A Measurement-Bagd Analysis of the Real-Time Performanceof Linux *

LucaAbenif, Ashvin Goel,CharlesKrasic,Jim Snav, JonatharWalpole

luca@ssup.it, {ashvin,

krasic, jsnow, wal pole}@se. ogi.edu

Departmenbf ComputerScienceand Engineering
Oregon Graduatelnstitute Portland

Abstract

Thispaper presentsan experimentaktudyof thelatengy
betavior of the Linux OS.We identify major sourcesof la-
tencyin the kernelwith thegod of providing real-timeper-
formarcein a widely usedgenenl-purpose opeating sys-
tem. We quantify eacth source of latencywith a seriesof
micro-berchmarksand also evaluae the effectsof latengy
on a time-sensitiveapplicaion. Our analysisshowsthat
there are two main cawsesof latencyin the OS: timer res-
olution and nonpreemptale sections. Our experiments
showthat in the standard Linux kernel the timer resolu-
tion latencyis predomimant, and geneslly hidesthe non-
preempthle sectionlatency We use accurate timers to
reducetimer resolutionlatencyand thenanalyzethe non-
preemptéle sectionlatencyfor several variantsof Linux.

1. Intr oduction

In the last several years, there has beenan explosive
growth in interestin suppeting multimeda applicatiors
suchasvideo streamingprogiams, software audio mixers,
etc.,ongereral-puposeoperatingsystemsThesanultime-
dia applicatiors, andsoft real-timeapplicatiosin general,
arecharacteriedby implicit tempogl constaints thatmust
be satisfiedto provide the desiredQoS.We thuscall these
appicationstime-sensitivapplicatias.

To suppeat time-sensitre applicatios, a general-
pumposekerrel mustrespectheapplication’s tempaal con-
straintsand hencea predctable scheduleis needed Un-
fortunately geneal-purmpsekernelsoftengenerée asched-
ule that is different from the expectedone dueto various
reasos such as the implemenation specificsof the ker

*Thiswork waspartially supportel by DARPA/IT O underthe Informa-
tion Tecology Expeditions,UbiquitousComputing Quorum,andPCES
programsNSFGrantCCR-998440andEIA-0130344,andby Intel.

fLuca Abeni is affiliatedwith ReTiS Lab, ScuolaSuperige S. Anna,
Pisa,ltaly.

nel. This paperevaluges, measuresandcharacterizethe
tempaal behaior of awidely usedgeneralpurpsekernel
through an extensie set of expeimentswith the god of
suppeting real-timeapplicatiors onsuchoperatimg systems
(OSs).

In particular we definea metric called OS latengy that
quartifies the differencebetweenthe actualschedie pro-
ducedby the kerrel andthe ideal schedule.Basedon this
definition we performacompehersive, quantitatve evalu-
ationof lateng in Linux [21]. We choselinux becaseit is
widely used,suppats mostcommanly available hardvare
andis distributedunder an opensoure license[6] which
enablegesearchrsto easilyexperimentwith it.

We identify several sourcesof the OS lateng, the two
most impottant sourcesbeing timer resolutionand non-
preemptivesectionsin the kernel or in the drivers. We
designd a setof micro-benchmaks and have usedthese
bencimarksto systematicallyquantify eachsourceof la-
teng in Linux. In addition,we comparethelateny beha-
ior of the standard_inux kernelwith the behaior of some
modfied versionsof the kernel. We shawv that the appli-
cationof somewell known real-time corceptssuchasfull
kerné preempability cangreatlyimprovethereal-timeper
formanceof Linux.

We also quarify the effects of the OS lateny at
the application-level by instrumentilg a well-known au-
dio/videoapplicationandthusexpeimentally evaluatehow
well a generalpurpae Linux kernelcansuppot the real-
time perfamanceneedsof multimeda applicatiors.

Themaincontritution of this pager is a characteriztion
of the tempoal behaior of a geneal-puiposekernel. We
believe thatthis studyis importantbecageit enablesising
real-timeanalysisor suchsystemsTheresultscontainedn
this papercomplengntmary of theresultsobtairedin real-
time researchin thatthey helpfocusattentiononthemajor
sourcef lateng in practice,andhen@ help us move to-
wardsthe god of realizingreal-timebehavior in a widely
usedoperting systemsuchasLinux.

Therestof the paperis organizel asfollows. Section2
formally defineghe OSlatengy andinvestigateshefactos

that contritute to it. In Section3, we describethe experi-
mentalsetupfor evaluating the variouls compaentsof the
OSlateng. Sectiond presetstheexpeimentalresultsand
in Section5 we shav how OS lateny affectsa mediaap-
plicationrunnng onLinux. Finally, in Section6 we presen
relatedwork andin Section7 we stateour conclisions.

2. The OS Latency

The mainobjedive of Linux in termsof perfamanceis
to provide fairnessand high throughpd, i.e., minimizing
theaveraye executio time experiercedby concurently ex-
ecutingprocesses.Until recently Linux hasnot focused
on time-sensitre applicdions, which are chaacterizedby
tempaal constraints.Suchapplications may requie peri-
odic execution where,for exampge, the periodis derived
from the frame rate of an audidvideo stream,or they may
requre responsen a shot time to exterral everts suchas
thearrival of anetwork paclet.

In this paper we useOSlatencyasa metricto evaluge
the OS suppat for time-sensitie applicdions. We define
the OSlatengy asfollows:

Definition 1 LetT beatask belorging to a time-sensitive
apdication that requires executionat time ¢, andlet ¢’ be
thetimeat which 7 is actudly scheduled; we definethe OS
latencyexperiencedy T asL = t' — t.

