Application-Level Isolation and Recovery with Solitude

Shvetank Jain, Fareha Shafique, Vladan Djeric, Ashvin Goel
Department of Electrical and Computer Engineering
University of Toronto

ABSTRACT

When computer systems are compromised by an attack, it is diffi-
cult to determine the precise extent of the damage caused by the
attack because the state changes made by an attacker and those
made by regular users can be closely intertwined. This problem
occurs due to implicit sharing in operating systems, and it can be
especially severe for persistent state. In particular, the file system
provides a single namespace that when compromised can have cas-
cading effects on the entire system, making intrusion analysis and
recovery a time-consuming and error-prone process.

In this paper, we present Solitude, an application-level isolation
and recovery system that is designed to both limit the effects of
attacks and simplify the post-intrusion recovery process. Solitude
uses a copy-on-write filesystem to provide a transparent, restricted
privilege isolation environment for running untrusted applications,
and it uses an explicit file sharing mechanism across the isolation
environments that limits attack propagation without compromising
functionality. Solitude provides two modes of recovery. If a sand-
boxed application proves to be untrustworthy, a course-grained re-
covery method allows easily removing the footprint of the software.
However, if a user mistakenly moves malicious files to the trusted
environment via explicit file sharing, then Solitude uses data de-
pendency tracking to allow fine-grained recovery.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls, Invasive soft-
ware (e.g., viruses, worms, Trojan horses); D.4.5 [Reliability]:
Backup procedures, Fault-tolerance; E.5 [Files]: Backup/recovery

General Terms
Security, Reliability, Management

Keywords

Access control, Copy-on-write, File Systems, Recovery, Taint anal-
ysis, Transactional file systems

1. INTRODUCTION

Several research efforts in recent years have focused on analysis
and recovery of compromised systems [12, 6, 9]. This problem is
both real and hard: once a system is compromised, it is difficult

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EuroSys’08, April 1-4, 2008, Glasgow, Scotland, UK.

Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

to untangle the state changes made by an attacker, for instance the
replacement of system binaries, from those made by normal users
or administrators. While attempting recovery, an administrator is
generally left with the choice of either confidently removing all
attacker modifications or preserving all valid user activity, but not
both.

We observe that a root cause of this problem is the implicit shar-
ing that exists in modern operating systems. A principal example is
the file system in which all users and processes share a single com-
mon namespace. Compromises that manage to make unauthorized
updates to this namespace, for instance by replacing the commonly
used UNIX ps command, can have cascading effects across the
entire system. While operating systems provide separate address
spaces to protect physical memory, comparable protection is lim-
ited for persistent state.

In this paper, we present Solitude, an application-level isolation
and recovery system that is designed to both limit the effects of
attacks and simplify the post-intrusion recovery process. At its
core, Solitude provides a file-system based isolation environment
for running untrusted applications. Each isolation environment is
bound to its own file-system namespace, similar to a process ad-
dress space, via a copy-on-write isolation file system called IFS.
IES offers a transparent view into the base (or regular) file system
for reading operations, but any modifications made by the untrusted
process or its children processes are confined to the separate names-
pace. If the user decides that the application is malicious or unde-
sirable, the entire compromised IFS environment can be discarded
without concern for the integrity of the base file system. This re-
covery method, being simple, is accessible to ordinary users.

A typical usage scenario of our system may involve running a
peer-to-peer (P2P) client program within an IFS. For example, a
user may download and install a photo editing application using the
P2P client. The user knows that files on P2P networks are some-
times modified to include malicious components and thus installs
the application in an IFS. This may be the same IFS as the P2P
program or a new IFS, but in both cases, no changes are made to
the base file system unless the user has explicitly authorized them.
If the application exhibits unexpected or suspicious behaviour, the
user can remove the program and its changes by discarding its IFS.

As with any isolation environment, there is a trade-off involved
between the security provided by the IFS isolation environment,
application-level functionality and ease-of-use. We rely on two
mechanisms to resolve these concerns: support for restricted priv-
ileges for running server applications, and policies for explicitly
sharing files between an IFS environment and the trusted base file
system. Running programs with restricted privileges in IFS inhibits
the spread and effectiveness of malware such as spyware, rootk-
its and memory-resident viruses that attempt privileged operations
(e.g., loading kernel modules), and makes it harder to compromise
the IFS isolation mechanism.

