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ABSTRACT
The analysis of a compromised system is a time-consuming and
error-prone task today because commodity operating systems pro-
vide limited auditing facilities. We have been developing an opera-
ting-system level auditing system called Forensix that captures a
high-resolution image of all system activities so that detailed analy-
sis can be performed after an attack is detected. The challenge with
this approach is that the large amount of audit data generated can
overwhelm analysis tools. In this paper, we describe a technique
that helps generate a time-line of the state of the system. This tech-
nique, based on preprocessing the audit log, simplifies the imple-
mentation of the analysis queries and enables running the analysis
tools interactively on large data sets.

1. INTRODUCTION
When computer systems are compromised, system administra-

tors face the task of determining answers to questions such as “where
did the attack come from”, “what vulnerability was exploited”, and
“which files did the attacker modify”. This forensic analysis re-
quires information about activities that occurred in the past on the
system. Currently, this information is collected in a “lossy” man-
ner. For example, system and application log files only track events
based on what the system administrators or application developers
think are necessary to log, and these files can be tampered with or
deleted by the attacker. Vital information such as where an attacker
connected from, and what happened afterward is not necessarily
collected in these log files.

In recent years, several research efforts, such as ReVirt [3], FDR [20]
and Forensix [7], have focused on capturing a high-resolution, tam-
per-resistant image of all system activities. ReVirt places a host
system within a virtual machine and logs all non-deterministic events
that can affect the system, allowing deterministic replay of the en-
tire system at instruction granularity. FDR captures all interactions
with the file system and Windows registry and uses this informa-
tion for analyzing the behavior of systems, including software mis-
configuration and security vulnerabilities, in production environ-
ments. Forensix intercepts all system calls and provides SQL tools
that help with analysis of past system behavior. While these sys-
tems capture different types of events, they log these events at all
times and they log all events of the given type. This complete log
allows analysis of known intrusions as well as intrusions that be-
come known in the future, since the log captures all system activi-
ties rather than just those that are considered important today.

The complete logging approach introduces performance and stor-
age overheads, but these overheads have become manageable as
computing, storage and networking costs have steadily decreased
over time. For example, FDR requires 20 MB of storage per day
with a storage-optimized log file format, while ReVirt and Foren-
six may need roughly 1 GB storage per day. Even with these higher
requirements, a month of data (30 GB per machine) can easily be

stored on today’s disks. Furthermore, all these approaches have
less than 1-10% performance overhead for typical server or desk-
top workloads.

While complete logging has become economically feasible, the
amount of data generated in the audit log can overwhelm simple
data analysis techniques. For example, suppose an administrator
suspects that an intrusion may have occurred and wishes to find
all root-owned setuid files that existed on the system yesterday,
because setuid programs are frequent targets of attack, providing
complete control over the system. Instead of trusting the host sys-
tem, the administrator issues this analysis query on the audit log.
This query requires scanning the audit log to determine when files
were created, destroyed, or their permissions or ownership was last
changed. ReVirt would require replaying the system starting from
a previously stored snapshot to recreate these events, while FDR
and Forensix store these events. Even so, a root-owned setuid file
that was created a long time back and whose attributes were never
changed would also match the query and hence the entire audit log
must be processed. This example shows that analysis can require
scanning and processing of large amounts of audit data even for
seemingly simple queries.

The problem with the raw audit log is that it consists of events,
representing changes in system state, while analysis may require
determining the state of the system at a given time or a time in-
terval. For example, a system-call logger captures “state-change”
events such as when a process is created or when a file or its at-
tributes are modified, but the query described earlier requires de-
termining the state of the system (in terms of root-owned setuid
files) since yesterday. A simple method of reconstructing this state
consists of sequentially processing all the events, but the amount of
data processing involved can slow the queries and limit their useful-
ness, especially since intrusion analysis is an inherently interactive
process.