Exanples of tasksthat needto execue at time ¢ are, for
instance periodc tasks(the taskwakesup attime ¢ in re-
sporseto aperiodicevent), ortasksthatmustreactin ashort
timeto externd interrugs.

2.1 Causesf the OS Latency

OS lateny canbe causedoy several factors. We have
identifiedthreemajor causeof this lateng: timer resolu-
tion, schedulirg jitter, andnonpreemptake sections

Timer resolutionlateng occursbecausekernel timers
aregenerdly implemente usinga periadic tick intermupt.
For examge, conside a periadic taskr thatneedsto exe-
cuteevety T'us. Typicdly, the taskwill be woken up by
a kerrel timer that s triggered by the periodc tick inter
rupt with say periad T*°*. Hence a taskthatsleepsor an
arbitrary amoun of time T' canexperiencesometimer res-
olution lateny Lt™e" if its expeded activationtime is not
onatick bourdary.

Scheduliig jitter is causeecause may not be sched-
uledimmediatelyevenif accurde timersensurethatr en-
tersthe readyqueueat the corred¢ time. The schediling

1in this paper we usethe word “task” to dende either a threal or a
process.

jitter experiercedby ataskr canbeeasilyeliminatedby as-
signingthe highestreal-timepriority to it.? Sincereal-time
schedling algorithms that reducescheduliig jitter have

beenwidely studiedin the literaturewe will not addess
this problemin this paper. For the purposeof our experi-

mentswe will simply usethe highestreal-timepriority to

eliminatethelateng causedy schedling jitter.

A third source of lateng, that we call OS non-
preemptéle sectionlatencyis causedy nonpreempable
sectiondn the kernelor in the drivers. This compmnentof
lateng includednteruptServiceRoutinegISRs)andother
kerné constructsuchasbottomhalvesandtasklets.Con-
sider an examge whereinterrupts are disabledat time ¢.
Taskr canonly enterthereadyquete laterwheninterrugs
arere-erabled.In addition evenif 7 enterghereadyqueue
at the corred time ¢ andhasthe highestreal-timepriority
in the system,it may still not be schedied if preempion
is disabledfor somereason In this case,r will be sched-
uled when preenption is re-enaled at time ¢’, contiibut-
ing an OS nonpreempablesectionlateny L™ = t' — t.
This OS non-preenptable sectionlateng includes kernel
non-preenptable sections,but also other sourcesof non-
preenptability, whichfor exanple maybecausedy device
drivers, suchasISRs,bottomhalves,andsoon.

2.2 Analysis of the Latencies

In ourexpeliments,r is schedled usingthehighestreal-
time priority to eliminatethe lateny causedy schediing
jitter. Thus,the maximum lateny L that7 canexpelience
is equalto the sumof the maximun latenciesdueto timer
resolution andnonpreempable sectiong(max{ L *™mer} +
max{L"}). We analyz thesetwo termsseparately

2.21 Timer Resolution

Standadl Linux timersaretriggeed by a periodictick in-

terrug, which on x86 machina is generatedy the Pro-
grammablelntenal Timer (PIT) andhasa periodT tick =

10ms. As aresult,the maximumlateny dueto thetimer
resolution max{L*™mer} is Ttk = 10ms. Thus,thisvalue
can be reducedby redudng T'*°*. However, deceasing
Ttk increasesystemoverheadbecase more tick inter-

ruptsaregererated.In addition thereis a lower bourd on

Ltmer \which is equalto the execttion time required for

servicingthetick interrug.

The factthata periadic timer interrypt is not an appo-
priate solutionfor a real-timekerrel is well known in the
literature,and thus most of the existing real-timekerrels
provide high resolutiontimers basedon an aperidalic in-
terrug sourcgl?7]. In anx86 architectue, the PIT or the

2NotethatusingLinux reaktime priorities, it is very easyto implement
aratemonotonicpolicy.

CPU APIC (Advarced Progammalte Interruypt Controller
presehin mary mocernx86 CPUs)canbe progammedo

gererateaperiodc interrugs for this purppse. We expect

thathigh resolution timerswill reduceL?™¢" to theinter-

rupt servicetime without significantly increasingthe ker

nel overhead,becase theseintermupts are geneated only

whenatimer expires. In this paper we considerthe timer

resolution lateng in two differentkernds: 1) the standard
Linux kerng, 2) a high-resolutiontimer Linux kernelthat

we have implementedat OGI. Our expaimentsin Section
4 shawv thattheresolution of our high-resolutiontimerslies

betweerus to 6us.

2.22 0OSNon-Preemptable SectionLatency

The secondterm contrilbuting to the maximum OS lateng
istheOSnonpreempablesectionateny max{L"™}. This
value depeils on the device drivers, but also on the strat-
egy thatthe kernd usesto guaanteethe consisteng of its
intermal structues, andon the interral organizatio of the
kerrel. In this paperwe considedatenciesof four different
variantsof thekernel. Thesekernelsusedifferentstratejies
for protecting theirinterral structues. Thesekernds arel)
thestandad Linuxkernel,2) theLow-LatencyLinuxkernel,
3) the Preemptale Linux kerrel, and 4) the Preemptale
Lodk-Bre&king Linux kernel.

Standard Linux: Thestandardernelis basedntheclas-
sicalmondithic structue, in which the consisteng of
kerrel structuress enfacedby allowing at mostone
executionflow in thekernelatary giventime. Thisis
achieved by disablingpreempion whenan execuion
flow entersthe kerrel, i.e., whenan interrupt fires or
whena systemcall is invoked. In a standardLinux
kerrel, max{L"?} is equalto the maximum lengthof
a systemcall plusthe processingime of all theinter-
rupts thatfire befae returring to usermode. Unfortu-
nately this valuecanbe aslargeas28ms asshowvn in
Sectiord.