Support for file sharing policies enables rich system functional-
ity and helps with ease of use. For example, a user may wish to use

image files created by an untrusted photo application in a presenta-
tion program running in the base file system or within another IFS.
She may rely on a file sharing policy that allows the image direc-
tory to be shared with the base, or she may explicitly commit the
images from IFS to the base. We expect that these sharing policies
are specified when the application is installed or run for the first
time by a user. While low-risk files may be shared with the base
system for ease of use, commit-based sharing is more appropriate
for most files because it delays synchronization with the base and
thus allows handling errors in the sharing policy until commit is
performed.

We realize that users rarely have perfect knowledge of a pro-
gram’s trustworthiness and that they may unwisely contaminate
their base file system by designing insecure sharing policies or
committing malicious data or applications. Solitude addresses this
issue by using a taint propagation layer between all applications
and the base file system. This layer tracks the effects of synchro-
nizing files between the IFS and the base by recording how other
applications access these files and the actions they undertake as a
result. If a user decides that untrusted files or applications have
made it into the base, she can use Solitude for intrusion analysis
and recovery. Solitude helps produce a list of files and processes
that may have been affected and provides the ability to intelligently
rescue the system with fine-grained recovery tools.

Solitude makes three main contributions. First, it provides a file-
system based restricted-privilege isolation environment that is rea-
sonably easy to specify and can be used for both client- or server-
side applications. Second, it uses an explicit data sharing model
between an isolation environment and the base system that limits
damage from vulnerable applications and improves accountability
of persistent state changes. Finally, compared to our previous sys-
tem [6], Solitude can track contamination more accurately and has
significantly lower logging needs for system-level intrusion analy-
sis and file-system recovery. Our evaluation shows that the Solitude
model can be retrofitted in existing systems.

The rest of the paper describes our approach in more detail. Sec-
tion 2 provides further motivation for the problem addressed in this
work. Section 3.1 gives an overview of our system, describing the
usage model and our threat model. Section 4 presents the architec-
ture and the three main components of Solitude, the IFS isolation
environment, the sharing policies and the taint propagation and re-
covery model. Section 5 describes the current status of the Solitude
implementation, and Section 6 provides a detailed evaluation of our
system. Section 7 describes related work, and Section 8 provides
our conclusions.

2. MOTIVATION

As computer systems continue to be infiltrated and organizations
lose customers and revenue due to attackers, the ability to do ac-
curate analysis of attacks has become increasingly important. A
serious problem faced by security professionals when doing such
analysis is to distinguish attack activity from legitimate user ac-
tivity. Previously, we designed a prototype analysis and recovery
system called Taser [6] that securely audits all system-level activ-
ities on a target system so that these activities can be diagnosed at
a later time. After an attack, Taser provides tools for analyzing the
audit log and an investigator can run taint propagation on kernel
objects such as processes and files to determine the set of attack
related activities. Since Taser maintains a log of all file-system ac-
tivities, it can revert the persistent changes made by an attack, e.g.,
removal of a trojan program.

The Taser approach is implemented within an operating system
and requires no changes to existing applications, but it comes with

a cost. First, the system needs to log all system-call activities since
any activity could potentially be malicious. While such logging
is not computationally intensive, it imposes heavy storage over-
head and analysis can take a long time. Second, and more se-
riously, while taint propagation is a useful tracking technique, it
raises problems in current operating systems because of implicit
sharing. In particular, all users and processes share a single com-
mon file-system namespace. For instance, in most Unix systems,
any user or application can write to the shared /tmp directory. Sim-
ilarly, suppose that an attacker is able to modify a heavily shared
file, such as the password file. Any future user logins would read
this file and be marked tainted, and hence taint propagation would
not be able to reliably distinguish between attack and legitimate
user activity.

This implicit file-system sharing problem is exacerbated as users
increasingly download and install software from untrusted sources
on the Internet. Users are faced with the choice of either not down-
loading and running the application, or they risk compromising the
integrity and the stability of the system. For instance, a downloaded
media player application can have serious vulnerabilities that can
allow attackers to attach malicious code and infect computers with-
out the user’s knowledge. Additionally, audio and video streams
and downloads can be used to hijack or corrupt computers [33].

3. OVERVIEW

Rather than urge users to avoid downloading applications and
media, we argue that typical desktop applications that are used on
an almost constant basis such as web browsers, instant messengers,
word processors, e-mail readers and media players as well as most
server applications should always be run in isolated environments
to limit the impact of attacks.

Since our primary focus is on simplifying analysis and recovery
of persistent data, Solitude uses a file-system based isolation envi-
ronment in which untrusted applications can only compromise their
own namespace. The challenge arises when applications, running
in different isolation environments, need to share data such as a me-
dia file that is downloaded in a browser and used by a media player.
Solitude allows explicit sharing of files between an isolation envi-
ronment and the trusted base system, but it marks any such shared
files as tainted. Any use of these tainted files in the base is then
logged and tracked, similar to Taser. However the source of taint-
ing is limited to the explicitly shared files, and hence as explained
later, Solitude not only requires much less logging than Taser but
is expected to help determine attack-related activities more accu-
rately. Below, we discuss the usage model of our system and our
threat model.

