
Policy Based Storage System For Heterogeneous Environment

Dai Qin∗, Ashvin Goel, Angela Demke Brown,
University of Toronto

{mike,ashvin}@eecg.toronto.edu, demke@cs.toronto.edu

1 Introduction

Storage environments are highly complex and heteroge-
neous because of different applications generate different
workloads and different hardware have different charac-
teristics. Therefore, it is very hard to adapt storage sys-
tems to the needs of specific applications and hardware.
Most storage systems are not aware of this issue: file
systems or other applications talk to the storage system
using a simple block layer interface without specifying
their needs; storage system treat all data as equal and
therefore cannot apply further optimizations to fully take
advantage of different hardware.

Current solutions tend to break the encapsulation be-
tween storage systems and applications, which results
in huge monolithic applications. By integrating storage
management features, these monolithic applications can
fully take advantage of heterogeneous hardware. Com-
plex file systems like ZFS[1] and btrfs[2] integrate some
storage management features like metadata replication
and software RAID; commercial NFS servers such as
Netapp appliance even integrate special hardware along
with their software. However, these monolithic applica-
tions are very inflexible: features are hardcoded into the
file system, and if system administrators want to add new
features, they would have to hack the source code.

In contrast with the current solutions which present a
complete redesign of the whole storage stack, we believe
it’s possible to solve this problem outside the applica-
tion scope. Instead of building special file systems or ap-
plications, storage systems can transparently satisfy the
needs of generic applications and administrators while
fully taking advantages of different hardware capabili-
ties. We believe these current solutions are too mono-
lithic to meet the specific need of applications and sys-
tem administrators in an extremely heterogeneous envi-
ronment. It is time to split the monolithic system into a
lightweight framework with small modules to solve this

∗Student

problem.
In our framework, we separate the storage manage-

ment and the applications so that storage system is only
responsible for storage management. Features provided
by storage system are decomposed into high level stor-
age policies. Different policies can be apply to different
applications and different hardware. Composing these
policies together, they could meet the demands of appli-
cations and system administrators as well as fulling tak-
ing advantage of heterogeneous hardware. System ad-
ministrators can easily configure the storage system by
choosing policies from build-in pool. If there is no build-
in policy that satisfy their needs, it should be simple for
system administrators or developers to write new poli-
cies.

2 Approach

Our current system presents a logical block storage de-
vice to clients. This model is becoming increasingly
popular in virtualization and cloud computing environ-
ments because it allows the storage environment to be
highly flexible and heterogeneous, while minimizing the
requirements on the storage clients. Storage clients can
run any applications and file system on the top of the log-
ical block storage devices we presented. In order to pro-
vide a common abstraction for policies, we built an ab-
stract mapping layer that can map logical blocks to phys-
ical blocks, and our policy specification is implemented
by manipulating the mapping layer. For example, for se-
curity concern, all unused blocks by the file system need
to be mapped to a zeroed out block.

To meet the needs of applications, we often need upper
layer application semantics. These semantics can be re-
trieved either by transparently inferring applications se-
mantics or adding hints to the I/O requests issued by ap-
plications. Some previous work has been done in this
area: semantically smart disk[3] can infer the seman-
tics of file systems and databases; Differentiated Storage

1



Services[4] can pass down file systems and applications
semantics by adding hints to SCSI protocol. After we
receive an I/O request, we automatically tag it using the
semantics information we have and pass it down to the
policies.

In our system, policies are composable. Different tags
on the I/O requests could trigger different policies to han-
dle this request. For example, the caching policies indi-
cate metadata should have a higher cache priority, while
at the same time, free blocks need to be mapped to a
zeroed out block for security concern. In this example,
caching policy are triggered when metadata blocks are
requested, while free block policy is triggered specifi-
cally when bitmap blocks are updated.

In our experience, the abstract mapping layer is diffi-
cult to implement correctly and efficiently. As applica-
tion metadata could be mapped into different locations, it
is necessary to keep the mapping entries consistent with
the policy specification as well as the application. From
applications’ perspective, write requests are usually of
2 types: transactional updates and non-transactional up-
dates. Transactional updates do not happen in-place; data
are being written to new locations on the storage, such as
file system journal or database log. Application will is-
sue a sync request (disk barrier) to commit a transaction,
and the data is guarantee to be consistent at this point.
Non-transactional updates are in-place update and issued
when application do not care about the consistency of
the data; for example, writing data blocks or checkpoint-
ing metadata blocks in a journaled file system are non-
transactional. Application will issue a sync request only
when the data needs to be durable (e.g. fdatasync()),
and at this point, data might not be consistent. Appli-
cations like file system constantly mix these 2 types of
updates together and issue to the storage system, and on
a sync request it is very hard for storage system to decide
whether or not to commit the our mapping table.

3 Current Status

Currently we persist the mapping on every sync request
to guarantee data durability, and idempotent policy could
work fine because at anytime because it could get recov-
ered by replaying the journal during recovery. We have
some example policies like using SSD as a cache, we de-
compose the caching policy into sub-policies including
eviction policy and write-back policy. Different eviction
policy and write-back policy can mix and match to sat-
isfy the need of deployment environment. In the near fu-
ture we will try to come up some more complex policies
that could further take advantage of the dynamic proper-
ties of the hardware.

References

[1] “Oracle solaris 11 zfs technology,” http:
//www.oracle.com/technetwork/server-storage/
solaris11/technologies/zfs-338092.html.

[2] “A checksumming copy on write filesystem,” https:
//oss.oracle.com/projects/btrfs/.

[3] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Semantically-
smart disk systems.” in FAST, 2003.

[4] M. P. Mesnier, F. Chen, T. Luo, J. B. Akers, and J. B.
Akers, “Differentiated storage services.” in SOSP,
2011.

2

http://www.oracle.com/technetwork/server-storage/solaris11/technologies/zfs-338092.html
http://www.oracle.com/technetwork/server-storage/solaris11/technologies/zfs-338092.html
http://www.oracle.com/technetwork/server-storage/solaris11/technologies/zfs-338092.html
https://oss.oracle.com/projects/btrfs/
https://oss.oracle.com/projects/btrfs/

	Introduction
	Approach
	Current Status