Low-Latency Linux: This appoach“corrects”the moro-
lithic structureby insertingexplicit preempion points
(alsocalledreschedling poirts) insidethe kernel. In
this approach,when a threadis executirg inside the
kerrelit canexplicitly decideto yieldtheCPUto some
otherthread In this way, the sizeof honpreenptable
sectionsis reduced thus decreaing L™. In a low-
lateng kernel, the consisteng of kerrel datais en-
forced by using cooperative schedling (instead of
nonpreenptive scheduliig) whenthe execution flow
entershekernel. This apprachis usedby somereal-
time versiors of Linux, suchasRED Linux [26], and
by Andrew Morton's low-latercy patch[14]. In alow-
lateny kerrel, max{L"?} decrasego the maximum

time betweertwo reschedling points.

Preemptale Linux: The preempable appoach, usedin
most real-time systems,removes the constraintof a
single execuion flow inside the kernel. Thusit is
not necessaryo disablepreenption whenan exea-
tion flow entersthe kernel. To support full kerne pre-
emptaliity, kerné datamustbe explicitly pratected
using mutexes or spinloks. The Linux preempable
kerné patch[11] useghisappr@achandmakestheker-
nel fully preempable. Kerné preempion is disabled
only whenaspinlockis held 2 In apreenptablekernel,
max{ L™} is deternined by the maxinum amoun of
time for which a spinlock is held inside the kernel
(maxinmum size of a kerrel non-geemptale section),
plusthe maxinum time takenby ISRs,bottomhalves
andtasklets.

Preemptale Lock-BreakingLinux: The kerrel lateny
canbehighin Preemptale Linux whensomespinlock
is held for alongtime. Lock breakng addesseghis
prodem by “breakng” long spinlocls, i.e., by releas-
ing spinlocks at strateyic points. Breakingspinlocks
into smallernon-peemptale sectionss similarto the
appoachusedby Low-Lateng Linux. Thisapprach
redwesthe size of kernel nonpreenptable sections,
but, of course,doesnot decreae the amouwnt of time
“stolen” by device drivers.

As afinal note,we would like to point out that the pre-
emptian patchhasbeenrecentlyacceptd in the develop-
ment (unstable)brarch of the Linux kerrel, and is now
presentn version2.54 of thekerrel.

3. Experimental Setup

The goal of this paperis to evaluateLinux lateng. One
methal for expeimentally measurig the lateng is to use
ataskthatinvokesus! eep to sleepfor a specifiedamaint
of time and then measureghe time that it actually slept.
Thelateny L, asdefinedin Section2, is thenthe differ-
encebetweerthesawo times. Unfortunately thisapprach
measurs the sum of all the lateny compmentsandthus
doesnot give usaninsightinto the cause®f lateng.

We investigde the individual latenyy compaments by
measurig eachof themin isolation, i.e., measureeach
sourceof lateng while eliminating the others. First, the
schediing jitter is easily eliminatedby runring the test
progam at the highest real-timepriority. Next, we need
to measuretimer resolutionlateny L*™¢" and OS non-
preenptablesectionlateny L™? in isolation. To measure
Ltmer e eliminateL™ by ruming the expeimentonan

SThereis also a different patch, from Timesys[9], basedon mutexes
andpriority inheritance instea of on spinlodks.

idle system.To measurd.™, we eliminateLt*™*" by using
highresolutiontimers. Thefollowing sectionsdescrile this
approachin moredetail.

3.1 Measuring Timer ResolutionLatency

The OSnon-peemptake sectionlatengy L™ canbere-
duced significartly by runnirg experiments on a lightly-
loade system.n thiscasefew systencallswill beinvoked
anda limited nunber of interrugs will fire andthuslong
nonpreenptableexeation pathsor drivers’ activatiors are
notlikely to betriggered.

The latengy L*™¢" can be measued by using a typ-
ical periddic time-sensitie applicatio. We implemented
this applicdion by runring a processthatsetsup a periodc
signal(usingthei t i mer () systemcall) with a periad T
rangng from 100us to 100ms. The processmeasureshe
time whenit is woken up by the signal and thenimme-
diately returrs to sleep. We measuredhe differencebe-
tweentwo successie processactivatiors, whichwe call the
inter-activaion time Notethatin theorytheinteractivation
times shouldbe equal to the periad 7. Hence,the devi-
ation of the inter-activation timesfrom 7' is a measureof
L¥mer SincelLinux ensureshatatimerwill never fire be-
fore the correcttime, we expectthis valueto be 10ms is a
standad Linux kerrel, andto be closeto theinterrug pro-
cessingime with highresolutio timers.

3.2 Measuring OS Non-Preemptable Section La-
tency

Oncethetimerresolution lateng is eliminatedwith high
resolution timers,we canmeasurel,™? in isolation. Unfor-
tunatelyaperiodicprocesds notsuitablefor measuringhis
lateng. For exanple, to measurehe effects of disabling
preemptionfor atime S, thelatenyy mustbe sampledwith
apericdd T <« S or elsethe non-peemptve code could
executebetweertwo consective measurernts.More pre-
cisely if £ isthemeasuredateng, thenl < L™ < L+T.
Hence to reliably measurd.™?, thetesttaskshouldhave a
periad T suchthatT << L™. In practice,this requre-
mentis hardto achieze andthuswe usean aperiodc test
appicationthatusesheusl eep() call.