3.1 Usage Model

Based on the notion that intrusions start with a network connec-
tion and then cascade into multiple system activities such as file
accesses and outgoing connections, we envision that Solitude will
be useful for various networked applications. These applications
could either be client-side applications run by the same user or
server-side applications (such as a web server, mail server, print
server) run on a machine on behalf of the same set of users. Below,
we describe some examples that represent usage models of our sys-
tem.

Users increasingly run applications such as instant messaging to
communicate and share data. These applications can be run in the
IFS isolation environment, which by default allows read access to
the user’s file-system environment and isolates all updates. An ex-
ternal sharing specification describes how applications access the
base file system, which is important because it allows retrofitting

the sharing policy onto existing applications. A service that knows,
for example, that a messaging application writes chat logs to a cer-
tain directory can offer the user the option to preserve these logs
while ensuring that all other persistent updates remain isolated.
Similarly, with a mail client, the local mail directory and the mail-
client configuration files could be explicitly shared with the base
system while any other persistent data would be unshared.

On the server side, consider a web site that provides an on-line
photo album service. The web server can be run in an isolation en-
vironment while configuring only the users’ photo data to be shared
with the base system. In this way, the persistent data that is impor-
tant to users can be shared or committed to the base system, such as
for archival or file search, but any updates made by the web server
are unshared and cannot affect the rest of the site even if the web
server is compromised.

The IFS isolation environment allows running multiple, related
applications in a session. Consider a user that uses a peer-to-peer
application to download files. After downloading the file to a stan-
dard location, the user can run a viewer application within the same
session or mark the standard download location as explicitly shared
and use the viewer in the base environment. All other updates by
the peer-to-peer application are unshared and could be easily dis-
carded after session termination. Note that isolation environments
are persistent in the sense that the IFS state is preserved across mul-
tiple invocations of the application.

Administrators can also choose to use IFS environments for cer-
tain low-privilege users. For example, IFS can be used to ensure
that anonymous FTP users cannot affect the base file system, and
to isolate directories that are shared across users such as the Unix
/tmp directory that has been the source of several exploits.

3.2 Threat Model

A malicious application can damage the integrity, confidential-
ity and availability of a system. Solitude strives to preserve the
integrity of the system in the presence of untrusted networked ap-
plications. The integrity of a system can be compromised by unau-
thorized modification of files and misuse of capabilities. For exam-
ple, an application can delete important binaries or load a rootkit
leaving the system in a corrupted state. Solitude attempts to con-
tain the damage caused by such operations using two methods: 1)
limiting access privileges to the trusted file system by isolating the
file modifications made by an untrusted application to a separate
namespace and providing fine-grained access control to the trusted
file system, and 2) limiting system-wide capabilities available to an
untrusted application in keeping with the least privilege principle.
These methods limit attack propagation in the file system by deny-
ing access to the files that should not be modified by the malicious
application, and restrict an application from causing harm by mis-
using its capabilities, which are far fewer than the all powerful root
user in Unix systems. An untrusted application may also communi-
cate with other processes via means other than the filesystem, such
as IPC or covert channels. Solitude tracks accesses to the trusted
file system and IPC communication via a taint tracking mechanism
that can be used for post-intrusion analysis. However, Solitude does
not track covert channels, for example, communication via the ex-
ternal network.

In addition, a malicious application may trick a user into grant-
ing additional privileges or may misuse its privileges. Solitude aims
to counter this threat by providing a system-wide recovery mecha-
nism, allowing users to recover their system. A malicious program
can also breach confidential information on the system by leaking
it to the outside world. Such techniques, e.g., employed by spy-
ware programs, attack user privacy. Although not a fundamental

Isolation Environments
I'e ¥ A

IFS1 || IFS2 | | IFS3 ‘ Recovery ‘

i i
poee=l___ U1]
Base File System i

Taint Propagation
:’>{ Backend System ‘

Logging System

Figure 1: The Solitude architecture

objective of Solitude, these risks can be reduced by denying read
access to sensitive information on the disk. A malicious application
can also reduce system availability. In this case, Solitude does not
provide any additional protection, but is no worse than the original
system.

