instead of a single reactivity factor, we

use two reactivity factors (with values 0.8 and 0.66) for calculating the mean. The

smaller factor is used when CAV > SAV , and the larger factor is used otherwise.

1Since we do not want to store a large �le in each volume, a standard system �le that is

stored at each site is used. This assumes that the access times to di�erent volume replicas at

the same site are roughly the same.
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This ensures that the mean availability value responds quickly when the current

availability value is larger than the mean. Otherwise the mean is not a�ected as

much. Studies have shown [KP87] that this mean is su�ciently responsive to the

current value (especially when it is large) and yet not too responsive.

A new vnode operation has been implemented that transfers the availability

value for each replica in the volume from the daemon process to the kernel. The

kernel uses these values to update its view. If the kernel knows that a new replica

of a volume has been added or deleted, or volumes have been dynamically mounted

or unmounted, the return status of the vnode operation indicates that the daemon

should reread the volume information. The addition of the new vnode operation

is simple in the Ficus stackable layers architecture.

Note that the kernel only reads the availability values. It is solely up to the

daemon to generate these values. However, there is one case in which the kernel

modi�es these values. The kernel resets the availability value to be unde�ned

when it tries to switch to the fastest available replica, and the fast-replica is not

available. This ensures that the kernel does not keep trying to switch to this rep-

lica. The kernel may learn about sudden changes in the quality of a replica before

the daemon notices the change (especially when availability decreases suddenly).

However, only one process should determine the availability values, or else the

di�erent values may not be comparable because of the di�erent overheads in-

volved in the calculation. For example, the total time to perform a read operation

as measured within the kernel will be less than the time measured at the user

level. Thus, in the case discussed above, the kernel sets the availability value to

be unde�ned, and does not use it for any further comparison until this value is

set by the daemon again.
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5.2 Switching for Consistency

The switchToReplicaOnError module shown in Figure 5.1 provides available

replicas when the current replica is down. Similarly, the switchToAnyReplica

module provides both available replicas (when the current replica is unavailable)

as well as fast replicas when the current replica is slow. Both these modules

increase data availability, but do not provide any view consistency guarantees.

They are useful either for data that does not require consistency guarantees, or for

�les that do not have view-entries (�les that are being opened for the �rst time).

In this section, modi�cations to these modules for supporting view consistency

are described. We also show how these changes a�ect availability.

Only a minor change is necessary in switchToReplicaOnError to support

view consistency. Recall that when a replica fails, the replicas are tried until an

available replica is found. Accesses are then switched from the failed replica to the

available replica. An entity has a view-entry for each �le that it has accessed in

the past.2 For view consistency, the available replica's data version must be later

than the version in the view-entry of the �le. Since Ficus stores replica versions as

vector timestamps, this comparison is done in exactly the same way as described

in Section 3.2. If the replica's data version is not later than the view-entry version,

further accesses cannot be made from this replica. Thus replicas must be tried

until a replica that is both available and view consistent is found. This replica

can replace the failed replica. Note the reduction in availability; an older replica

is not provided although it may be available.

Since major modi�cations are needed in switchToAnyReplica for supporting

view consistency, a separate switchToLaterReplica module handles �les that

2Unless the view-entry has been garbage collected, in which case the �le can be treated as if

it has never been opened (described in Chapter 6).
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have an associated view-entry. Several issues must be considered before building

this module. While the switchToReplicaOnError module is invoked only after an

availability failure, the switchToLaterReplica module lies in the critical path of

most �le operations. Thus its overheads should be low. Moreover, it must always

provide view consistent data. Finally, within the constraints of consistency, it

must try to provide available as well as optimal replicas.

From the consistency standpoint, the common case in switchToLaterReplica

has low overhead. The data is view consistent as long as it is accessed from the

same replica because this data is either the same as or newer than the data version

last seen. However, this data replica may be a slow replica. In that case, it may

be bene�cial to switch to a faster replica. For example, suppose a replica that is

nearby goes down, and a distant replica starts being accessed. After some time

the nearby replica comes back up. Although accesses to the distant replica are

view consistent, there are availability advantages of switching to the closer replica.

The switchToLaterReplica module is shown in Figure 5.3. There are four

decision functions and three sub-modules A, B and C that perform the switching

tasks. The common path is shown with thick lines. In this path, the current

replica, or the replica that is going to be accessed, is the same as the replica in

the view-entry and thus is view consistent. Moreover, this replica is neither down

nor slow, and therefore it is highly available. No replica switching is required in

this case, and the decision functions 1 and 4 can be executed quickly.

Suppose the current replica is not the same as the view-entry replica. This

can happen, for example, if the lookup returns a �le handle for a replica that is

di�erent from the view-entry replica.3 If the view-entry replica is not slow, the

3Since the view-entries contain the �le handle rather than the �le name, the lookup has to

be done before getting the view-entry for the �le. Thus the replica in the view-entry can be

di�erent from the replica returned by the lookup.

55



switch to
view−entry
replica

Yes

No

Yes

No

No

Yes

A

B

C

  current
 replica is
inconsistent

view−entry
 replica
 is slow

Yes

No current
 replica 
    ==
view−entry
 replica

1 2

3

4

switch to
consistent
and (fastest)
accessible
replica

Try switching
to consistent and
up/fast−replica

current
replica
is down
or slow

Figure 5.3: The switchToLaterReplica module
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current replica is switched to the view-entry replica. This is the �rst switching

step that is tried because the view-entry replica is known to be view consistent.

If the switching is unsuccessful, or the view-entry replica is very slow, the

current replica is checked for consistency. The current replica's version is obtained

now if it has not been obtained earlier. Since the current replica may be stored

at a remote site, this operation can be expensive.

If the current replica is not view consistent (it is older than the version in the

view-entry), the sub-module B is invoked. This module does an exhaustive search

of all replicas (in availability value order) to �nd another consistent replica. Note

that module B is very similar to the switchToReplicaOnError module (that has

been modi�ed for view consistency as discussed above). The only di�erence is

that while switchToReplicaOnError is called on an availability failure, module

B is invoked on a consistency failure. However, from the consistency standpoint,

both these errors are very similar since they both prohibit access to data.

Finally, if the current replica is either down or slow, switching to the up-replica

or the fast-replica is attempted. The decision function 4 and module C together

are similar to the switchToAnyReplica module. The only di�erence is that the

up-replica or the fast-replica must be checked for consistency in sub-module C. If

the fast-replica is available but not consistent, it is marked as being inconsistent.

Switching to an inconsistent fast-replica is not attempted for a certain period

(default 5 minutes). It is assumed that if a single �le at a particular replica is

inconsistent, other �les at that replica (in the same volume) are also inconsistent.

If this (early) assumption is not supported by future experience, we will make

appropriate modi�cations to our current switching algorithm.

Each of the sub-modules returns a consistent replica. Preference is given to

the view-entry replica (unless it is much slower than the fast-replica) because it
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is known to be view consistent, and therefore switching to it does not require an

exhaustive search of all replicas. The di�erence between sub-modules B and C

is that while the former does an exhaustive search, the latter tries to switch to

known replicas. Moreover, an error returned by B implies that data is unavailable,

whereas the current replica is still usable if there are switching errors in C.
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CHAPTER 6

View-Entry Garbage Collection

View-entries are kept for each �le that has been accessed by an entity as de-

scribed in Chapter 4. Each entity has a logically separate view-entry database

that contains these view-entries. This view-entry database is stored at the client

site associated with the entity.