Thetesttaskis basednaloopthat:

1. readsthecurrenttime ¢4
2. sleepdor atimeT
3. readgshetimet,, andconputesL™ =ty — (t1 + T)

Timest; andt, arereadusingthe PentiumTime Stamp
Counte (TSC), a CPU register that is increasedat every
CPU clock cycle and can be accessedn a few cycles.

Hence the measurmentsintroducevery low overheadand
areveryaccurate.

We investigatedhow various systemactivities cortribute
to L™ by runnirg variousbaclgrowundtasks.Thefollowing
tasksare known to invoke long systemcalls or causefre-
quen interuptsandthusthey triggerlong nonpreempable
sectionseitherin the kerné or in the drivers (asexplained
in Section2).

Memory Stress: One potertial way to increaseL™ in-
volves accessingargeamauntsof memoy sothatser-
eralpage faultsaregeneatedin successionThekernel
invokesthe pagefault handle repegedly andcanthus
exeaute long nonpreempablecodesections.

Caps-Lock Stress: A quick inspectionof the kernelcode
reveals that whenthe numiock or caps-lockLED is
switchedthekeyboarddriver sendsacommand to the
keyboard contoller andthen spinswhile waiting for
an acknavledgemaet interrupt. This processcan po-
tentially disablepreenption for alongtime.

Console-SwitchStress: The console driver code also
seemdo contan long nonpreempable pathsthatare
triggeredwhenswitchingvirtual consoles.

I/O Stress: Whenthekernelor thedrivers have to transfer
churks of data,they generallymove this datainside
nonpreempable sections. Hence, systemcalls that
move large amourts of datafrom userspaceto ker
nel spacgandvice-versa)andfrom kerrel memay to
ahardvareperipheral,suchasthedisk,cancausdarge
latencies.

Procfs Stress: Other poteriial lateny prodemsin Linux
arecausedy the/ pr oc file system.The/ pr oc file
systemis a pseuddile systemusedby Linux to share
databetweernthe kerrel and userprogams. Concur
rentaccesseto the shareddatastructuresn thepr oc
file systemmustbeprotectediy nonpreenptablesec-
tions. Hence we exped thatreadirg large amounts of
datafrom the/ pr oc file systemcanincreasethe la-
tengy.

Fork Stress: Thef or k() systemcall cangeneate high
latenciesfor two reasons. First, the new processis
creatednsideanonpreempablesectionandinvolves
copying large amounts of dataincluding pagetables.
Secondthe overheadof the schedler increasewwith
increasinghunberof active proessesn thesystem.

Experiere and caretil codeanalysisby various mem-
bersof the Linux community (for exampge, see Senowr
[18]) confirmsthattheabore list of lateng sourcess com-
pretensie, i.e., it triggers a representate subsetof long
nonpreenptablesectionsn thekernelandin thedrivers.

4. Evaluation of the Kernel Latencies

In this section,we presentan evaluationof the variows
OSlateny compaents. We ran our experimentsona 1.8
GhzAthlon processorwith 512MB of memory

4.1 Timer ResolutionLatency

The first set of expeiments measues Lt™e™ and
shaws that it can be easily eliminatedfrom the OS non-
preamptablesectionateng by usinghighresolutio timers.
We evaluatedthe high-resolutiontimer Linux kerrel (stan-
dardkernel+ ourimplementationof ahighresolutiaon timers
mechlanism)andcompaedits timer resolutionlateng with
thetimer latengy of a standard.inux kernel. Considerthe
periadic taskdescribd in Section3.1: In the standardker-
nel, if the task periodis not a multiple of T** thenthe
differencebetweertheinter-activation timesandT" will be
greder be 0 andcanbe aslarge asT'*°*. As explained,
this problemis solved by the high-resolutiontimer kernel,
which we demorstratethrowgh experimentsdescribe be-
low.

125

120

115

-
=
1S5

=
1)
@

=
o
3

Inter-Activation Times (usec)

©
&

85 -

80 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Activation Number

Figure 1. Inter-Activ ation times for a task that
is woken up by a periodic signal with period
100us on a high resolution timer Linux.

Figurel shavs theinter-activation timesmeasureavith
periad T = 100us on the high+esolutiontimer kernel.
Notethatafter1000 activatiorsthemaxinumdifferencebe-
tweenthe periad andthe actualinter-activationtime is less
that25us.

We repeged this experiment with different periods
whereeachexpaimentwas run for 10000000 activatiors.
Thesenew experimentsshovedthatthedifferencebetween
the period and the interactivation time doesnot signifi-
cantly dependon the periad T'. Figure 2 shaws the Prob-
ability Distribution Function(PDF) of the inter-activation

0.01

0.001 |

0.0001 |

Distribution

1e-05 |
1e-06 |

1e-07 | ‘
600

1e-08
400

800 1000 1200 1400 1600
Inter-Activation Times (usec)

Figure 2. PDF of the diff erence between inter -
activ ation times and period, when T' = 1000us.

timeswhenT = 1000us. The maximun measurednter-
activationtime is abou 1300us, whereaghe minimum is
abou 630us, and this distribution does not significantly
vary with increasinghumbe of activations.

We hypahesizethat the maximum deviation between
inter-activation times (abou 370us) is dueto the OS non-
preenptablesectionateng/ L™P. However, wedonotknow
thepredsecausef thislateng sincewe did notspecifically
contiol thebackgound taskset.

Hence,we performeda new setof expaimentsto mea-
surelatenciesdueto the variows actiities that cantrigger
long nonpreempablepatts.