4. APPROACH

Solitude provides a copy-on-write file-system based isolation en-
vironment for running untrusted applications, and it uses an explicit
file sharing mechanism that limits attack propagation without com-
promising application functionality. The Solitude architecture is
shown in Figure 1. It consists of three main components, the IFS
isolation environment, the sharing policies, and the taint propaga-
tion, logging and recovery system. We describe these components
below.

4.1 1IFS Isolation Environment

Solitude allows running an untrusted application in an isolation
environment called IFS that provides the application with a trans-
parent view of the base file system, but it restricts any file-system
changes with a default copy-on-write policy. This policy can then
be refined with explicit sharing policies that allow synchronizing
the base file system with the IFS. Below, we first describe our mo-
tivation for using this isolation model and then present the model.

4.1.1 Copy-on-Write

There are several reasons that motivated a copy-on-write based
isolation environment. First, the basic file-system recovery method
is simple: if at any point the user decides that the software may
be malicious, they can discard the entire IFS environment with-
out concern for the integrity of the base file system. Second, ex-
plicit sharing of file updates limits attack propagation across IFS
environments and hence reduces the effort involved in overall post-
intrusion analysis and recovery. Finally, copy-on-write enables
read sharing between the base and the IFS, and we do not require
explicit read sharing because such operations are far more common
and thus configuring them correctly would be challenging. How-
ever, as discussed later, the Solitude sharing policies can be config-
ured to deny access to sensitive base files in the IFS environment.

With copy-on-write isolation, any malware that attempts to con-
ceal its presence by disabling security software or by installing
rootkits will fail because the isolation mechanism safeguards the
integrity of programs in the base system. Similarly, spyware that
embeds itself in browsers will be ineffective when run inside an IFS
that is not specifically used for web browsing. Copy-on-write iso-
lation can also help stop the spread of worms and viruses that prop-
agate across network filesystems because IFS makes local copies
of these files. Finally, it can aid with malware detection. For ex-
ample, a spyware detector could be periodically run in IFS, and
copy-on-write would allow easier monitoring of malware activity.

Capability Parameters
Fcap FilePath [owner.group] [perm]
CAP [AppPath] CAP_SET

Table 1: IFS capability model

4.1.2 Isolation Model

We create an isolation environment by mounting the copy-on-
write IFS file system at a predefined mount point in the base file
system and starting an untrusted application within a chroot jail
rooted at the mount point. With the default policy, the application
has read access to the entire base file system but write access is
limited to IFS. We ensure that applications in the IFS environment
execute with privileges more restricted than if the same applications
were run in the base environment. For example, if an application
cannot access a root-owned file in base, then it will not be allowed
to access the file in IFS also.

To strengthen this isolation mechanism, we have incorporated
the Vserver secure chroot barrier [26] in IFS. This barrier uses a
special flag on the parent directory of the isolation environment to
prevent chroot escape. However, even with this mechanism, tech-
niques for escaping chroot jails are known and have led to best
practices for using them [4]. The most important of these rules is to
disallow all-powerful root privileges in a jail, which makes it sig-
nificantly harder to escape the jail. Unfortunately, this method lim-
its functionality by disallowing setuid programs and server-side ap-
plications that, for example, may require access to privileged ports.
Setuid programs are appealing targets for Solitude isolation. They
are frequent targets of attacks because they provide a direct path
to complete control over the system. Sendmail is a typical exam-
ple of a setuid application — it uses its root powers to temporarily
impersonate other users to deliver mail to their inboxes.

IFS restricts the privileges of root or setuid applications by en-
hancing the capability system available in Linux [15]. Each IFS en-
vironment can specify capabilities that are then enabled in the envi-
ronment. For example, a web server IFS environment would allow
opening privileged ports. We chose Linux capabilities because they
are relatively easy to specify. However, they are coarse grained, and
in particular, file related capabilities apply to the entire file system.
For instance, a program running with the CAP_DAC_OVERRIDE
capability can override all file access restrictions.

Instead of allowing such powerful file capabilities, IFS allows
per-file or directory privileges that allow overriding file access re-
strictions in the base. This approach may seem cumbersome, but
our results show that in practice systems configure the discretionary
access control permissions for most files “almost” correctly so that
few overrides are needed. Hence privileged applications typically
require few per-file privileges and can be run correctly without
full-root privileges. For example, consider a web server such as
Apache? running with restricted privileges in an IFS environment.
The application does not run as the root user and is only given the
capability to bind to a privileged port. As a result, it does not have
permission to access some files that are root owned, such as its error
log and access log. Therefore, it must be given per-file privileges
for these files. However, it can access most of its other files, such as
data and configuration files, without requiring additional privileges.