The view-entries for persistent entities must be stored persistently because

these entities can exist for long periods of time, across login sessions and machine

reboots. The database for transient entities may also have to be stored on disk

if its size becomes very large. Since view-entries are kept for each accessed �le,

their number grows over time. These view-entries must be garbage collected or

deleted so that the database size does not increase inde�nitely. The database for

transient entities can be entirely removed when the entity terminates. A di�erent

criterion is needed to delete the view-entries of persistent entities.

View-entry deletion can be done by using the following rule: the view-entry

is removable when all the �le replica versions are later than (newer than or equal

to) the �le version in the view-entry. The view-entry determines the replicas that

satisfy the consistency criterion. Since all the replicas satisfy the later version cri-

terion, the view-entry is not required anymore. Any replica that is next accessed

will yield a later version. This idea is used in the design of the view-entry deletion

algorithm.
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Recall from Chapter 4 that a view-entry for a �le contains the version and

the replica of the �le that was last accessed. The view-entry version determines

whether the next access satis�es the consistency criterion. In Ficus, a �le version

is a vector timestamp.1 The view-entry also contains the last access time. This

will be used for the garbage collection algorithm. Thus, a view-entry has the form

(f; vf ; s; tf), where vf is the last version of the �le f accessed at time tf from site

s.2

6.1 Simple View-Entry Deletion Algorithm

A simple view-entry deletion algorithm can obtain the current version of each of

the �le replicas. If all the replicas have versions that are later than the view-entry

version, the view-entry can be deleted. Unfortunately, this algorithm has two

problems. All replicas may not be simultaneously available. In mobile computing

environments, replicas may not frequently communicate with each other. When

several mobile replicas exist, view-entries may never be deleted. Moreover, this

deletion mechanism is very expensive. All the �le replicas must be consulted on

the y to delete a view-entry.

This simple algorithm obtains all the �le replica versions and then deletes a

view-entry based on this version information. The version acquisition operation

can be separated from the deletion operation. This would solve the problems men-

tioned above. The replica versions can be obtained when replicas communicate

with each other. The view-entry deletion algorithm can use this information, at

some later time, to decide which entries can be deleted. A deletion algorithm that

separates these two operations in presented below.

1A vector timestamp can be newer, older than, or incomparable (conicting) with another

vector timestamp.
2The terms site and replica are used interchangeably.
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6.2 Deletion Algorithm

For view-entry deletion, every replica must have a version that is later than the

view-entry version. This information is distributed across all replicas. The task

is to collect this information at each replica. Recall that a version is a vector

timestamp of length n, where n is the number of replicas of a �le. If each replica

version is acquired and stored at each site, the storage requirements will be n

versions at each site, orO(n2) values per �le at each site. This storage requirement

is prohibitive.

An equivalent deletion criterion that leads to a more e�cient version acquis-

ition algorithm is the following: the view-entry can be deleted when the view-

entry replica has propagated the view-entry version to all other replicas. Note

that for this criterion, a site must learn what other sites know about itself, i.e.,

have the other sites seen a �le version that it had stored (in the past)? We call

such information an acknowledgment. Suppose Ai denotes an acknowledgment

timestamp that is stored at site si. It is a vector timestamp, and its jth com-

ponent (or Ai[j]) states that site si knows that site sj has learned about every

version that site si had until time Ai[j]. Each site that stores a replica stores

such an acknowledgment timestamp. The deletion algorithm uses this acknow-

ledgment information to decide whether a view-entry can be deleted. The deletion

algorithm is described here. The following sections present e�cient algorithms

for obtaining acknowledgment information.

Consider the view-entry (f; vf ; si; tf) on some client site, where vf is the last

version of the �le f accessed at time tf from site si. If tf � mini(A
i[j]), site

si knows that all other sites must have seen the version vf of the �le f , or all

sites have a version later than vf . This is the view-entry deletion criterion. In

other words, the client can obtain the minimum component of Ai from site si (the
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site from which it last accessed the �le) and delete the view-entry if this value is

greater than tf .

Figure 6.1 shows the algorithm for deleting view-entries. The deletion al-

gorithm uses the acknowledgment timestamp which is stored at the site from

which the �le was last accessed. The timestamp is used to determine if the entry

can be deleted.

This algorithm solves both the problems of the previous deletion algorithm.

The view-entry deletion information (or the acknowledgment timestamp) is ac-

quired independently of the view-entry deletion process. Thus, all replicas do

not have to be available during deletion. The previous algorithm accessed all the

replicas for the version information during the deletion process. This algorithm

accesses only one replica during deletion.

The acknowledgment information states what a site knows that others have

learned about itself. Obtaining acknowledgment information requires propagating

�le and version information between replicas. This �le and its version propagation

are performed by the reconciliation process in Ficus as described in Section 3.2

earlier. The basic reconciliation algorithm is presented below since the acknow-

ledgment algorithm uses this algorithm.

6.3 Reconciliation Algorithm

Reconciliation propagates �le replica data and version information between pairs

of sites. It occurs at a volume granularity for ease of replica maintenance and

e�ciency reasons. Let a volume consist of a set of �les that are replicated at sites

s1; s2; : : : ; sn. When site sj reconciles with site si, it gets updates from si. These

updates may have been generated at any site. An update generated at site sk at
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//

// Returns true if entry can be deleted.

//

bool

deleteableViewEntry(entry)

f

bool deleteEntry = False;

(f; vf ; si; tf ) = entry;

if (si 6= localMachine) f

// Go to the machine that stores replica si

// to check if the entry can be deleted.

On (site si) f

deleteEntry = deleteableViewEntry(entry);

g

g else f

if (tf � minj(A
i[j])) f

deleteEntry = True;

g

g

return deleteEntry;

g

Figure 6.1: Algorithm for deleting view-entries
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Figure 6.2: File data and version propagation in the reconciliation algorithm in

real time

time t is denoted by Uk(t) (or by Uk
k(t)). When this update has been propagated

to site si, it is denoted by Uk
i (t). An e�cient propagation mechanism transmits

those updates that si has generated or incorporated (from other sites) but sj has

not yet received.

Let site sj reconcile with si successfully at time V j[i] (more accurately, V j[i]

is the starting time of reconciliation). The signi�cance of V j[i] is the following:

after site sj successfully reconciles the volume, each �le in the volume at sj has a

version that is the same as or newer than (later than) the �le version that existed

at si until time V
j[i]. Site sj records the last successful reconciliation times for all

replicas in the n component reconciliation vector V j. Thus, V j records what site

sj has learned about others. V j[i], the ith component of the reconciliation vector

V j indicates that site sj knows about all versions that site si has seen until this

time.

Figure 6.2 shows the reconciliation algorithm in real time. The reconciliation

vector V j is sent from site sj to site si. This vector (that describes what site sj

knows about others) is used by site si to e�ciently transmit �le data that site si

has seen but site sj has not.