4.2 OS Non-PreemptableSectionLatency

In this setof expeiments,we usedtheusl| eep() test
progamdescribedn Section3.2with 7' = 100us to mea-
sureandidentify thecause®f OSnonpreenptablesection
lateng. We perfamedtheseexperimentson four different
kernds describedn Section2.22: 1) the standardLinux
kernd, 2) the Low-Lateng/ Linux kernel,3) the Preempt-
ableLinux kernel,and4) the Preemptale Lock-Breaking
Linux kernel. Recallthatthe Low-Latercy kernelusesAn-
drew Morton's Low-Lateny patch[14] andthe Preempt-
ableLinux kerné andthe Preemptale Lock-Breakingker-
nel use RobertLove's kerrel preenption patch[11]. In
thefollowing, we will referto thosespecificpatcheausing
the namespreseted above. The next sectiondescribeshe
initial setof expaimentsthatwe performedto undestand
whichactvities causdarge OSnon-preenptablesectiona-
tencies.Sectiord.2.2describegdditioral experimentsthat
we performedto testthe sensitvity of the systemto the or-
derandthelengthof experimentalrurs.

4.21 Initial Analysis

Theusl eep() testprogamis startedonanunlcadedma-
chine Thenthe loadgeneratig tasksdescribedin Sec-
tion 3.2 are run in the baclgrourd to trigger long non-
preamptablepaths. To easilyrepresenthe lateny results
in a single plot per Linux variant, we useda backgound
loadthatwasgeneatedasfollows:

1. Thememorystresgestallocatesa large integer array
with a total size of 128 MB and accesse# sequen-
tially. This teststartsat 1000ms, andfinishesaround
2000ms.

2. Thecaps-lo& stresgestruns a programthatswitches
the caps-lo& LED twice. Thistestturnsonthe LED
at7000ms andthenturnsit off at8000ms.

3. The consoleswitch stresstest runs a progam that
switches virtual consoleson Linux twice, first at
9000ms andthenat 10000ms.

4. The I/O stresstestusesther ead() andwrite()
systenrallsandaccesse® MB of data.Thisteststarts
at11000ms andfinishesaround 13000ms.

5. Theprocfsstresdestreadsa512MB file in the/ pr oc
file system.t runsfrom 17000ms to around 18000ms.

6. The fork testforks 512 proesses. This test startsat
20000ms.

We ranthe experimentson a standard.inux kerneland
vetified that the timer resolutionlateny L*™™e" is gener
ally largerthan L™ andhidesthe effectsof disablingpre-
emptian for along time. Hence high resolutio timersare
neecedto investigateL™?.

We repeatedthe experimentusinghighresolutiontimers
in the usl eep() implemenation, and we obtaired the
resultsshavn in Table1. The table shaws that the Low-
Lateny kerné canredice the latengy duringthe memay
stresstestandthe I/O stresstest, but doesnot redice the
lateny geneatedby corsole switch, by caps-lockswitch,
andby the procfs stress.On the otherhard, the Preempt-
ablekerrel canreducethe lateng generéed by the prods
stressput re-intoducedarge latenciesduiing the memay
stress.Finally, the Lock-Breaking kernelseemso provide
someof thebenefitoof the Low-Lateng kernel(thelateng
during thememorystresss low) togethemwith someof the
berefitsof the Preempablekerné (for instancethelateng
causedby the consoleswitch testandby the procfs stress
test).In summay, thelargestlateng is causedy thecaps-
lock stresgestandall otherlatenciesarewithin 1ms.

Figure 3 shavs a graphical representationof the results
for the mondithic kernelwith high resoldion timersand
providesfurthe insightinto the causef lateng (for the

100000

10000

1000

Latency (usec)

100 f

memory.
caps on
caps off
chvt 3
chvt

roc read
fork

E
11000 ==

- 3

7000
8000

Q
1S3
1S3
&

10000
17000
20000

Elapsed Time (msec)

Figure 3. OS non-preemptab le section latency
measured on a high-resolution timer Linux.
This test is performed with heavy background
load.

sale of brevity, we omit the plots for otherkerrels, which
aresimilar to this one). For instancethe figure shavs that
thebig lateny in thememoay stresdestthatwe seein Table
1 occus only atthe terminaion of the progiam. We found
thatthesourceof thislateng is themunnmap() systencall
which unmapslarge memay buffers duringprogamexit.

4.22 Sensitvity Analysis

For sensitvity analysis,we perfamed additianal experi-
mentsby rumingthestresgprogamsin several differentor-
dersandfor a differentlengtls of time. The consoleswitch
andcaps-lak testsdid notshaw ary differercewith respect
tothevaluesin Tablel, thuscorfirming that: 1) noneof the
evalugedpatcheseduceghecaps-lockswitchlateng, and
2) the Preemptale andLock-Breakingkernelscanreduce
the consoleswitch lateng with respectto the standardor
Low-Lateny kerrel.

Table 2 shavs the maximum OS non-preempable sec-
tion lateny measuredvhenrumingthememaoy stresgest,
the /O stresgtest,the procfsstresstestandthe fork stress
testfor a long time. The testswererun for 10 hours and
360000® samplesverecollected.Although theworstcase
valuesshawn in Table2 arehigherthanin Tablel, there-
sults are qualitatively similar. Thus, 1) the Low-Lateny
kerné reduceghelateny duringthememoy stresgestbut
not duringthe procf stressor during consoleswitch tests,
2) the Preempmable kerrel reducesthe lateng/ during the
prods stressandduring consoleswitchtestsbut not duiing
the memorytest,and3) the Lock-Breakingkernelredu@s
all thesdatencies.