Table 1 shows the specification of the IFS capability model. These
capabilities are specified for each IFS environment. The Fcap file
capability allows overriding the file ownership or permissions on
the file (or directory) specified by FilePath. It provides a fine-
grained version of the Linux CAP_DAC_OVERRIDE capability,
and it applies to all programs run within an IFS. The CAP capability

Application /usr/sbin/apache2 www-data.www-data
Fcap /var/run/apache2.pid www-data.www-data

Fcap /var/log/apache2/error.log www-data.www-data
Fcap /var/log/apache2/access.log www-data.www—. ..
CAP net_bind_service

Wcommit /var/log/apache2/error.log

Wcommit /var/log/apache2/access.log

Figure 2: Policy for the Apache web server

applies to the application specified by AppPath. When AppPath
is not specified, it applies to the top-level application. This capa-
bility is enforced when an application starts executing, e.g., on a
Unix execve system call, and the CAP_SET parameter is a list
of capabilities (such as accessing privileged ports) allowed to the
application. IFS restricts certain capabilities such as create or re-
move mount points and accesses to raw devices, that may allow
applications to escape its isolation environment.

IFS capabilities are specified in a per-IFS policy file. Figure 2
shows a policy file for the Apache web server. This file is saved
outside IFS in the base system and can specify 1) the principal the
application should run as inside IFS, 2) the IFS capabilities, and
3) any of Solitude’s explicit sharing policies (described in the next
section). In Figure 2, Apache is run as the www—data user in an
IFS environment and the ownership of files with the Fcap capabil-
ity is set to www—data in the IFS (not in the base) environment.
This capability together with the net_bind_service capabil-
ity for accessing a privileged port allows running Apache in an IFS
environment with no other privileges. Section 6.2 shows that it is
easy to specify these capabilities for our other targeted applications.

When an application running within an IFS starts a child appli-
cation by executing the execve system call, the CAP capability of
the child application is exactly the set specified by the CAP_SET
parameter for that application, and as a result, the child does not
inherit any capabilities from the parent application and setuid ap-
plications have no additional privileges in IFS. Furthermore, each
capability is specified for a given IFS and is not system wide. We
also ensure that files that have been copied into IFS via copy-on-
write do not run with any CAP capabilities. This is to ensure that
a vulnerable IFS application cannot be hijacked into executing a
privileged application that has been modified.

4.2 Sharing Policies

Solitude isolates the persistent changes made by applications by
using copy-on-write as its basic isolation model, but it allows refin-
ing this model with policies that enable explicit sharing of specific
files and directories between an IFS and the base system. This ex-
plicit file sharing model is based on the idea that sharing of files
across applications is rare. We evaluate this hypothesis in Sec-
tion 6.1.

The sharing policy language is designed for simplicity and in-
tuitiveness similar to the IFS capability model. In particular, there
is no support for sharing between two IFS environments directly,
which provides finer-grained sharing but would complicate the lan-
guage design and specification. Any such sharing must be per-
formed via the base system. The sharing policy specifies three
sharing modes for reading and three modes for writing (although a
few combinations are not meaningful and mentioned below). These
modes are shown in Table 2. All the sharing modes apply to a file
or directory and are subject to the access control restrictions of the
base unless these restrictions are overridden by the Fcap capabili-
ties. Below we describe the different modes and show how they can
be used to support the IFS usage models described in Section 3.1.

| Read/Write Mode | Description |
Rshare Allow file read sharing (default)
Rsnapshot Allow file read from a snapshot
Rdeny Deny file read
Wisolate Deny file write to base (default)
Wcommit Allow file write during commit
Wshare Allow file write sharing

Table 2: IFS sharing modes

Rshare specifies the default read policy in which IFS applications
transparently read from the base system until they make an update
to the object. At this point, the data is propagated to the IFS and
read from there (one way copy-on-write). The read-share policy
protects the base system from any persistent changes made by a
compromised application running in an IFS and also allows easily
rolling back these changes.

Rsnapshot specifies copy-on-write in both directions, i.e. the IFS
makes a snapshot of the base immediately upon start-up, render-
ing both the IFS and the base oblivious to any subsequent changes
made in the other. A read snapshot ensures that software updates
in the base do not affect the isolation environment. However, it
also disables critical updates, such as security updates for a web
server vulnerability, from becoming available in the isolation envi-
ronment. The isolation environment must be shutdown and reini-
tialized to access these updates. At shutdown, updates in IFS can
be discarded or commit shared as described below.

Rdeny hides specified base files or directories from the IFS en-
vironment and therefore guards against information leaks and ad-
dresses information privacy concerns. The read-deny policy is likely
to be used in systems where the isolation environments are used to
run risky applications susceptible to subversion such as certain net-
work servers. A read deny overrides any write sharing policy.