In this paper, we present a method for efficiently reconstruct-
ing the past states of a system. We reconstruct this state by regu-
larly generating and storing the history of the states of objects that
may be used in analysis queries. Queries can then use this histor-
ical state information directly, rather than replaying all events to
recreate this state every time. Our technique, implemented in the
Forensix intrusion analysis system [8, 7], stores this history over
the lifetime of each object in lifetime interval tables. For exam-
ple, we use a file_owner interval table to store information about
the different owners of a file over time. This interval table con-
tains time intervals (start and end time) for each different owner
of every file. With this table, it is straightforward to query for all
root-owned files since yesterday since any such file is owned by
root and has an end time greater than yesterday. Similarly, we use a
file_permission interval table to store information about the differ-
ent permissions of each file over time. With this table, it is simple to
find out about setuid files that existed since yesterday. The results



of our administrator’s query would then consist of the common re-
sults obtained from querying the file_owner and the file_permission
tables. Our use of interval tables for forensic analysis is motivated
by valid-time state tables in temporal databases. These tables allow
retaining and querying the history of some modeled reality [18].

We have designed and implemented several lifetime interval ta-
bles in Forensix. These tables simplify the implementation of Foren-
six queries and significantly improve their performance. We use
interval tables extensively in Forensix to implement tools that al-
low analysis of file accesses, tracking of persistent data, replaying
process IO activities and tracking of dependencies among system
objects such as sockets, files and processes [9]. We have applied
these tools to analyze real attacks and our results show that our
interval-table based analysis tools can be used interactively even
when operating on large amounts of audit data.

The rest of the paper describes our approach in detail. Section 2
motivates the need for reconstruction of past system states and the
complexity of designing the required analysis tools. Section 3 ex-
plains our state reconstruction technique, and Section 4 describes
the analysis tools that we have implemented using our technique.
Section 5 presents an evaluation of our approach, Section 6 de-
scribes the related work in the area, and Section 7 provides our
conclusions.

2. MOTIVATION
Over the last four years, we have been developing Forensix, an

auditing and intrusion analysis system that monitors all process
management, file system and networking-related system calls on
a target host and logs these events into a SQL database located on
a secured “backend" system. Forensix provides analysis tools that
are run entirely on the backend so that evidence is left intact on the
target.

When implementing analysis queries on the logged events, we
realized that there was a mismatch between the events and the
queries. The events consist of changes in system state, while our
analysis queries may require determining the state of the system at
a given time or a time interval. For example, the Forensix database
contains the fork and wait events that indicate the creation of a
process and exit of a child process. Suppose we want to run a query
that returns the names of processes that existed in the last hour. This
query requires processing all the fork and wait events in the au-
dit log to determine the lifetimes of processes. Below, we describe
several other scenarios that motivate the problem of analyzing sys-
tem state from the raw audit events. Later, we will show how our
approach solves the problems described below.

Scenario 1: Find files with owner=O and permission=P
at time=T.

An administrator suspects that someone has exploited a vulner-
ability to create an unauthorized setuid root binary and wishes to
compare the setuid root binaries that currently exist on the system
with those that existed a few days earlier. A general query of this
type requires processing four different sets of events (file creation,
change ownership, change permission and file deletion) that occur
before time T.

Let S1 be the set of files owned by owner O at time T. This set is
generated by using the file creation and change ownership events.
These events help determine the last event associated with each file
that occurred before time T and that set the owner to O. We also
need to remove files from S1 that have been deleted before time T.
Similarly, let S2 be the set of files that had permission P at time T.
This set is generated by using the file creation, change permission
and file deletion sets. The final result is obtained by intersecting

sets S1 and S2. This relatively simple query is difficult to write
using the raw events, and it is inconvenient because the user has to
query various different types of events. Furthermore, the query is
inefficient because all events of the four types must be examined
even though only the last event before time T is relevant for any
given file.

Scenario 2: Find the contents of directory=D at time=T.

An administrator knows that the tarballs of a popular rootkit and
a local-root exploit unpack into directories named rkid and xpl. He
wishes to find all directories that may have had these names and
retrieve the contents of these directories. This query requires pro-
cessing all events that occur before time T that create, rename or
remove a directory entry from directory D. This query is inefficient
because it requires processing or replaying all events related to di-
rectory D until time T to determine the contents of the directory.

Scenario 3: Find the path name of a file whose inode=I
at time=T.

An administrator suspects that someone has modified /etc/passwd
and wishes to determine all accesses to the file and all names (hard
links) and symbolic links associated with this file. The latter query
needs to perform reverse name resolution from file identifiers (in-
ode numbers) to path names. To do so, the file name of inode num-
ber I at time T must be determined by looking for the last event
before time T that either created or updated a name for that inode.
In addition, the inode number of the parent directory during that
event must be known. This process of looking for the last event
must then be performed recursively for the parent directory’s inode
number until the whole path is resolved. This query has to examine
many different events and determine the relevant last events.