Figure 4 shavs the Cumulatize Distribution Function

Memory | Caps-Lock| Console| I/O Procfs | Fork

Stress Caps-Lock| Switch | Stress| Stress| Stress
Mondlithic 18212 6487 614 27596 | 3084 | 295
Low-Lateny 63 6831 686 38 2904 | 332
Preempable 17467 6912 213 187 31 329
PreempableLock-Breaking | 54 6525 207 162 24 314

Table 1. OS non-preemptab le section
run for 25 seconds).

latencies (in us) for diff erent kernels under diff erent loads (test

| | MemoryStress| 1/0 Stress| ProcFSStress| Fork Stress|

Monadlithic 18956 28314 3563 617
Low-Lateng 293 292 3379 596
Preemptale 18848 392 224 645
Preemptale Lock-Breaking | 239 322 231 537

Table 2. OS non-preemptab le section latencies (in us) for diff erent kernels under diff erent loads (tests

run for 10 hour s).

(CDF) P{L"? < I} of theOS nonpreempablesectionla-
tenciesmeasued during the I/O stresstest. Note that for
all thesethreekernelsthe probability of measuringaten-
cieshigherthan20usec is lessthan0.01. Thegraphshows
thatthatthe Preempable and Lock-Breaking kerrels have
lower latengy with higher probability (the CDF increases
faster).For exanple, P{L™ < 10us} is 0.99466 onaPre-
emptalte kernel,0.99541 on a Lock-Breakingkernel,and
0.441798 on alow-latercy kernel.However, while not visi-
blein Figure4,thesekerrelshave lateng distributionswith
longer tails: for exanple, P{L"? < 40us} is 0.997099 on
a Preempthle kernel,0.0.998165 on a Lock-Breakingker
nel,and0.999874 onalow-latercy kernel.In this sensethe
Low-Lateng kerrel providesbettemreal-timeperfamance

5. Effectson a Real Application

In this sectionwe examne the effectsof the OSlateny
on a real Linux applicdion. As a testapplicatio, we se-
lectedmplayer[1], an audidvideo playerthat canhande
several differentmediaformats.

Mplayer synchonizesaudio and video streamsby us-
ing timestampshatareassociateavith theaudioandvideo
frames. The audio cardis usedas a timing source,i.e.,
audo samplesareput in the audo cardbuffer, andwhen
avideoframeis decaled,its timestampis compaed with
thetimestampof the currertly played audiosample.If the
video timestampis smallerthanthe audiotimestampthen
theprogamis late (i.e., a videodeadlire hasbeenmissed)
andthevideois immedately displayed Otherwisethesys-
tem sleepsuntil the video timestampandthe audiotimes-

tampareequalandthendisplaysthevidea

Assumingno OS lateny anda fastenowgh CPU, au-
dio/videosynchrmizationcanbeachiered by simply sleep-
ing for the correctamouwnt of time (andin fact mplayer
sleepsusingthe Linux usl eep() call). Unfortunately if
the OS lateng is high, mplayerwill not be ableto sleep
for the correctamoun of time leadingto poa audo/video
synchpnization

To velify this hypothesis,we instrumered mplayerto
measurghe time whena video frame is displayedandthe
differencebetweerthe audioandvideo timestampsat dis-
play time. Usingthis instrunentedversionof mplayer we
perfamed some experimentson a standad Linux kernel
(high latengy) and on a lock-breakirg preenptable Linux
kerné with high resolutiontimers (reducel lateng). To
shav the effectsof the OSlateng, weranthel/O stresgest
asa compeing load while runnirg mplayer at the highest
real-timepriority. Thistestspendsabou 90% of its exea-
tion time in kernelmode. As describedn Section4.2,the
I/O stresstestperfoms intensie file systemaccessesnd
exacebatesthekerrel preempability prodem.

Figure5 shavs thedifferencebetweertheaudo andthe
video timestampswhen the video frame is displayedfor
mplayerrunring onstandard.inux. Onstandard.inux, the
maximum difference betweenaudo andvideotimestamps
is morethan 80000us, andthe figure qualitatively shavs
thereis alargevariarcein this difference.Notethatthe au-
dio/video skew in mplaye canbe negaive (by asmuchas
5ms) dueto the10ms resolutionof thekerneltimers.

Figure 6 presentsthe resultsobtaired using the lock-
brealng preemptableLinux kerné with high resoldion

OS Latency Distribution

Probability

1 i T T T T T
i Low-Latency ———
i i Preemptable ——---—-
it Preemptable-Lock-Breaking --------
i | Standard -
1 1 1
100 1000 10000 100000

Latency (usec)

Figure 4. CDF of the latency measured on diff erent versions of Linux (with high resolution timers).
This test is performed with the 1/O stress in background.

Audio/Video Synchronization
90000 : . T

—
+ [firmTimers +

80000 - g
70000 |, . + o+ R
60000 ++ Tt o4 + oy v q
so000 [© O+ T . L s
40000 | *+ o, 4, +

30000 +

+ + i ¥ +
o +
+ + + 7t + et
T H O o okt tg o+ +
" gty f‘gﬁ'ﬁtér iy #&"1 e
PR +
Hor e +ﬂ+¢+ + ++f PR Tt
T A gfi s
+ T The T e Ty R, AR
v r e s e TR e R
L e g T -+ L Lo e

4 +
20000 [+ E et L T

10000

Difference Between Video and Audio Timestamps (usec)

-10000

1 1 1 1
500 1000 1500 2000 2500 3000
Video Frame Number

Figure 5. Audio/Video Skew on standard
Linux. Heavy kernel load is run in the back-
ground.

timers.In this casethedifferencebetweeraudioandvideo
timestampss significantlylower andthe maxinum differ-
encels lessthan400us.