Wisolate specifies the default write-isolate policy and confines all
writes permanently to the IFS.

Wecommit specifies that changes are confined to IFS but may be
eventually committed to the base system. Commit sharing delays
synchronizing updates until an explicit commit is issued. During
commit, IFS updates to files and directories specified via Wcom-
mit are applied to the base system atomically and are then discarded
from IFS. Each commit is associated with a Commit ID that is used
during recovery, as described later in Section 4.3. This sharing
mode provides a time period (until commit) during which updates
can be discarded and is suitable when sharing data loosely or occa-
sionally with the base.

Commits are initiated by starting a commit process on a partic-
ular IFS. The commit process is described in more detail in Sec-
tion 5.3. Commits can only be invoked by the IFS owner in the
base system, ensuring that malicious applications running in the
isolation environment cannot commit persistent data. An alterna-
tive that is currently not supported in Solitude, is to allow commit
sharing from the isolation environment after explicit user authenti-
cation similar to the use of the sudo program in Unix systems.

Various usage models described in Section 3.1 can benefit from
commit sharing. For example, the session logs of instant messaging
applications could be commit shared with the base system periodi-
cally. Similar, for the photo application described earlier, the photo
album directory could be commit shared with the base system for
archival or for viewing by another application such as file viewer.

Application /usr/bin/firefox
Wcommit /home/djeric/downloads/
Wcommit /home/djeric/.mozilla/
Rdeny /home/djeric/private_info.txt

Figure 3: An application policy file with a write-commit and a
read-deny policy

Solitude allows concurrent updates to occur in the base and the
IFS and hence persistent state in the two file systems can diverge
over time. An object modified in IFS can be committed success-
fully when the corresponding object in the base file system has not
been modified after it was first copied into IFS. This criteria ensures
that the commit operation is atomic and equivalent to an object be-
ing accessed and modified at commit time [30].

When the commit criteria is not met, updates can diverge and
the commit is said to be conflicting. Such conflicts can be auto-
matically resolved for directories since their semantics are known.
We expect that sharing and hence conflicts across applications de-
scribed in our usage models will be rare. If conflicts are common,
then either the conflicting applications should be run within the
same IFS, or the write sharing method described below is more
appropriate.

Although Solitude is designed to run untrusted applications in-
definitely within the IFS environment, it also supports committing
an entire application that the user deems trustworthy after evalua-
tion.

Wshare indicates immediate write-sharing of changes from the
IES to the base file system and is useful for files known to be of
low risk. Write sharing is also used for special files such as de-
vice files that typically do not satisfy file semantics (i.e., reads pro-
vide the same data as a previous write to the file) and also do not
provide persistent data. These files must be explicitly specified as
shared to allow updates. For example, many Unix programs write
to the /dev/null device file and terminal programs write to the
/dev/ptmx pseudo terminal device. A write-shared file must be
in read-shared mode.

Figure 3 shows a sample policy snippet for sharing files and di-
rectories. It specifies that any changes made by the Firefox appli-
cation are permanently confined to its IFS (the default policy), with
the exception of the downloads and the application profile di-
rectory which can be explicitly committed by the user to the base
file system. Firefox is allowed to read all the files in the base except
forthe file private_info.txt, presumably because it contains
sensitive information.

Policy rules are applied recursively to a directory’s files and sub-
directories. A more specific rule, such as one that applies to a file
in a sub-directory, overrides a more “general” rule, i.e. one that ap-
plies to a higher-level directory and its sub-directories. This allows
users to specify a rule covering a directory and its contents, with
exceptions for some sub-directories and individual files.

The intended authors of the policy files containing the IFS ca-
pability and sharing specification are companies that provide the
OS distribution or user communities. The policy language is sim-
ple and we expect that system administrators will be able to easily
modify the policy files to suit their environment. For certain appli-
cations, a default read-only policy should be satisfactory. In such
a scenario, the damage is restricted to information leakage. The
user can mark sensitive files with RDeny, thereby avoiding their
leakage.

Innocuous applications, when hindered, can inform and request
the user to grant certain file access permissions and capabilities to

Operation

Propagation Rules

File and directory read operations, execute file

Tainted file — Taint process

File and directory modification operations

Tainted process — Taint file

Create child process

Tainted process— Taint child process

Table 3: Taint propagation rules

function correctly. At this point, the user must judiciously grant
these privileges, based on the files that can be modified as well as
the capabilities that can misused. A mistake in his assessment will
require system-wide recovery as described below.

