
Transparent Fault Isolation in Plugins using Dynamic Compilation

Peter Feiner Angela Demke Brown Ashvin Goel
peter@cs.toronto.edu demke@cs.toronto.edu ashvin@eecg.toronto.edu

University of Toronto

Many large programs are designed using a plugin ar-
chitecture. The core of the program, which we call the
application (even in the case of operating systems where
it is normally referred to as the kernel), interacts with
modules that it loads, which we call plugins, to imple-
ment the program’s features. Faults within plugins can
incur down time or manifest as errors that propagate
into application state. By isolating faults in the plugins
that cause them, the potential for errors propagating
into application state is reduced. Several techniques ex-
ist for isolating faults in application plugins, but they
all require some effort on the part of the plugin pro-
grammer to use. In this research, we implement a new
fault isolation technique that is completely transparent
to plugin programmers.

The effort required by existing fault isolation tech-
niques ranges from simply recompiling plugins to rewrit-
ing the application’s plugin interface. In general, fault
isolation techniques try to prevent the improper mod-
ification of data and the arbitrary execution of code.
Traditional software fault isolation (SFI), by way of a
special compiler, restricts a plugin by checking that
its writes address the plugin’s memory and that its
branches target the plugin’s instructions. SFI only per-
mits interaction between the application and the plu-
gin through special pass-by-value interfaces, precluding
commonplace shared memory communication.

Recently, isolation techniques have been developed
that allow plugins to use existing application interfaces.
Nooks [1] simulates shared memory by copying interface
parameters between hardware isolated address spaces.
However, Nooks is limited to plugins that do not access
global application data structures. Byte-Granularity
Isolation (BGI) [2] places restrictions on plugin mem-
ory operations for each byte in memory: a plugin may
write to its local variables and heap, but it has limited
access to application data. A plugin is only granted
temporary access to application data structures while
it interacts with the application, for example during
the execution of a call by the application into a plu-
gin. To keep track of these restrictions, BGI wraps the
application’s interfaces with permission-granting and
permission-revoking code. To enforce the restrictions,
BGI uses a special compiler that prefaces memory ac-
cesses with permission-checking instructions. To re-
strict control flow, BGI stores execution permissions for
each byte in memory and prefaces dynamic branches

with checking code.
BGI is attractive because it allows existing interfaces,

but it is not transparent because it requires recompila-
tion. Our technique follows BGI but removes the need
for a special compiler. Rather than compiling plugin
code to check permissions, we employ dynamic compi-
lation to add permission-checking code to existing x86
plugin binaries. Note that program shepherding, which
also uses dynamic compilation, only enforces control
flow conventions – it does not limit instructions that
modify memory.

Not requiring compilation introduces some tradeoffs.
First, rules that BGI derives from plugin source code
cannot be enforced by our technique. The additional
rules limit how a plugin executes internally, for exam-
ple, by limiting calls to function entry points. However,
to isolate plugins, it is not necessary to prohibit be-
havior that does not affect the application – although
prohibiting such behavior is useful while debugging plu-
gins. Thus, in spite of having fewer rules, our technique
is sound. Second, controlling code generation affords
BGI many performance optimizations that cannot be
easily applied to our technique. For instance, BGI re-
duces memory used to store permissions by laying code
and data out in permission-sharing groups of 8 bytes.
Our approach uses 8 times the memory of BGI for per-
mission data, which reduces cache performance. In an-
other optimization, BGI omits checks for local variable
accesses. We are developing heuristics to identify such
accesses and safely omit checks for them. Our heuristics
involve a simple, yet novel, algorithm for tracking the
boundaries of plugins’ stacks.

Currently, we have implemented a prototype of our
fault isolation technique and applied it to plugins for
the Firefox Web browser. Microbenchmarks of our
prototype demonstrate the potential for good perfor-
mance. Our current work focuses on enhancing our
implementation’s performance by improving our heuris-
tics for omitting local variable checks; improving cache
performance by experimenting with data structure lay-
outs; and reducing the number of dynamic branches in
permission-checking instructions, to alleviate pressure
on the branch prediction hardware.

[1] M. M. Swift, et al. Improving the Reliability of
Commodity Operating Systems. In SOSP 2003.

[2] M. Castro, et al. Fast Byte-Granularity Software
Fault Isolation. In SOSP 2009.