Thesecondsetof resultsshav theinter-frametimes i.e.
the differencebetweenthe displaytimes of a video frame
andthe previous frame. The expectedinter-frametime is

the process period1/F where F is the video frame rate.

In our experimentswe usedan MPEG movie with avideo
framerateof 30framespersecond Thustheexpectednter
frametimeis 33.3ms. Figure7 shavstheinter-frametimes
obtaired usingstandard_inux. SinceL!™e" canbeupto
10ms, we expectthe inter-frame timesto clusterarourd
30ms and40ms. However, the L™ compmentdueto the
backgourd loadintroducesadditiona variationin theinter
frametimesandincreaseshesetimesto morethan100ms
(or 100000us).

In contrast,Figure 8 shaws the inter-frametimes ob-
tained using the lock-breaking preenptable kernel with
high resolutiontimers. The inter-frametimesareclustered
arownd the correct value of 33.3ms andtheir variationis
very low.

6. Related Work

Although we are not aware of ary previous systematic
studyof theLinux lateng, someof theissueshighlightedin
this papethave beenaddressedh thepastduringthedesign
of real-timeoperding systemsandreal-timeextersionsto
Linux.

In particdar, mary different real-timealgolithms have
beenimplemened in Linux andin othergeneal pumpose
kernds. For examge, Linux/RK [15] implementsResource
Resenratiors in the Linux kernel, and RED Linux [26]
provides a geneic schedling framevork for implemant-

Audio/Video Synchronization

T
Firm Timers ~ +

250 |

.
@
3

=
1)
3

a
3

Difference Between Video and Audio Timestamps (usec)
N
S
3

o

.
0 500 1000 1500 2000 2500 3000
Video Frame Number

Figure 6. Audio/Video Skew for lock-breaking
preemptab le Linux with high resolution
timers. Heavy kernel load is run in the back-
ground. The Audio/Video skew is clustered
around 0, and the maxim um skew is less than
400us (note that the scale is diff erent from Fig-
ure 5).

ing different real-timeschedling algoritms. Severd pro-
pottional sharescheduligy mechanismsave beenimple-
mented[20, 22, 7, 29 in the FreeBSD,Linux, or Solaris
kerrelsandDSRT [8] is auserlevel schedulingsolution

While implementingreal-timeschedulig in geneal pur-
posekernels,the authos of the previous work noticedthe
lateng proddems, and someof the previous systemsad-
dressthem. For examge, RED Linux insertspreempion
poirts in the kerné (transfomingit to a Low-Latercy ker-
nel),andTimesysLinux/RT (basedn RK techndogy) uses
full kerné preenptability for redicingthe OSlateng. Ker
nel preempability is alsousedby MontaMsta Linux [23]
whosepreenptablekerrel patchhasbeenrecentlyaccepted
in the2.54 kerrel. It is worth notingthattheadwvantagsof
a preempablekerrel werealreadywell known in thereal-
time community [13]. Recently therehasbeenrenaved
interestin the evaluation of theselateng-rediction tech-
nigues. Concurent with our work (and unknown to us),
ClarkWilliams from RedHat[24] evaluatedLinux schedul-
ing lateng in a mannersimilar to the onepresentedn this
paper. The main differerce is that Williams usesa de-
composition of the OS lateng that is different from ours
andhedoesnotexplicitly conside timerresolutian latengy.
Williams comesto similar conclwsionsas us althoudh his
nunericalresultsareslightly differentfromourresults.One
probablereasorfor this discrepacy is thathe usesa differ-
entversionof thekernelpatches andhedid notusethelock-
breking patch. We arestill investigatinghow his numbes
relateto our results.

Video Inter Frame Times
140000

Standard‘ Linux +

120000 -+ + o+
s
100000 |-+

80000

60000

Inter Frame Time (usec)
Y

40000

e o
wm

0

.La. v Yt A e o *& -
A
ﬁ @g‘wﬁ “&@% ﬁﬁ
wmw
T+ e
0 500 1000 1500 2000 2500 3000
Video Frame Number

Figure 7. Inter-Frame times for standard
Linux. Heavy kernel load is run in the back-
ground.

A differernt apprachfor reducirg the OSlateng is used
by other systems,suchas RTLinux [5], RTAI [12], and
KURT [19], which deceasethe lateng by running Linux
asa baclgrourd process over a small real-timeexecutive.
In this case,real-timetasksare not Linux processesbut
run on the lower-level real-timeexecutive, andthe Linux
kerné runsasa nonreal-timetask. This solutionprovides
god real-timeperfamanceo thereal-timetasksexecuing
in kerne spacebutdoesnotprovideit to standard.inux ap-
plicatiors. Linux proessesrestill nonreal-time henceve
believe that RTLinux-lik e solutiors are not usablefor sup-
porting time-sensitie applicdionsruming in userspace.

As shown in Section4, the lateny L*™°" dueto the
timer resolutioncanbe eliminatedby usinghigh resoludion
timers. For this reason mostof the existing real-timeker-
nelsor real-time extensiors to Linux provide high resolu-
tion timers. The high resoldion timers conceptwas pro-
posedby RT-Mach[17] andhassubsegantly beenusedby
Rialto [10], RED Linux [26], RTLinux [5], andLinux/RK
[15] justto cite someexanples.Moreover, MontaMstapro-
videsa patchfor the standard_inux kernd implemering
high resolutiontimers[4].

7.Conclusionsand Futur e Work

In this pape, we have evaluatedhereal-timebetavior of
Linux by measuringhe latencyof various kernelvariarts.
This evaluationis important becauset enablesthe appli-
cationof real-timeguaanteedo the Linux system,where
latenciesaremodeledasblocking times.