4.3 Taint Propagation and Recovery

The sharing policies described above enable collaboration be-
tween applications running in IFS and base, or between different
IFS contexts via the base. Without support for such sharing, an
increasing number of applications would be run in the same iso-
lation environment, negating the benefits of isolating the applica-
tions. However, the sharing policies could be poorly designed, po-
tentially leading to contamination of the base file system either via
commit or write sharing of malicious data or applications. Solitude
addresses this issue by tracking how other applications access files
that are committed or write shared, and then using a taint propaga-
tion method to log their resulting actions. If untrusted files reach
the base, Solitude uses a modified version of our Taser system [6]
for analysis and fine-grained recovery of the base system. Below,
we describe the Solitude taint propagation method, the logging sys-
tem and our offline recovery method.

4.3.1 Taint Propagation

Each IFS environment in Solitude conceptually has an associ-
ated IFS monitor process running in the base that performs all file
operations on behalf of IFS processes in that environment. This
process accesses a file in the base or the IFS environment based
on the file sharing mode, and synchronizes files from the IFS to
the base during a commit. Solitude marks this monitor process as
tainted since it operates on behalf of untrusted IFS processes. Then
the taint propagation algorithm tracks modifications to the base file
system that depend on this process. The taint propagation rules are
simple and shown in Table 3. These rules operate on kernel objects
such as processes, files and directories that can either be untainted
or tainted. The rules 1) taint a process when a process reads or ex-
ecutes a tainted file, 2) taint a file when a tainted process modifies
the file, and 3) taint children processes of a tainted process. These
rules can taint any processes running in the base environment or
any files in the base file system, but they ignore IFS processes or
files, because our goal is to recover the base system after an attack.

The Solitude tainting algorithm, operating at the granularity of
kernel objects, is coarse grained compared to instruction-level data-
flow analysis [29, 18, 3]. We choose to use a coarse tainting method
for two reasons. First, data-flow techniques are vulnerable to at-
tacks caused by implicit or control-based information flows within
a program [24]. Our algorithm taints at the process level and thus
does not suffer from this problem. Second, data-flow techniques
generally have a large overhead and are thus not used during nor-
mal operation, while our algorithm has low overhead and can be
used in real time. The main drawback of coarse-grained tainting is
that it can introduce a large number of false sharing dependencies.
However, we expect that file sharing will be common mainly within
IFS environments (which are ignored by the tainting algorithm),
and our explicit sharing policies will limit false dependencies in
the trusted base environment.

4.3.2 Logging System

The taint propagation algorithm uses a single bit to taint base
processes or files according to the rules shown in Table 3. How-
ever, this approach only allows determining the entire set of pro-
cesses or files that were tainted by any isolation environment. Soli-
tude allows finer-grained recovery at the commit level by logging
two kinds of operations. First, it logs all operations in which the
source object in any propagation rule shown in Table 3 is tainted.
For example, in the first rule, it logs a file read operation and the
process reading the file when the file is tainted in a fainted op-
eration log. Second, Solitude uses a separate privileged commit
process to generate a commit log that stores an IFS ID, a commit
ID (that is incremented per IFS commit), and the set of committed
files on each commit. The commit process taints itself, and hence
its operations are logged in the tainted operation log. This log and
the commit log are sent to a backend system shown in Figure 1,
which allows commit-level recovery as described below. The logs
are stored and analyzed on a separate system so that they cannot be
easily destroyed.

Our previous Taser system [6] assumed that all file-system oper-
ations were untrusted and hence logged all these and related opera-
tions. In contrast, the Solitude threat model assumes that untrusted
applications are executed in IFS environments and hence only op-
erations in IFS environments and tainted operations in the base are
untrusted. After an attack, copy-on-write based IFS environments
can simply be discarded. As a result, Solitude does not need to log
any operations in IFS and only logs operations on tainted base ob-
jects for fine-grained recovery. This approach can reduce logging
significantly compared to Taser.

4.3.3 Recovery

Recovery in Solitude can be performed on the backend system at
a per-IFS, per-commit granularity. If a malicious file is committed
to the base, the user specifies the IFS from which the file was com-
mitted and a commit ID (described earlier) as a starting point for
recovery. Our analysis tools, previously developed in Taser, help
determine the IFS and the rollback commit ID. For example, each
commit stores a commit time and the set of committed files. If the
file is known to be committed at some approximate time, then the
closest previous commit ID is chosen.