Scenario 4: Find processes whose effective user id=E
between Ts and Te.

An administrator is informed of a new exploit that allows the
Apache user to run a setuid root binary and wishes to find all pro-
grams that ran with elevated privileges over the last two weeks. For
this query, we need to consider the fork, execve, setuid and
wait process management events. The first type of event can be
used to find the set of processes that were created with euid set to
E. The second type of event helps determine the set of processes
that executed a setuid file whose owner was E, while the third type
of event shows the set of processes that successfully changed their
effective user id to E. The last type of event is used to filter pro-
cesses that exit before time Ts. This query is complicated because
different processing is required for each set of events. Note that all
the relevant events until time Te must be processed. For example,
a process that is created much before time Ts with euid E and exits
after Ts would match the query.

Scenarios 5: Find all processes whose lifetimes over-
lapped with the process whose name=N.

During the analysis of an attack, suppose an administrator finds
that the wget program was run to download a “rk.jpg” binary. He
wishes to find all server processes that were running at that time
to confirm his hypothesis that the ftp daemon was attacked. This
query must determine the lifetimes of all processes, which requires
processing all fork and wait events. In addition, we need to find
the lifetimes of processes whose name is N, which also requires
processing all execve events.



Scenario 6: Find root-owned setuid files that were ex-
ecuted by non-root processes.

The administrator wishes to create a daily privilege escalation
report. This query is, roughly speaking, a combination of the first
and fourth queries and not described in more detail here. It has
constraints on both file and process attributes, which makes it more
complex to write than any of the previous queries.

3. SYSTEM STATE RECONSTRUCTION
In the previous section we showed that state-based analysis queries

can be hard to implement and may require processing of the entire
audit log. This problem occurs because the audit log does not di-
rectly provide information about the value (or state) of an object or
an object’s attribute at a particular time or time interval. We pre-
process the audit log to generate this information, thereby speeding
up analysis queries and simplifying their implementation. In par-
ticular, we generate the lifetimes of objects and attributes that are
used in queries. For example, the lifetime of a process is the time
interval between when the process is created and destroyed. With
this information, Query 5 shown in the previous section can easily
determine processes that overlapped in time. Below, we describe
our method in more detail.

3.1 Interval Tables
We derive the lifetimes of kernel objects and their attributes im-

mediately after the Forensix audit log is loaded into the Forensix
database. These lifetimes are stored in interval tables, and we re-
fer to the process of creating these tables as reconstructing system
state. We have identified several interval tables based on the re-
quirements of our analysis tools. These tables are shown in Table 1.
Each row of an interval table maps a system object such as a file,
connection or process and optionally an attribute of this object to a
lifetime, consisting of a start time Ts and an end time Te.

The inode interval table correlates a file identifier (inode num-
ber) to the lifetime of its names. In each row of this table, the start
time is the time when the file name was initially created and the end
time is when the file name was removed. For example, a new row
is created in this table when a new file or a file name (a hard link)
is created. The end time is updated when the file name is removed.
A file rename is considered equivalent to a file name removal and
a file name creation. In addition to the file name, this table con-
tains the type of the inode (e.g., file, directory, symbolic link, de-
vice node, etc.) and the inode number of the parent directory. The
connection interval table maps a connection to the lifetime of a
connection. The file_owner and file_permission interval ta-
bles correlate a file with its owner and permissions so that each row
represents a unique owner and permission for the file.

The process interval table correlates a process identifier with
the lifetime of the process name. A process identifier with multiple
names (execve) creates multiple entries in this table. The pro-

cess_owner interval table maps a process identifier to the lifetime
of the process owner (user and group id).

The main requirement for constructing these interval tables is
that each system object should have a unique identifier over time.
We used timestamps to create unique process identifiers (pid), file
identifiers (inode number) and connection identifiers (connection-
_tuple). For processes, we used the process creation time. Files are
uniquely identified with a device number, inode number and a gen-
eration number that is stored on disk by most commonly available
Unix file systems today. The generation number is incremented
when an inode number is reused. The connection tuple consists
of source and destination addresses and ports. This tuple together
with an inode associated with the connection uniquely identifies a

connection over time. To speed up queries, we create database in-
dexes on the unique identifiers in each interval table. Appendix A
provides an example of how the interval tables are constructed from
the raw events.