In the future, we plan on using preenptable lock-
brealing Linux (with a high resolutiontimersmechaism)
to implenentaresenation-basedsystenthatprovidespre-

Video Inter Frame Times
140000 T

T
Firm Timers ~ +

120000 [q

100000 [1

80000 1

60000 q

Inter Frame Time (usec)

40000 1

20000 1

0 L L L L L
0 500 1000 1500 2000 2500 3000

Video Frame Number

Figure 8. Inter-Frame times for lock-breaking
preemptab le Linux with high resolution
timers. Heavy kernel load is run in the back-
ground.

dictableschedling. In addition we planto extendouranal-
ysis of OS lateng to separatehe kerné nonpreenptable
sectiondateng frominterrug processingverhead.For ex-
ample,in Linux, anintensie interrug load cancausdong
OS latenciesdueto the designof the interrypt processing
mechanism (ISRs, tasklets,and bottan halves). Prelimi-
naryresultsshaw thattheeffectsof interrug processingan
be mitigated by using resouce resenatiors togethe with
someadapationstrateyy [16, 3, 2].

References

[1] Mplayer- movie playerfor linux. http:/Awwmplayerhq.hu

[2] L. Abeni. Coping with interrupt executiontime in real-
time kernds: a non-intrusve approach In Proceedingof
the IEEE Real-Tme System$&ymposiunWork-In-Progress
London, UK, Decembe 2001

[3] L. AbeniandG. Lipari. Compersatingfor interruptprocess
timesin real-timemultimediasystems.In Third Real-Tme
Linux Workshop, Milano, Italy, Novemker 2001

[4] G.Anzinger High resolutiontimersproject.http://high-res-
timers.sourcefae.net/.

[5] M. Barabanw andV. Yodaiken. Real-timelinux. Linux
Journal, March 1996

[6] . S. Foundation. About free software.
http://www.gnu.og/philosghy/.

[7] P.Goyal, X. Guo,andH. M. Vin. A hierarchicakpusched-
uler for multimediaoperatingsystems. In Proceedingsof
the2nd OSDISymposiumOctober1996.

[8] H.huaChuandK. Nahrstedt.CPUserviceclassesor mul-
timediaapplications. In Proceedingf the IEEE Interna-
tional Confeenceon Mutimedia Computingand Systems
Florencetaly, Junel999

[9] T.Inc. Timesyslinux. http://wwwtimesys.com.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

M. B. JonesJ.S.B. lll, A. Forin, P. J.Leach,D. Rosu,and
M.-C. Rosu.An overview of therialto real-timearchitecture.
In In Proceedingf the Seventh ACM SIGOPSEuropean
Workshop Connemaa, Ireland,Septembef 996

R. Love. The linux kernel preemption project.
http://kpreempt.sourcefge.ret/.

P. Mantggaza, E. Bianchi,L. Dozio, andS. Papacharalam-
bous.RTAI: Realtime applicationinterface.Linux Journal,
72,2000.

C. W. Mercerand H. Tokuda. Preemptibilityin real-time
operatingsystemsIn In Proceeding®fthe 13thIEEE Real-
Time SystemS&ymposiurDecembel 992

A. Morton. Linux schedling lateng.
http://www.zip.com.auakpm/linuxschedlat.html.
S.OikawaandR. Rajkumar Linux/RK: A portableresource
kernelin Linux. In Proceedingsof the IEEE Real-Tme
SystemsSympaium Work-In-Progress Madrid, December
1998.

J. Reggehrand J. A. Stanlovic. Augmerted CPU resena-
tions: Towardspredictablesxecutionongeneral-pgposeop-
eratingsystems.In Proceedingof the 7th Real-Tme Tech-
nology and ApplicationsSymposim (RTAS 2001, Taipei,
Taiwan,May 2001.

S. SavageandH. Tokuda. Rt-machtimers: Exportingtime
to theuser In In Proceeding®f USENIX3rd Mach Sympo-
sium April 1993.

B. Senoner Audio lateny benchnark.
http://www.gardena.net/benno/lintaudio/.

B. Srinivasan,S. Pather R. Hill, F. Ansari,andD. Niehaus.
A firm real-timesystemimplementationusing commercial
off-the-shelfhardwareandfree software. In Proceedingof
the IEEE Real-Tme Technolagy and Applications Sympo-
sium 1998

I. Stoica,H. Abdel-Wahab,K. Jefay, S. K. Baruah,J. E.
Gehrle, andC. G. Plaxton. A proportiond shareresource
allocationalgorithmfor real-time,time-sharedsystems.In
Proceedingsof the IEEE Real-Tme SystemsSymposium
Decemberl996

L. Torvaldsetal. Thelinux kerrel. http://wwwkernel.og.
C. A. Waldspuger and W. E. Weihl. Lottery schedling:
Flexible proportiondshareresourcemanagemet. In First
Symposiunon Opemting SystemDesignand Implementa-
tion, pagesl—12 Novemberl1994.

B. Weinbeg and C. Lundholm. Embeddedinux - ready
for real-time. In Third Real-Tme Linux Workshop Milano,
Italy, November2001.

C. Williams. Linux scheduler lateng.
http://wwwlinuxdevices.com/files/article027/rh-
rtpapemdf, Mar 2002.

D. K. Y. Yau and S. S. Lam. Adaptie rate controlled
schedulingfor multimediaapplications.IEEE/ACM Trans-
actionson Networking August1997.

Yu-ChungandK.-J. Lin. Enhaning the Real-Time Capa-
bility of the Linux Kernel. In Proceedingsof the IEEE
RealTime ComputingSystemand Applications Hiroshima,
JapanQctober1998.