64



si ! sj

1. Update Propagation:

At site si :

For each site sk

if (V i[k] > V j[k]) then (A)

For each update Uk
i (t)

// Update is generated at site sk at time t

// and present at si

if (t> V j[k]) then (B)

Transmit Uk
i (t)

At site sj :

Receive updates from si and incorporate them

2. Timestamp Propagation:

At site si :

Transmit reconciliation-vector timestamp V i

At site sj :

V j = max(V i; V j)

Figure 6.3: The reconciliation algorithm
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The reconciliation algorithm shown in Figure 6.3 propagates information from

si to sj. The reconciliation vector V j is assumed to be at site si already. In the

update-propagation step, updates at site si that are generated at some site sk (or

Uk
i (t)) are sent to site sj if the update has not been seen by site sj (step B). As

an optimization, updates generated at site sk do not have to be considered (or

sent) when si does not know more than sj about sk as shown in step A. The

reconciliation-vector timestamp V i is also sent to site sj. It contains timestamps

at the start of update propagation. The timestamp V j is updated to be the item-

wise maximum of V i and itself at site sj. This step ensures that sj knows about

all versions that sk had seen until the timestamp V j[k]. The acknowledgment

algorithm uses this reconciliation-vector timestamp information.

6.4 Acknowledgment Algorithm

The timestamp information in the reconciliation algorithm tells a site about the

�le versions that it has received from other sites. Thus, site sj knows whatever

site si knew until the timestamp V j[i]. Similarly site si knows whatever site sj

knew until the timestamp V i[j]. Recall from Section 6.2 that we need acknowledg-

ment timestamp information, or the vector Ai at site si for view-entry deletion.

The acknowledgment-vector timestamp Ai records what site si has learned about

what other sites know about itself. A client can delete a view-entry for a �le that

was last accessed from site si once site si has learned that the �le version has

reached all other sites. The reconciliation algorithm by itself does not provide ac-

knowledgment information. In particular, acknowledgments require that si learn

about the timestamp V j[i] from each site sj, since sj knows about si until this

time. Unfortunately this timestamp information is needed at si, but is spread

across all replicas.
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If pairwise communication is guaranteed between every pair of sites, then

si can obtain V j[i] from sj while communicating with it the next time. The

acknowledgment-vector timestamp Ai[j] can then be updated to be the value of

V j[i]. The signi�cance of the acknowledgment timestamp for view-entry deletion,

as discussed above, is that site si knows that every other site has learned about

any version that it knew until minj(A
i[j]). Thus, a client can delete a view-entry

that contains any such version.

Direct Communication The acknowledgment algorithm as presented here is

a minor variation of the reconciliation algorithm. Note (from the previous para-

graph) that when site si reconciles with site sj, only the jth component of Ai

(or Ai[j]) is incremented.3 Conversely, the acknowledgment time Ai[j] at site

si increases only if site si reconciles with sj. Thus, the forward progress of the

acknowledgment algorithm needs each replica to periodically communicate with

all the others.

In a mobile replicated system, this is a very strong requirement. The pro-

gress of the mutual consistency algorithm should only require indirect commu-

nication. For example, two mobile sites may communicate with a stationary site

at di�erent times and thus never come in contact with each other directly. The

acknowledgment algorithm must allow information between the two mobile sites

to be propagated through the stationary site. The reconciliation algorithm that

is shown in Figure 6.3 allows such indirect communication. The reconciliation-

vector timestamp V i[j] at site si can increase even though site si may never

directly communicate with site sj. We would like the acknowledgment algorithm

(that increments Ai) to support indirect communication also.

3This is unlike the reconciliation-vector timestamp V
i, where each component can get

incremented.
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6.5 Indirect Communication Acknowledgment Algorithm

Gossiping allows indirect communication between replicas and can be used to

update the acknowledgment-vector timestamp. Consider the reconciliation-vector

timestamp V j[i] at sj. Site si must learn about V j[i] in order to update the

jth component of its acknowledgment vector Ai. Since site si and sj are not

guaranteed to communicate, this timestamp must also be stored at other sites

and propagated indirectly. Since no pair of sites are guaranteed to communic-

ate directly, site sj must send V j[i] to all sites, so that the timestamp eventu-

ally reaches site si. Site sj does the same for every site. Thus, it gossips its

reconciliation-vector timestamp V j to all sites. Other sites store a copy of the

timestamp V j. Each site stores a copy for every other site and thus must store n

vector timestamps. Thus, the indirect communication acknowledgment problem

requires a matrix timestamp. E�ectively, a site stores a copy of what each site

knows about others and thus what each site knows about itself (the acknowledg-

ment information).

The following notation is used in the �gure shown below:

1. M i[j; k]: The matrix at si is M
i. M i[j; k] is the (j; k)th element of matrix

M i. It states that si knows that sj has learned about all updates from sk

until time M i[j; k].

2. M i[j]: The jth row of M i. It records what site si knows about the updates

that site sj has seen. This value is a copy of V j (or what site sj has learned

about others). Its value is always less than or equal to the current value of

V j.

3. V i: The reconciliation-vector timestamp at si is the i
th row of M i or M i[i].
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si ! sj

1. Update Propagation:

Same as in Figure 6.3.

2. Timestamp Propagation:

At site si :

Transmit matrix timestamp M i

At site sj :

(Vector propagation) V j = max(V i; V j)

(Matrix propagation) M j = max(M i;M j)

Figure 6.4: The indirect communication acknowledgment algorithm
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The acknowledgment-vector timestamp Ai at si now becomes the ith column

of the matrix timestamp M i. Elements in this column record what site si knows

that others have learned about it. Thus, if a �le was last accessed from site si

before minj(M
i[j; i]), or before minj(A

i[j]), then si knows that the version of the

�le last accessed has reached all other sites and the view-entry can be removed.

The acknowledgment algorithm is combined with the reconciliation algorithm

and presented in Figure 6.4. The only new step in this combined algorithm

is the acknowledgment matrix propagation step. This step is similar to the

reconciliation-vector timestamp propagation step. Consider the kth row of the

matrix M j, or M j[k]. It records what site sj knows about the updates that sk

has learned. Taking the maximum of the matrices in this step ensures that site

sj learns as much as site si knows about the updates that others have seen. This

algorithm updates the acknowledgment information (Ai at si) using gossiping.

Thus, Ai[j] (or M i[j; i])) can increase even if site si never communicates with site

sj.

The algorithm requires storage for an n2 matrix per site (where n is the number

of sites and each entry of the matrix is a four-byte integer) and communication of

the n2 matrix for each pairwise interaction. However, each pairwise interaction

involves all the �les in a volume. Normally there are 100-10000 �les in a volume.

Thus, the overhead of matrix timestamp storage and propagation is not necessarily

large.

6.6 Local Timestamps

Global timestamps cannot be assumed since the replicas are stored on a distrib-

uted set of machines. We use local timestamps of each machine (assumed to be
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monotonically increasing) in the deletion, reconciliation and the acknowledgment

algorithm. These timestamps can be meaningfully compared only if they are

issued from the same machine.

When a �le is accessed from site si, the timestamp tf in the view-entry

(f; vf ; si; tf ) is obtained from site si. Consider the timestamp V j[i] in Figure 6.3.

The timestamp value is generated at site si and stored at site sj in the timestamp-

propagation step. The acknowledgment timestamp Ai[j] is a copy of an older

value of V j[i] and thus is also generated at site si. Similarly all values in Ai are

generated at site si. In Figure 6.1, the timestamp tf is compared with the ac-

knowledgment timestamps in Ai for view-entry deletion. All these timestamps are

generated on site si, so their comparison is meaningful. Similarly, the timestamps

that are being compared in the reconciliation algorithm and the acknowledgment

algorithm can be shown to be generated on the same machine.