3.2 Queries with Interval Tables
The interval tables described above help simplify Forensix queries.

Section 4 describes various intrusion analysis tools that we have de-
veloped using the interval tables. Here, we show how some of the
queries described in Section 2 can be easily implemented with in-
terval tables using SQL code. Readers unfamiliar with SQL can
scan the rest of this section but should notice the simplicity of the
code implementing these queries.

Query 2: Find the contents of directory=D at time=T.
This query, which lists the contents of a directory at a given time,

takes advantage of the parent_inode information available in the
inode interval table. It lists all file names that have the parent
directory D at time T. If the directory is specified by name, then the
inode interval table can be used to first find the directory’s inode
number D.

SELECT i.file_name
FROM inode i
WHERE i.parent_inode = D

AND T BETWEEN (i.ts, i.te)

Query 5: Find all processes whose lifetimes overlapped
with the process whose name=N.

This query is a little more involved and requires a temporal join
of the process interval table with itself to find the overlapping
intervals.

SELECT DISTINCT p2.pid
FROM process p1, process p2
WHERE p1.name = N

AND p1.pid != p2.pid # ignore self
# overlapping interval

AND p2.ts <= p1.te

AND p2.te >= p1.ts

Query 6: Find root-owned setuid files that were exe-
cuted by non-root processes.

This query is more complex than the previous queries because
it has constraints on both file and process attributes. In addition, it
requires data from the execve event. The execve event is stored in
Forensix as a separate exec table that stores the event time stamp,
the process id and the inode number of the file that was executed.
The query below joins the file_owner and file_permissions

interval tables (for root-owned setuid files), the process_owner

interval table (for non-root processes) and the exec table to derive
the query results.

SELECT e.inode
FROM file_owner f, file_permissions p

process_owner_table o, exec e
WHERE f.owner = ’root’

AND p.permissions has ’setuid’
# non-root process

AND o.euid != ’root’
AND e.pid = o.pid

# file that was executed
AND e.inode = f.inode
AND e.inode = p.inode
AND e.time BETWEEN (f.ts, f.te)
AND e.time BETWEEN (p.ts, p.te)
AND e.time BETWEEN (o.ts, o.te)



Interval table Table columns Events that update the table

inode table inode+, file_name, parent_inode+, Ts, Te create*, mkdir, link, symlink, mknod, rename,
unlink, rmdir

connection table inode+, connection_tuple+, Ts, Te socketcall* (accept, connect, etc.)

file_owner table inode+, owner, group, Ts, Te create*, mkdir, symlink, mknod, chown*, un-
link, rmdir

file_permission table inode+, permission, Ts, Te create*, mkdir, symlink, mknod, chmod*, un-
link, rmdir

process table pid+, inode+, file_name, parent_inode+, Ts, Te fork*, execve, wait*
process_owner table pid+, uid, euid, gid, egid, Ts, Te fork*, execve, wait*, setuid*

For each interval table, the second column shows the columns of the interval table. The last column shows the events that update the interval
table. The plus sign after inode, connection_tuple and pid shows that these system objects must be uniquely identified. The asterisk sign after
certain events indicates that there are several variants of these events.

Table 1: Interval tables.

4. ANALYSIS TOOLS
The previous section shows that lifetime interval tables simplify

the implementation of state-based queries. With the interval tables
shown in Table 1, we have built several powerful intrusion analysis
tools including the file-access tracker, the IO tracker, the directory
tracker and the dependency tracker, each of which presents a unique
view of system state and changes to the state over time. We briefly
describe these tools below. More details about the tools are avail-
able in our previous publications [7, 9].

The file-access tracker shows files that have been accessed or
modified in a given time interval. This data can be voluminous so
the tracker provides various filters (based on the type of events, file
names and attributes, and process names and attributes) that help
limit the results. For example, Query 6 in Section 3.2, which deter-
mines root-owned setuid files that were executed by non-root pro-
cesses, is a specialized case of the file-access tracker. The imple-
mentation of this tool involves a database join between the interval
tables and the underlying Forensix tables.