The timestamp tf is not used to decide whether a replica meets the consist-

ency criterion. Since tf is generated on the replica that was last accessed, this

timestamp cannot be compared with a �le version on some other replica. We use

the vector timestamp vf for comparing replica versions. Thus, view-entry deletion

and version comparison (for checking the consistency criterion) use two di�erent

timestamps. The deletion algorithm requires a separate timestamp because ver-

sion vectors are �le-speci�c, whereas the deletion timestamp is compared with a

volume-wide acknowledgment timestamp.

6.7 View-Entry Deletion Conclusions

View-entries for all the �les that have been seen by an entity are stored in a

database for view consistent operation. This database grows over time and must
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be truncated so that its size does not increase inde�nitely.

View-entries can be deleted when all the �le replica versions are later than

the view-entry version. A simple view-entry deletion algorithm can obtain the

versions of each of the �le replicas and delete the view-entry if all the replicas have

versions that are later than the view-entry version. This is ine�cient because all

replicas must be contacted for the version information. Moreover, it requires all

the replicas to be available simultaneously.

Instead, the version information can be obtained independently of the dele-

tion process. This is done at a volume granularity. Each site learns about the

�le versions it has seen from others (the timestamp propagation step in the re-

conciliation algorithm) and what others know about itself (the acknowledgment

algorithm). A client can remove a view-entry for a �le (the deletion algorithm),

if the site from which the �le was last accessed knows that the version last ac-

cessed has been seen by all the other sites. This information is obtained from the

acknowledgment algorithm.
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CHAPTER 7

Performance Measurements

This work has two main components: supporting view consistency, and provid-

ing highly available and quickly accessible replicas. Both the components have

been implemented on Ficus, a SunOS 4.1.1-based kernel, and have been run-

ning at UCLA since October 1995. The implementation uses a stackable layers

framework [HP94] within the kernel, as described in Section 3.1, and a user-level

view-entry database server. A deletion server obtains the acknowledgment inform-

ation from the reconciliation (and acknowledgment) process and uses it to delete

view-entries from the database. Finally, replica switching for higher availability

is done within the kernel, with the help of an availability server that determines

the availability values.

The performance of the system depends on several factors, such as the type of

the database being used for storing the view-entries, e�ectiveness of view-entry

caching within the kernel, size of view-entries, cost of replica switching, and the

cost of determining the best available replica and deciding when to switch to

it. The e�ectiveness of view-entry deletion depends on the policy for choosing

pairs of replicas for reconciliation so that the acknowledgment information rap-

idly propagates between replicas, leading to quick view-entry deletion. These

factors can be grouped into view consistency performance, replica switching for

availability measurements, and view-entry database deletion measurements.
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Figure 7.1: Local access times of base Ficus and view consistent Ficus

7.1 View Consistency Measurements

A careful assessment of the bene�ts of providing view consistent data involves

measuring the reduction in the number of reads and writes to stale (not the latest)

data versions when compared to a purely eventually consistent system. The costs

of view consistency are the reduction in availability (again as compared to an

eventually consistent system) and the system cost of providing view consistency.

This assessment raises several problems. Although stale data writes (conicting

updates) are detected by using version vectors in Ficus, there is no easy mech-

anism for detecting reads to stale data versions. Moreover, very few conicting

updates are generated in current Ficus [RHR94]. This is partly because most
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machines that run Ficus are in a well connected LAN environment. This makes

it very di�cult to measure the reduction in the number of stale reads and writes,

and also the reduction in availability. Therefore, only the system cost of provid-

ing view consistency has been measured. We hope to get better estimates of the

bene�ts and costs of view consistency in a fully mobile and widely distributed

environment in the future.

The cost of view consistency is measured by comparing view consistent and

non-view consistent accesses. This is done for locally stored as well as for remotely

stored data. All the measurements are taken on the same kernel while running

the non-view consistent and view consistent code in di�erent parts of the name

space. Four Sun IPCs connected by a standard Ethernet connection within the

Ficus LAN are used. SCSI disks are used for persistent storage, and each machine

has 12 MB of main memory. The tests were performed during periods of minimal

external network activity.

There are seven benchmarks that are used in the evaluation. The �rst test is

the modi�ed Andrew Benchmark (mab) [HKM88, Ous90] that is intended to model

a normal mix of �ling operations, and hence be representative of performance in

actual use. The second and third tests are local and remote recursive cp and the

fourth test is grep. Each of these tests exercise the read and write �le operations.

The �fth and sixth tests are find and rm programs that primarily execute recursive

directory operations. The last test is the ls program that reads directory contents.

The mab test is performed on a 1.3 MB tree. The grep and ls tests operate on

/usr/include/sys that has 104 �les containing 336KB of data. All other tests

operate on the /usr/include hierarchy that contains 1311 �les with 4.2 MB of

data. Some of the tests were performed repeatedly to obtain measurable results.

Each of the benchmarks are done with one, two and three data replicas. The
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Figure 7.2: Remote access times of base Ficus and view consistent Ficus. The

lower graph shows (in gray) the decrease in overhead when the view consistency

attributes are obtained along with data.
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results shown below are a mean of the results for di�erent numbers of replicas.

View consistency is provided for �le and directory operations. It is not provided

for attributes because we believe that the cost of providing attribute consistency

can be prohibitive in Unix systems. However, this is a performance issue and not

an inherent weakness of the system.

Figure 7.1 shows a graph of the elapsed and system times of base Ficus and

view consistent Ficus for local accesses. A local access is an access to a replica that

is located on the local machine. We had presented the local replica optimization

in Section 4.3 that eliminates all view consistency overhead for local accesses

by centralized entities. We performed our experiments without the local replica

optimization because we wanted to get a lower bound on the cost of providing view

consistency for distributed entities, which cannot make use of the local replica

optimization. The con�dence intervals are only shown for the elapsed times. The

view consistency overhead for most benchmarks is between 2 to 3 percent. The ls

benchmark shows a smaller overhead because the cached view-entries are reused in

successive iterations of the test. The cp and grep tests have a higher overhead of

8 percent because these programs perform many �le opens. Recall that �le opens

may involve fetching view-entries from the disk (via the database server) unless

they are cached in the kernel, and this contributes to the overhead. Find and

rm do not show similar overheads because in these cases attribute and directory

operations predominate, and we do not provide attribute consistency by default.

The upper graph in Figure 7.2 shows the elapsed and system times of base

Ficus and view consistent Ficus for remote accesses. Accesses are done remotely

when a local replica does not exist. The view consistency cost in the graph is

divided into two parts: the cost of providing view consistency for �le operations,

and the cost for directory operations. Note from the upper graph that find, rm
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and ls have no view consistency overhead for �le operations, since these opera-

tions predominantly operate on directories. The overhead of view consistency for

remote accesses is also shown in the lower graph of Figure 7.2. This overhead

includes both the �le and directory operations. The overhead for all tests except

grep is between 5 to 12 percent. The grep overhead is a horrible 185 percent.

To understand why grep performs this way, we performed some micro bench-

marks and found that most of the overhead occurs because we obtain view con-

sistency attributes separately from data (after each �le operation). Thus for each

�le operation (for which view consistency is provided), we go over the wire twice.

The gray area in the lower graph shows the overhead of going over the wire a

second time for the view consistency attributes. We measured this overhead by

using attributes that are cached during opens at the client kernel rather than going

to the server for the attributes.1 The lower graph shows that if attributes can be

obtained with the data, the overhead for grep and for most other benchmarks

decreases to between 1 to 8 percent. Again cp shows an overhead of 8 percent

because it performs several �le opens.

We have explained that most of the overhead of grep is due to going over the

wire twice, and thus can be eliminated if the servers were to return the attributes

along with the data. However, this does not explain the overall 185 percent over-

head of grep and 11 percent overhead of cp although they perform similar kinds

of operations. We again performed micro benchmarks with the kitrace [Kue95]

kernel measurement tool. We found that the cost of getting remote attributes is

8.5 ms, cost of running grep on a single �le is 17.4 ms and the cost of performing

a cp from a remotely mounted �le system to a remote replica in Ficus is 173.5

ms. A grep on each �le gets remote attributes twice. This by itself doubles the

1This can violate view consistency for operations other than open, but is nonetheless useful

for understanding the overhead.
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time for executing a grep operation. The cp program gets remote attributes once

for each �le. Thus its cost increases from 173.5 to 182 ms, or an overhead of 5

percent.

Summarizing, the large overhead of grep is because the cost of getting attrib-

utes separately is a �xed cost operation and grep is a fast operation. Second, the

overhead in gray in the lower graph of Figure 7.2 can be eliminated if the data

servers are modi�ed to return the attributes with the data. Finally, as explained

in Section 4.1.2, the 2 to 8 percent overhead of view consistency can be reduced

even further, by getting the view-entries from the local disk in parallel with the

�le operations.

7.2 Availability Measurements

Chapter 5 discusses issues related to replica switching for improving availability

and for providing view consistency. Replicas are switched when the new replica

improves overall access times and is view consistent. The overall availability of

each replica is measured in terms of replica availability values as discussed in

Section 5.1.2. The costs of replica switching are the selection of the fast-replica,

checking the view consistency of the fast-replica, and performing the actual switch.

We performed an experiment that illustrates replica switching in Ficus. The

aim of the experiment was to measure the costs and the bene�ts of replica switch-

ing. The replica availability values were simulated for the experiment as shown in

the upper-most graph of Figure 7.3. This was done for two reasons: availability

values do not change predictably in a real system, and do not change signi�cantly

(or frequently) in our well-connected LAN environment. The seven benchmarks

that were used for measuring the overhead of view consistency for remote ac-

79



71000 72000 73000 74000 75000 76000 77000

Time in Seconds

0

10

20

30

R
ep

lic
a 

A
va

ila
bi

lit
y 

V
al

ue
s

Availability Values of Replica 1
Availability Values of Replica 2
Availability Values of Replica 3

71000 72000 73000 74000 75000 76000 77000

Time in Seconds

0

1000

2000

3000

N
um

be
r 

of
 A

cc
es

se
s 

to
 E

ac
h 

R
ep

lic
a

Accesses to Replica 1 
Accesses to Replica 2
Accesses to Replica 3

71000 72000 73000 74000 75000 76000 77000

Time in Seconds

0

10

20

30

40

50

N
um

be
r 

of
 R

ep
lic

a 
Sw

it
ch

es

Figure 7.3: The replica availability values for three replicas, the replicas accessed,

and the number of switches performed in a period of one hour and forty minutes
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cesses (Section 7.1) were run with these simulated availability values. For each

access, the replica that was accessed was logged (shown in the middle graph of

Figure 7.3). Moreover, the number of replica switches during the period of the

experiment2 was also logged as shown in the lowest graph in Figure 7.3. The

availability3 values were changed every 300 seconds. They were �xed at 15 for

replica 1, varied periodically between 7 and 23 for replica 2, and varied randomly

between 0 and 31 for replica 3.

The lowest graph in Figure 7.3 shows the periods in which replica switching

occurred. The middle graph shows that at the same periods more than one replica

is accessed. Replica switching takes place when the currently accessed replica is

at least switching-factor (set at 2) slower than the best replica. This is true for all

the replica switches except the last one (around time 76800 seconds) when accesses

switch from replica 3 to replica 2 although replica 3 is the fastest replica. This

happens because replica switching for view consistency gives higher preference to

the replica in the view-entry. The availability value di�erence between replica 2

and 3 is not much at this time. Replica 2 was being accessed in the past (around

time 76000 seconds). Thus many �les have replica 2 in their view-entry. Since

replica 2 is not slow (not twice slower than the fastest replica), these �les still try

to use replica 2 (since it is known to be view consistent). This condition does not

occur in any other part of the experiment.

The total number of accesses in the experiment was 192215. With no replica

switching, the average access time would be 15 (in terms of availability values),

since replica 1 would be accessed each time. The average time for each access

2The experiment was started at 19:44p.m. or approximately 71000 seconds since 12 a.m.

While the average total time to perform these benchmarks is approximately 50 minutes (as can

be seen by taking the sum of the elapsed times of each of the benchmarks in the upper graph of

Figure 7.2), this experiment took 100 minutes because each access is logged to disk.
3A faster replica has a lower availability value.
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with replica switching is 13.36 which represents an improvement of 11 percent.

The ideal average access time (the replica with the lowest access time is accessed

every time) is 9.68, a 36 percent improvement.

An interesting result of the experiment as seen in the lowest graph is that just

a few replica switches induce every �le to switch replicas. This happens because

of the default replica switching rule. When a directory gets switched to a new

replica, later accesses to the �les in the directory start by accessing the same

new replica. The replica in the view-entry of the �le is the last accessed replica.

However, this replica is very slow at each replica switching period (except the last

one as explained above). Thus the new replica is given higher preference, and

therefore accessed, and switching happens naturally for most �les. Therefore the

explicit cost of switching in Ficus is very low, and the switching-factor can be set

to a value smaller than 2, thus further improving availability.

7.3 View-Entry Deletion Measurements

The view-entry database is a crucial element of the view consistency implement-

ation. For example, its size can a�ect the performance of the system.4 More

importantly, its size can a�ect the system usability. A growing view-entry data-

base can �ll the available disk resources. Therefore, it is critical to be able to

bound the database size.

There are several parameters that a�ect the average database size. The rate at

which the database grows depends on the number of accesses to di�erent �les by

an entity in a given time period. The rate at which the database can be truncated

depends on the truncation frequency, the data access pattern, the reconciliation

4Since a hashing database package has been used in the implementation, we do not expect a

signi�cant reduction in performance with increasing database size.
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frequency and topology between replicas, and the number of replicas. An e�ective

evaluation must take all these factors into account. The data access patterns can

vary widely, and several reconciliation topologies are possible. The reconciliation

frequency and the number of replicas can also be varied. An e�ective evaluation

requires a simulation that takes each of these factors into account. Such an e�ort

is beyond the scope of this work.5 Nevertheless, below we qualitatively examine

the e�ect of each of these factors on the database size.

The version in the view-entry of a �le is a vector quantity; its length is pro-

portional to the number of replicas of the �le. In Ficus, the view-entry size is

44 + 8 � n bytes where n is the number of replicas. The 8 bytes per replica

contain the version vector element and the replica identi�er. Out of 44 bytes, 32

bytes are for the global Ficus �le identi�er. Since our experiments ran with 3

replicas, the view-entry size is 68 bytes. Assume that the database representa-

tion has approximately 50 percent space overhead. Thus each view-entry would

require 100 bytes. Assume also that a user on an average accesses 200 new �les

(or �les whose view-entries are not in the database) every day. Note that the user

may access a much larger number of �les but the view-entry of many of these �les

would be in the database because of �le access locality [KPR94]. On this basis

the view-entry database for each entity grows by 20 KB per day.