The IO tracker replays the IO performed by processes (process
IO tracker) and reconstructs the contents of files (file IO tracker).
The process IO tracker replays the writes of a process or process
hierarchy. It can be used, for example, to replay the entire shell
activity seen by a remote intruder. The file IO tracker allows recre-
ating the contents of files at a given time. We use this tool for
post-intrusion file-system recovery [9].

The directory tracker reconstructs the contents of directories at a
given time. For example, the file-access tracker might show a di-
rectory that was created by an attacker. The directory tracker could
show the contents of the directory after the attack even though the
directory may have been removed by the attacker. The basic direc-
tory tracker is shown in Query 2 in Section 3.2.

The dependency tracker displays data dependencies between pro-
cesses, files and sockets. For example, a dependency occurs when
a process reads or writes from a file. A graph of such dependencies
show the chains of events that led to an intrusion or are caused as
a result of the intrusion [13]. We use this tool to generate such a
dependency graph. The implementation uses the rows of the pro-
cess, inode and connection interval tables as nodes in the de-
pendency graph. The tracker implements several filters that help
prune undesired edges from the graph for easy visibility. These
filters use the attributes of the interval tables.

These tools demonstrate that it is possible to implement a range
of powerful intrusion analysis tools in our system. We plan to sim-
plify an administrator’s job by providing a library of prepackaged
analysis queries that are run as part of a daily activity report or via
a web interface.

5. EVALUATION
The previous sections have shown that the Forensix queries are

simpler to implement with interval tables. In this section, we show
that our analysis tools run significantly faster with interval tables.
Our experimental setup consists of a target machine and a backend
machine both running AMD Athlon MP 2600+ CPU with 512 MB
RAM. The target runs stock RedHat 7.2 with well-known vulnera-
ble services including Apache httpd with SSL, Wu-ftpd, Sendmail,
SAMBA and the ptrace exploit. We used the Snort network in-
trusion detection tool to detect potential intrusions. The backend
machine uses the MySQL version 5 database. We developed the
Forensix tools for MySQL primarily because the database can be
distributed freely with our open-source project. However, it should
be possible to port our analysis tools to other databases that offer
better performance scaling when processing large amounts of data.

The target machine was run twice with the vulnerable services
for approximately a week each time. During the first time, we setup
a guest account with an easily guessable password, which led to a
successful telnet attack. During the second time, the target was
attacked once externally with the Wu-ftpd remote root exploit. Be-
low, we present our analysis of the two attacks, the time it took to
run the Forensix tools to analyze the attacks, and the performance
and storage overhead of our system. We have described the analy-
sis of the Wu-ftpd attack previously [7]. We reproduce these results
here because they show that our interval-table based analysis tech-
nique can be used to design effective forensic tools.

5.1 Analysis of Telnet Attack
At 20:59:31 on November 27, a successful telnet dictionary at-

tack on the guest user account took place from 200.88.164.xxx.
This session was terminated immediately without any commands
being executed. Later at 21:00:31, the intruder logs in as the guest
user via telnet and started the Virtual Network Computing (VNC)
server to set up a backdoor, which created a new directory /home/-
guest/.vnc. At 21:20:22, the intruder logged back as the guest user
and executed several commands to check system status, without
causing any filesystem changes (except for .bash_history and other
system log files). At 22:35:15, the intruder logged in a fourth time
as the guest user from another IP address (200.88.106.xx) and cre-
ated a hidden directory /home/guest/.aki. Then the attacker used
wget to download local.tar.gz to this directory, which is a collec-
tion of several local exploits for Linux, SunOS, and FreeBSD. At
22:55:03, the intruder logged back as the guest user the last time
and untared the the local.tar.gz file into /home/guest/.aki/local, and
executed one of the exploits, w00t, to launch a local privilege esca-
lation attack, but the attack failed.



/bin 74 /bin/kill 05-12 17:11:58
/bin/ps 05-12 17:11:46

/dev 3
/etc 84 /etc/passwd 05-12 17:11:20
/home 11
/lib 588
/root 3 /root/.bash_history 05-12 18:40:32
/sbin 175 /sbin/ldconfig 05-12 17:12:09
/tmp 26
/usr 26 /usr/bin/killall 05-12 17:11:46
/var 452

Figure 1: File-access tracker output for ftpd attack.

We determined this entire sequence of attack events with our
analysis tools. First, we used the file IO tracker tool to reconstruct
a system log file that showed successful telnet logins to the guest
account. Next, we used the same tool to recreate the /home/guest/-
.bash_history file in which we found VNC server command the as
well as the tar command for decompressing the local.tar.gz file.
Then, we ran the file-access tracker command to list all the files or
directories modified between 20:00 and 23:00 of that day. This tool
detected the tar file local.tar.gz, the two attack directories /home/-
guest/.aki and /home/guest/.aki/local, and the vnc directory /home/-
guest/.vnc. We provided these directories to the dependency tracker
tool. On the backward run, the tool detected the attacker’s five
telnet login connections and one http (wget) connection. On the
forward run, it detected that Xvnc (vncserver) and w00t had been
started by the attacker. Finally, we ran the process IO tracker on
w00t and the output generated by the process showed that its ex-
ecution had failed. It took a graduate student roughly an hour to
perform this entire analysis. This analysis time could be signifi-
cantly reduced with a graphical frontend for our tools.

5.2 Analysis of Ftpd Attack
Snort reported an anonymous FTP login on May 12 around 17:10

followed by command overflow attempts that contained shellcode.
While Snort helps detect attacks, it provides little information about
what actually happened on the system. To look for any recent
changes in the file system, we ran the file-access tracker to list all
the files or directories modified between 17:00 and 19:00 of that
day. A partial report, shown in Figure 1, lists the modified files
grouped by root directories and their last modification times. The
numbers in the second column show the number of modified files.
Based on this report, we suspected that a rootkit had been installed.

Next we ran the dependency tracker using the modified /usr/bin/-
killall (shown in Figure 1 by the file-access tracker) as one of the
detection points. A partial resulting graph is shown in Figure 2. It
shows the bash process that was spawned by the ftp daemon, the
use of the passwd command and downloading of the rk.jpg file.

We then queried the inode interval table for any instance of a
file creation within the /dev/pts directory between 17:00 and 19:00.
This query returned one row that showed that an interactive shell
was used from 17:12 until 18:40. A query to the process_owner

interval table showed that the attacker’s shell was run as root. Next
we used our IO tracker tool to replay the shell. Key output from the
shell session is shown in Figure 3.

Using our IO tracker, we recreated the removed psyBNC.tgz file
that acts as both an IRC bot and an IRC bouncer or anonymizer.
Note that we recreate the removed file entirely on the backend sys-
tem without depending on the target. We are able to do so because
Forensix logs all file modifications to the backend. The IRC exe-
cutable files are disguised as crond. The attacker runs the SucKIT
rootkit that is loaded via /dev/kmem and does not need a kernel

xinetd

xinetd

in.ftpd

bashftp.pids-all

bash

useradd

group+
group

passwd+
passwd

shadow+
shadow

bash

passwd

npasswd
passwd

bash

wget

rk.jpg

bash

tar

tar killall

gzip

pipe

69.167.XXX.XXX

65.113.XXX.XXX

Figure 2: Tracking the FTP intrusion.

with support for loadable kernel modules [16]. With the rootkit,
the attacker tried to hide the fake crond process, but since we use
LIDS [21] on the target system to disable writes to /dev/kmem, the
attacker was not successful.

Based on the dependency tracker graph, we recreated the re-
moved rk.jpg file that installs a backdoor and then clears its traces
from log files. To find out more about the backdoor, we issued
a query on the connection and the process interval tables to find
out about open ports between 17:00 and 18:00 and found a pro-
cess called sendmail that was listening on port 212 from 17:12 and
was used to run the interactive shell. Based on the analysis of this
attack, it seems to be similar to the report available from the Hon-
eynet Project [19].

5.3 Analysis Results
The time taken to run each of the queries described in the anal-

ysis of the Ftpd attack above is shown in Table 2.1 These queries
use the interval tables shown in Table 1.

Table 2 shows that the queries can be used interactively. With-
out the interval tables, analysis queries on the Forensix audit log
are not only much harder to implement, but they essentially have to
generate partial interval tables on the fly. We implemented the first

1Unfortunately, we did not measure the time to run the queries for
the Telnet attack and are thus unable to present those times.