The rate at which the database can be truncated clearly depends on the fre-

quency with which truncation is attempted. The average database size will become

smaller as the frequency of truncation is increased. Other factors such as the data

access pattern and the reconciliation topology a�ect the rate of database trunca-

tion, but do not directly depend on the truncation process itself. The view-entry

5A similar simulation has been done by Golding[GL93]. We hope to use his results to �ne-

tune our reconciliation topology.
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is removable when the �le modi�cation time (and not the �le access time6) in

the view-entry is less than the acknowledgment time. Suppose the data is not

modi�ed often, or is mostly read-only. Then each replica eventually has the latest

version and knows that others have seen this version. Thus the view-entry is im-

mediately removable and can be removed the �rst time truncation is attempted.

The view-entry truncation takes longer with increasing numbers of �le writes.

Another important factor that determines the rate of view-entry truncation

is the reconciliation topology. At Ficus, we use an adaptable ring topology to

reconcile the replicas. The acknowledgment algorithm takes two round trip com-

munications between replicas before every replica learns that all other replicas

know about its state. Suppose each replica reconciles with the next replica in the

ring in the correct order once a day. Then the acknowledgment timestamps are

approximately two days old. Therefore, any �le that was modi�ed two or more

days in the past has been acknowledged, and its view-entry can be deleted at the

clients. Thus each entity needs a maximum of 40 to 60 KB of storage for the

view-entry database. If �les are mostly read-only and accesses do not modify

the �les, the storage requirements will be smaller. Note that there are two as-

sumptions in the ring topology argument. First, a single ring of communication

can complete in a day, and second, every replica can communicate with the next

replica at the appropriate time. The �rst assumption may not hold with large

numbers of replicas. A di�erent reconciliation topology (such as a hierarchical

one) can be used to speed up propagation of acknowledgment timestamps. The

second assumption is more serious because replicas may not be readily available

in a mobile environment. Assuming that users are willing to keep about 5 MB for

the database, this would allow mobiles to remain disconnected for over 200 days.

6If the �le access times were compared, all replicas would have to reconcile with each other

before a view-entry could be removed.
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The arguments in the previous paragraphs have been based on average data ac-

cess rates, the reconciliation frequency and reconciliation topology in Ficus. More

experience is needed with view consistency before we can con�rm our analysis

about the expected size of the view-entry database.
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CHAPTER 8

Related Work

Database systems have traditionally used one-copy serializability for maintaining

consistency of replicated data, because it can be enforced without knowledge of the

semantics of data, or the programs modifying the data. Several approaches for sup-

porting one-copy serializability in distributed systems have been proposed [BG81].

One-copy serializability uses a strong consistency replica control algorithm to map

logical data into physical replicas. Strong consistency provides consistent data by

restricting concurrency and availability of data [FM82, All83] to a single network

partition. Moreover, it adds considerable communication overhead to support the

needed synchronization. Both restricting availability and adding communication

overhead contradict the goals of providing higher data availability and increased

access speeds in distributed systems. Replication is used to overcome some of

these problems. Various algorithms have been proposed for maintaining consist-

ency among the replicated copies [Tho79, Gif79]. However, availability is still

limited to a single partition when strong consistency is used for replica control.

8.1 Typed Consistency

Several researchers realized that accesses do not have to be serialized for main-

taining data consistency for certain data types [FM82, All83, DS83, WB84]. The

semantics of the data type can be used to de�ne an alternative consistency cri-
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terion. Much of this research was aimed at providing consistency for the directory

data structure that allows the insert, delete and list operations. Many applications

such as mail and calendar use a variation of the directory data structure.

The directory consistency algorithm consists of two parts: data propagation

and data integration. Data propagation ensures that an update (an insert or de-

lete) operation at a replica reaches all the other replicas. Distributed logs are used

to achieve data propagation. At most, an element can be inserted once. This en-

sures that once an object has been deleted, it cannot be inserted again. Similarly,

the order of the two operations is always known, with the insert occurring before

the delete. Moreover, list is a read operation that does not need to be serializable

with respect to the other operations (it can return older data). Data integration

(at each replica) uses these operation semantics to integrate the received update.

The data propagation and integration steps help ensure eventual consistency of

the replicas, even though the directory operations are not executed in a serially

consistent manner.

The data propagation algorithm uses distributed logs. These logs must be

garbage collected, so that the log sizes do not grow inde�nitely, and their transfer

between replicas does not become a bottleneck. The replicated log solution by

Wuu [WB84] addresses this problem. Later, Heddaya, et al., [HHW89] propose

a lower overhead solution, although garbage collection is more conservative. The

acknowledgment algorithm presented in Section 6.5 borrows several ideas from

Wuu.

Consistency algorithms that use data semantics provide high data availability.

Garcia [GAB83], Sarin [Sar86] and Ladin [LLS90] generalize the directory solution

for other data types. Garcia uses a data-patch tool that automates the data

integration step. The correct �nal state of a database and corrective measures to
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reach it are prede�ned for various potential non-serializable operations. These

are used to reach eventual consistency. Sarin uses commutativity of operations

to transform the log at each site, so that it is mutually consistent with the logs

at other sites. The lazy replication work by Ladin, et al., provides eventual

consistency for updates and also supports causal ordering for reads.

Utilizing data semantics for eventual consistency is further explored by several

systems such as Locus [PWC81], its successor Ficus [GHM90] on which we have

implemented view consistency, Coda [Sat89] and Bayou [TTP95]. The data integ-

ration procedure is further developed in these systems and a distinction is made

between conict detection and conict resolution. Locus, Coda and Ficus use

version vectors to detect write-write conicts. Bayou uses an application depend-

ent mechanism for detecting such conicts. It also detects read-write conicts

between replicas.

8.2 Client-Based Consistency

This section discusses work in which the clients (rather than the data replicas)

provide consistency guarantees.

Unlike other eventual consistency systems that provide consistent data within

a partition, Ficus and Bayou allow reads or writes to any available replica without

requiring synchronization with any other replica. This provides the highest pos-

sible data availability. View consistency has been implemented on Ficus to reduce

client inconsistencies. Similarly, Bayou provides session guarantees [TDP94] us-

ing the same version vector approach as ours. Session guarantees provide view

consistency for processes or process groups. Bayou does not provide view con-

sistency for other transient entities, or for persistent entities. For example, a
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user logging out of a session can see older data versions at the next login session.

Finally, they do not discuss session guarantees for distributed entities. Our work

can be generalized to distributed entities, as described in Section 9.2 on future

work.

Client-based consistency has been used by Alonso, et el., [ABC90] to provide

quasi-copy consistency. Quasi-copies are cached (or stashed) copies of data that

may be somewhat out-of-date but are guaranteed to meet certain consistency

predicates. For example, the predicate can state that the copy must not be more

than ten minutes old, or more than two versions old. Client consistency for

quasi-copies can generally be maintained only for age-dependent predicates. For

example, the \not more than two versions old" predicate can only be enforced

by the server. Unfortunately, it may not be possible to guarantee age-dependent

predicates in a large distributed system, where network partitions are frequent,

and it is essential to provide data availability.

Client-based computing has been proposed by Banerji and Cohn [BCK93].

They propose a mobile computing model where each user sees the computing

world through a personalized view called the computing persona. Persona man-

agement includes cost-e�ective access to resources, and is the responsibility of

the system software. Applications (with the help of application agents) migrate

along with the mobile user by capturing their e�ective state at one site and then

restarting the captured state at the next site. This solution is application spe-

ci�c and does not address issues related to �le consistency in a replicated mobile

environment.
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8.3 Causal Consistency

Ladin, et al., [LLS90] support causal ordering of data reads, and causal, forced

and immediate ordering for updates. This work borrows some of its ideas from

previous work at ISIS [BJ87]. Since Ladin develops a more e�cient solution for

replicated systems, we will only discuss their work. Causal ordering is similar

to Lamport's happened-before relationship [Lam78]. An operation A is causally

related to operation B if the execution of B a�ects A, or if A's input can depend on

B's output. The forced ordering ensures that a \forced" operation is performed in

the same order at all the replicas with respect to other forced operations. Forced

ordering is enforced by using a primary site mechanism, where the primary site

orders the forced operations. A majority consensus method is used for committing

the forced updates. Immediate operations are performed at all the replicas in the

same order will respect to all other operations. A conservative locking protocol

implements immediate operations. Both the forced and immediate operations

require high network connectivity, which is not available in highly distributed or

mobile environments. Thus we do not consider these operations to be useful in

our environment.

The causal ordering of reads and updates provides guarantees that are sim-

ilar to view consistency. However, unlike view consistency, which applies to all

�le data, support for causal ordering requires application-speci�c changes. Each

application must specify the causal relationship between the operations that are

performed by the application. Another important di�erence between causal or-

dering and view consistency is that causal ordering is enforced at the replicas

(the data servers) while view consistency is enforced at each client. This has two

implications. First, view consistency distributes the task of enforcing consistency

to the clients, thus reducing the load on the servers. This makes view consistency
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more scalable (in terms of server load) than a causal ordering solution. Second,

since causal ordering is enforced at the servers, it can provide inter-client (or

inter-entity) guarantees. View consistency deals with this issue by combining the

clients into a single entity, and providing consistency guarantees to this entity

group.1 However, the server-based causal ordering solution can provide more

generic guarantees.

8.4 Replica Switching Schemes

Although considerable research has been done on providing consistent replicated

data, not much work has focused on providing the fastest available replica to

improve data availability. Systems have been built with either one or the other

goal in mind. For example, wide-area �le-system solutions provide consistent

replicated (or cached) data, but do not aggressively search for the best available

replica.

The replica switching work by Zadok and Duchamp [ZD91] addresses the

problem of providing data from the fastest available replica. They improve the

amd daemon [CS93] in Unix systems (which demand mounts and unmounts �le

systems) and allow transparent switching of open �les to replacement �le systems

that are dynamically discovered. The latency of the NFS lookup operation is

monitored and used to assign availability values to di�erent replicas. However

their solution works for read-only �le systems, because they do not deal with

replica consistency issues. Thus issues related to tradeo�s between consistency

and availability do not have to be addressed. Moreover, instead of individual �les,

whole �le systems are switched at a time. Their switching policy aggressively

1The combining of the clients into a single entity can be done dynamically. View consistency

must ensure that each of the clients access data that is the same as or newer than (later than)

the latest data that any client has accessed
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switches individual �les to use the replacement �le system. This disallows load

balancing between the replicas since all �les are accessed from either one replica

or the other.

The NCSA scalable HTTP server by Katz, et al., [KBM94] also addresses

some of the replica switching issues in their replicated server. The motivation

for replicating the server was to serve an ever-growing body of clients. They

use Transarc's Andrew File System to replicate their data. Replica switching is

accomplished by dynamically changing the mapping between hostnames and IP

addresses (using a modi�ed named server and BIND protocol). Thus a single

hostname can dynamically map to multiple data replicas. Each new query for the

HTTP server returns the next data replica in a round-robin fashion.

The problem with this approach is that the consistency and availability issues

are addressed separately. A system can provide better performance by considering

both the issues together. For example, the round-robin approach may try to

provide a replica that is currently not consistent. Consistency will ensure that

the replica gets the latest copy before it returns the data. This may reduce the

performance as compared to providing data from a consistent replica (that is

perhaps more loaded). One of the goals of our work is to address switching

issues for view consistency along with providing high availability and high system

performance.
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CHAPTER 9

Conclusions

We summarize the motivations for view consistency, key issues in its design and

implementation, and directions for future research.

9.1 Summary

Replication for High Availability High availability of data is critical for

many kinds of applications, including distributed applications. Distributed ap-

plications access data from several di�erent machines. The key to providing highly

available data for such applications is to replicate, or cache the data close to the

location at which it is going to be accessed. Application clients can then access

the nearby data replica most of the time. This replica is highly available and

presumably provides the lowest latency and highest bandwidth access among all

the data replicas. Both replication and caching introduce the data consistency

problem. Intermediate states of data or inconsistent data may be visible during

accesses unless special actions are taken.

Conservative Consistency Several systems have been built that use the one-

copy serializability consistency protocol or its variants. These protocols require a

strong consistency replica control protocol. Strong consistency ensures that each

read or write access yields the latest version of the data. This makes it an attract-
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ive consistency model for users. Unfortunately, these protocols are conservative

and disallow accesses in all but one network partition. Often communication links

are inherently unreliable in mobile and highly distributed systems. In such situ-

ations, an application will not be able to access data, even though the data may

be available in its partition.

Optimistic Consistency The approach taken by optimistically replicated sys-

tems is to allow accesses to any �le replica at any time. This provides highly

available data. Updates are generated at a site and integrated at other sites over

time. This can lead to reads returning old data and to conicting updates, or

updates being made to old copies. These inconsistencies are detected and re-

solved when data is integrated, rather than when it is generated. The goal is

to maintain the semantics of data without using a conservative criterion such as

strong consistency. Optimistic consistency is essential for large-scale distributed

systems because conservative schemes either require well connected networks or

don't provide highly available data.

Problems with Optimistic Consistency Unfortunately, optimistic schemes

do not provide any consistency guarantees during accesses. This does not gen-

erally cause serious problems for �les that are write-shared among many users.

It has been observed that such �les are not frequently updated. Thus conicting

updates are uncommon for shared �les. But the problem of old-reads for both

shared and non-shared �les and old-writes for non-shared �les are still possible.

The old-read problem is that users make updates and then read older copies of

data in the future. The old-write problem for non-shared �les is that a single user

may update multiple copies of data and cause conicts. Both the old-read and the

old-write problems occur because consistency guarantees are not provided when
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the access is done.

View Consistency The aim of this work is to provide highly available and

consistent data in very widely separated distributed and mobile systems. We

propose the view consistency model that is built above an optimistic model and

provides instantaneous consistency guarantees. The model allows an entity to

have a consistent view of the data relative to the actions the entity has taken.

This is a client or entity-based consistency model. It is our hypothesis that view

consistency maintains most of the availability bene�ts of the optimistic model

because inter-entity consistency is not enforced. The clients (and not the data

servers) check for consistency during accesses. Moreover, no global information is

kept or used for maintaining view consistency. The consistency criterion can be

of di�erent types, although the local, later-version criterion is most useful. Sim-

ilarly, entities can be of di�erent kinds. We have described the view consistency

algorithms for centralized entities. Future work will focus on view consistency for

distributed entities.