[root@rex www]# ftp -v 65.113.XXX.XXX
Name: XXXXXXX
Password:
get psyBNC.tgz
[root@rex www]# tar xzvf psyBNC.tgz
[root@rex www]# rm -rf psyBNC.tgz
[root@rex m4a1]# crond
Listening on: 0.0.0.0 port 6001
Thu May 12 17:18:11 :psyBNC2.3.1-cBtITLdDMSNp
started (PID :3975)
[root@rex .sk12]# ./sk i 3975 [= SucKIT version
1.3a, Jan 27 =]
Can’t open /dev/kmem for read/write (1)
[root@rex www]# w
6:40pm up 4:20, 0 users, ...
[root@rex log]# pico /var/log/messages
[root@rex www]# logout

Figure 3: IO tracker output for the ftpd attack.

Ftpd attack analysis Time taken
List all the modified files and directories 20 s
Find root-owned setuid files that were exe-
cuted by non-root processes 7 s

Dependency graph generation 25 s
Finding the interactive shells < 1 s
Finding uid of the shell process < 1 s
Replaying attacker’s shell 1 s
Recreation of the removed attack files 3 s
Finding execves issued by the children of
the compromised in.ftpd process 1 s

Finding the listening port set by the attack
code < 1 s

Table 2: Time taken for each query.

two queries in Table 2 without using the interval tables (the other
queries are much harder to implement without the interval tables).
Their running times were 79 s and 33 s, which is a factor of 4-5
times slower. Our approach generates the interval tables once and
hence queries can reuse the reconstructed state for faster analysis.
When the target system is heavily loaded, the bottleneck in Foren-
six is the MySQL database loading time [7]. Interval table creation
generally takes less than 10% of the loading time.

5.4 Performance and Storage Overhead
We have previously described the performance and storage over-

head of our system [9]. Here we summarize our results. We ran the
target machine in the experiments above with a popular web-based
photo album application called Gallery and loaded the system by
simulating users interacting with Gallery with a client-side Galhog-
ger program that was run continuously. Galhogger simulated 1) an
anonymous user that browses the albums every 2 seconds on aver-
age, and 2) 5 registered users that each modify the albums every
3000 seconds on average.

The total amount of uncompressed data generated on the target is
2.3 GB per day. This data takes 36 minutes to load in the MySQL
database. Another way to interpret this result is that the backend
system can sustain loads that are approximately 40 (24*60/36.3)
times larger than the load imposed by Galhogger or one backend
system can audit 40 target machines with the same load. This
database loading time is the main bottleneck in our system.

We have also performed desktop and server experiments on our
own machines that we use daily. We ran Forensix for about three

weeks [11], and the total amount of data logged in these experi-
ments was roughly 1-2 GB per day.

Finally, when the target is exposed to heavy load (a heavily-
loaded web server and a kernel compilation), the auditing overhead
on the target is less than 10%. However, the storage requirements
in this case were roughly 10 GB per day. Our current research is
focused on reducing these overheads [11].

6. RELATED WORK
Computer forensics, consisting of acquiring, preserving, analyz-

ing and presenting data that has been processed electronically and
stored on computer media, must follow strict procedures, includ-
ing minimal handling of original data, accounting of all changes
and complying with the rules of evidence [14]. Typically, inves-
tigators trained and experienced in computer forensics acquire an
identical copy of the image of the storage devices of a target or
a compromised machine and then use software tools that follow
the forensic procedures described above. However, this procedure
requires painstaking effort, for two reasons: 1) the image has to
be handled in its original environment (e.g., analysis of the image
should lead to only minimal and accountable changes to the im-
age), 2) the image contains a high-resolution state of the system at
the time the image was captured, but has limited information about
the past states of the system (e.g., it might have some application or
system log files but these may have been tampered by the attacker,
as described in Section 1).

One method of reducing the workload of forensic investigators
is to use a virtual machine to perform initial analysis [1]. This
method aims to reduce the first problem described above. A vir-
tual machine can be used to analyze the image with powerful ap-
plications, including the original applications that the attacker may
have used. However, the virtual machine will often modify the cap-
tured image and hence may not be suitable as evidence in a court
of law. Even so, it can help save time because the investigator can
then use the correct forensic techniques to focus on analyzing the
evidence revealed by virtual-machine based analysis.Our intrusion
analysis method aims to solve both the problems described above.
It is based on complete and tamper-proof auditing of all system
events. With this approach, all analysis is performed on the audit
log and thus does not require any modifications to the captured im-
age. Further, the audit log provides a detailed history of past system
states. This approach is also used in ReVirt [3] that places a sys-
tem within a virtual machine and logs the VM-to-host interactions,
allowing accurate system replay without requiring kernel integrity.
ReVirt replays activity in linear time order. However, this approach
is complementary to Forensix since it can be used to extract system
call events during the first replay and then our backend system can
be used for query-based analysis. Garfinkel uses a similar VMM-
based kernel introspection mechanism [6].