View Consistency Algorithm The view consistency implementation requires

storage, retrieval and deletion of the version information of accessed �les. The

last version of each �le seen by an entity is kept in a view-entry database. Files

versions that are later than the view-entry version satisfy the consistency criterion.

The retrieval and storage of the version information in the view-entry must be

low overhead operations since all �le operations that need view consistency invoke

these operations. The number of view-entries in the database grows over time,

and must be deleted so that the database size does not increase inde�nitely. When

all the �le replica versions are known to be later than the �le version in the view-

entry, a view-entry is removable. An acknowledgment algorithm is needed to
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collect this information.

Availability and Replica Switching An important goal of a distributed sys-

tem is to provide highly available data. We discuss replica switching algorithms

that improve availability and, at the same time, provide view consistency. A dis-

tinction is made between accessibility (continuous access to some data replica)

and optimality (accessing fastest data replica). While the former improves short-

term availability, the latter improves long-term availability. There are tradeo�s

in providing highly available data and consistency. Normally, view consistency

does not signi�cantly reduce availability. Moreover, non-view consistent data is

very confusing to the user. Therefore, we take the position that data must always

be view consistent even if it implies reducing availability. In a few cases where

the user can tolerate inconsistent data, mechanisms can be provided to explicitly

override view consistency.

9.2 Future Research Directions

There are several view consistency issues that are unresolved and need more

research. More experience with view consistent systems is needed. Does view

consistency satisfy the consistency demands of many applications? A user-level

version of Ficus called rumor is currently being developed at UCLA. We plan to

add view consistency to rumor and deploy it at various sites shortly. The bene�ts

and costs of view consistency for large-scale disconnected and mobile use can

then be measured more precisely. It will also give us an idea of the applications

that bene�t most from view consistency, and the applications that need higher

consistency (at the cost of reduced availability).

A distinction is made between centralized and distributed entities in Sec-
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tion 2.2. The current system implements view consistency for centralized entities

only. This is very useful when a user operates from a single machine all the time.

For example, a user may carry a portable and work on it all the time. Here the

machine is the centralized entity that sees consistent views.

A distributed-entity view consistent system will be useful for a much larger set

of applications. For example, users work on di�erent machines at di�erent times.

The user works on either a powerful desktop, or a server machine in the o�ce.

While commuting or at home, he uses a personal portable machine. Ideally, the

user should be able to access �les on any one of these machines at a given time,

immaterial of whether the other machines are accessible at that time, and still

see consistent �les. Another example involves users working simultaneously on a

small, multiple set of machines. They edit their �les on one machine and compile

them from the other machine. If these two machines access di�erent replicas, the

results can be very confusing. However, this problem will not arise if the two

machines are considered as part of a single distributed entity.

These examples show that there are at least two modes of distributed opera-

tion: either the accesses from di�erent machines can be non-overlapping in time,

or they can be simultaneous. We discuss some thoughts related to implementing

view consistency for both types of accesses.

9.2.1 Non-Overlapping Distributed Accesses

One method of implementing view consistency when accesses from a distributed

set of machines are non-overlapping in time is to transfer the view-entry data-

base itself. In e�ect, the view-entry database moves along with the user. Mov-

ing a user's state along with the user has been proposed earlier by Banerji and

Cohn [BCK93]. Before �les can be accessed from the new machine, the view-
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entry database from the old machine1 is integrated with the database on the new

machine. The integration involves taking a union of the view-entries of the two

databases. If an entry exists in both the databases, the later entry is chosen. Once

the integration is done, further �le accesses will be view consistent with respect

to both the machines.

The cost of the database integration mechanism lies in copying the database

and its integration. Suppose a user goes home in the evening and starts working

on his portable. A replica of the �les that he uses in the o�ce exists on his

portable. The user has two options. The database can be copied from the o�ce

machine and integrated. If the local �les are not view consistent (with respect

to the integrated database), �les are accessed remotely, or lazily copied (copied

when required). The other option is to fully reconcile the replicas on the portable

and in the o�ce. It may often be cheaper to integrate the database and then lazily

copy �les, rather than do a full reconciliation. This would save copying those �les

that the user accesses in the o�ce, but not at home.

If there is no connectivity between the two machines, database copying will

not be possible. A solution to this problem is that the user carries a palmtop that

stores the view-entry database. The palmtop (e�ectively being used as a portable

secondary storage device) can be attached to the home machine, the o�ce machine,

or the mobile laptop. The palmtop can be used as the permanent storage area

for the database, or it can be used for transferring (and then integrating) the

database to the new site. If it is used as a permanent storage area, integration

is not required. Even if there is no connectivity, the palmtop or the integrated

database can be used to determine, and inform or deny access to older versions

of �les.

1Recall from Section 4.3 that the local replica optimization cannot be implemented for dis-

tributed entities. Thus each entity stores the view-entry database.
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We assume that view-entries are much smaller than �les. Otherwise, the user

can carry the latest version of the �les that he accesses most frequently in his

palmtop. In the current web environment, �les often have video and audio data

attached to them. This makes the �les much bigger than �les in university Unix

environments. Moreover, the number of �les being accessed on the web by indi-

viduals in a given time period is much larger than in traditional environments.

Much work has been done on automatically identifying the most vital �les that

may be needed and then caching them on the mobile computer [Kue94]. When the

space on the palmtop is small, no automatic method can be 100 percent correct or

even close. In this context, storing version information is much more interesting

than storing the data itself.

9.2.2 Simultaneous Distributed Accesses

The accesses of an entity from a distributed set of machines must be coordinated

for view consistency. Each subsequent access from any of the set of machines

should yield later data versions. This requires that the machines be connected to

each other. If the machines in the set are network partitioned, view consistency

cannot be guaranteed unless accesses are allowed in only one entity partition, just

as with strong consistency. This is not considered acceptable in our environment.

Then how should the machine set be de�ned so that the machines are always

connected to each other?

A solution is that the machine set should consist of all machines to which a

user is currently connected. The idea is that although a user may access �les

from multiple machines, there is a single user accessing these machines from a

centralized point (or machine). All the machines can be coordinated through this

centralized machine. The machine set varies with time but is always connected
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because the coordinating machine can access all these machines.2

The problem of synchronizing distributed accesses is well studied and several

solutions exist such as primary coordinator, token passing, or voting. The primary

coordinator approach has the bene�ts of simplicity. Moreover, it can be easily

integrated with the palmtop database approach discussed earlier. We intend to

study the viability of other schemes for providing view consistency to distributed

entities.

9.3 The Final Word

This work aims to provide improved consistency guarantees in a highly avail-

able, eventually consistent, replicated environment. The consistency guarantees

are provided at a low cost and without signi�cantly reducing availability. This is

done by providing conservative consistency to each user (or entity), while ignoring

inter-entity consistency. Since it has been observed that conicting inter-entity

accesses are rare, it is not cost e�ective to provide inter-entity consistency. A

more conservative consistency solution requires much higher interaction between

replicas, which may not easily be available in a mobile, or large-scale distrib-

uted environment. Moreover, such consistency policies may signi�cantly reduce

availability, so that the solution may not be viable. We hypothesize that view

consistency with replica switching for higher availability will adequately serve the

consistency and availability needs of many current and future applications.

2If the coordinating machine cannot access one of these machines, then the user cannot access

it also. This does not take into account background processes that do not have a controlling

terminal.
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