Similar to Forensix, FDR [20] logs interactions with persistent
state and uses this information to analyze software misconfigura-
tion. FDR focuses on using a customized storage format to mini-
mize the amount of logging, which in turn also improves query per-
formance. In contrast, Forensix uses the standard MySQL database
but implements the interval tables to simplify the implementation
of queries and improve their performance. We believe that it should
be possible to combine these two approaches to derive the benefits
of both.

Our use of interval tables for forensic analysis is motivated by
valid-time state tables in temporal databases [18]. These tables
record the history of the modeled reality by appending two times-
tamp columns, one specifying when the row became valid and one
specifying when the row stopped being valid. The intervening time



is termed the period of validity of the row. We essentially create
these tables from the underlying audit log, enabling a wide variety
of temporal queries on the past states of a system.

System call traces have been used in the past to identify normal
system behavior and then to automatically detect suspicious behav-
ior or intrusions [10, 17, 4]. However, these approaches examine
system-call patterns over a short window of 5-100 calls and are not
designed to capture, store and analyze all system activity that has
occurred in the past.

Tripwire [12] monitors the cryptographic hash and size of key
system files and reports file accesses and modifications. Venema
and Farmer developed the Coroner’s Toolkit (TCT) [5] that uses
file-system specific information for postmortem analysis of a UNIX
system. The Sleuth Kit [2] is a derivative of Coroner’s Toolkit and
provides file system information, file names and contents from file
inode information and lists recently deleted files in a directory. Our
analysis queries use the interval tables to provide this information
without needing any knowledge of file system structure.

Our dependency tracker is directly motivated by the work on
backtracking intrusions [13]. Complementary to our host-based
analysis tools are network-based analysis tools such as SNORT [15]
that capture and log network packets and help detect intrusions
based on predefined rules that match packet headers or data. These
analysis rules are filters that help reduce the amount of data that
needs to be logged, but they only allow detecting known vulnera-
bilities.

7. CONCLUSIONS
Our intrusion analysis approach consists of capturing a complete

system-level audit trail. The challenge is to provide tools that allow
analyzing the large amount of audit data that can be generated. This
data consists of changes in system state while analysis queries may
require determining the state of a system at some time, such as just
before or after an intrusion. We have shown that interval tables,
containing the lifetimes of system objects or their attributes, ease
the process of determining system state and allow implementing
analysis tools that can be used interactively. With these interval
tables, we have implemented several powerful intrusion analysis
tools and used them to analyze real attacks. We have also been
using the Forensix infrastructure to characterize system behavior
with a view towards improving end-host security [11].
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APPENDIX
A. IMPLEMENTING INTERVAL TABLES

We construct interval tables using a small number of SQL queries.
For each table, at least two queries are needed, one for the start time
and another for the end time for each row. The tables are updated
whenever the audit log is loaded in the background into the Foren-
six database.

As an example, the SQL code shown below populates the in-

ode interval table. The first query inserts new rows into the table
and sets the start time for these entries. It searches the Forensix
name_create_event table that stores all the events that create a new
file name such as creat, open, mkdir, link, rename, symlink
and mknod. The second and third queries update the end times of
current rows in the inode interval table based on unlink, rename
and rmdir calls available in the Forensix name_remove_event ta-
ble.



# Insert rows for newly created files
INSERT IGNORE INTO inode

( inode, filename, parent_inode,
begin_time )

SELECT e.inode, e.filename,
e.parent_inode, e.time

FROM name_create_event e

WHERE e.returncode >= 0

# update end times for existing rows
CREATE TEMPORARY TABLE temp_inode
FROM inode_table i, name_remove_event e
WHERE e.returncode >= 0

AND i.parent_inode = e.parent_inode
AND i.filename = e.filename
AND i.end_time is not set
AND e.time > i.start_time

GROUP BY i.id;

UPDATE inode i, temp_inode t
SET i.end_time = t.end_time

WHERE i.id = t.id;