The recovery process can generate the tainting dependency graph
for any given commit. It starts by tainting the corresponding com-
mit process and re-running the same tainting algorithm described
earlier. This is possible because all tainted operations are logged to
the backend. Our use of the IFS monitor process (see Section 4.3.1)
ensures that if the tainted operations of an IFS are read by another
IFS, then the recovery process will track the operations of the sec-
ond IFS also. Furthermore, since an IFS environment will often
read files after they are committed, all subsequent write-share and
commit operations by the same IFS will also become tainted. As a
result, recovery for the explicit shared operations in Solitude would
be performed at the granularity of IFS environments. This approach
represents a trade-off between the granularity and scalability of re-
covery. Previously, we used Taser to perform rollback at a finer
process-level granularity, but that required logging all file-related

operations in the system which limited the scalability of the sys-
tem, and it also required more detailed analysis to determine the
starting point for the tainting algorithm. Since IFS environments
are typically used to run closely-related applications, we believe
that IFS-level recovery is an acceptable trade-off.

Once the set of files that depends on a particular commit ID has
been generated, these files should be manually inspected to ensure
the correctness of recovery. Then the files can be rolled back to an
untainted state by using the unmodified selective redo algorithm in
Taser [6].! The rollback uses a snapshot of a file taken when the
file was first tainted by any commit and then replays all subsequent
modifications (which were logged because the file was tainted) un-
til the file reaches a state just before the rollback commit ID. The
recovery system uses a simpler, more efficient undo algorithm for
reverting tainted directory operations, and then generates a self-
contained script that can be used to recover the base file system.

S. IMPLEMENTATION

Solitude consists of three main components, the IFS isolation
environment for running untrusted applications, the explicit shar-
ing policies for limiting attack propagation and the tainting system
for recovering from malicious shared files. Next, we describe our
implementation of these components.

5.1 IFS Isolation Environment

The basic isolation mechanism in IFS is a copy-on-write file sys-
tem. For ease of implementation, we have developed a user-level
prototype of this file system using FUSE [31] running on the Linux
kernel. FUSE intercepts operations at the virtual file system (VES)
layer, so that applications do not have to be modified to work with
FUSE file systems, and calls wrapper functions in a user-level pro-
cess that performs all file system operations on behalf of the ap-
plications running in each IFS environment. This process, conve-
niently the IFS monitor process described in Section 4.3.1, imple-
ments copy-on-write by redirecting operations to the base or IFS
layer. This implementation runs on the Linux ext 3 file system but
is mostly independent of the base file system.

5.1.1 Implementation of Copy-on-Write

IFS implements copy-on-write at the file-system level. The im-
plementation for files is straight-forward — files are copied to the
IFS whenever file data or attributes are modified. An IFS directory
is an overlay that only contains files or sub-directories in IFS. It is
created when 1) a base file (or sub-directory) within the directory
is modified, or 2) an IFS file (or sub-directory) within the directory
needs to be created. For example, when a base file is modified or a
file is created, IFS directories are created for all ancestor directories
of the file.

The implementation must handle three main issues. First, a create-
delete ambiguity is introduced when a file that was copied from
base is removed in IFS. The implementation ensures correct copy-
on-write operation by recording all file deletions and the deletion
time. Second, it records the time when a file is first created in
IFS. This time-stamp is used during commit to detect file content
conflicts, which occur when this time is earlier than the base file
modification time. Finally, hard links in Unix file systems, which
allow a single file to have more than one name create several com-
plications. For example, consider a file with two hard links that
exists in the base and is updated in IFS using one name. Later, it
is accessed in IFS with its second name. In this case, IFS needs to

'Taser also provides tools that help a user analyze and modify the
set of files that need to be reverted.

map this name to the IFS version of the file. The implementation
uses two mapping tables, one from base inode of a file to the cor-
responding IFS inode, and another from IFS inode to the file name
and the IFS inode of its parent. These tables allow mapping a path-
name in the base to a pathname in the IFS. IFS must also perform
reference counting to ensure that an IFS file is not removed until all
names of the file in IFS and base are removed. Additional details
are available in our technical report [27].

5.1.2 Implementation of Isolation Model

When an IFS isolation environment is started, the top-level IFS
application, by default, assumes the ID of the user invoking the IFS
environment. However, if a user is specified in the policy file (e.g.,
see the first line of the Web server policy file shown in Figure 2) and
this file is owned by user root and not readable or writable by oth-
ers, then the policy file user ID is used. Similarly, applications can
only acquire the capabilities shown in Table 1 if the corresponding
policy file is root owned and non-world readable or writable.

The capabilities in Table 1 are implemented using two methods:
the Fcap capability is enforced by the IFS monitor process, while
the per-application CAP capability is implemented by modifying
Forensix [5], a kernel-level system-call interception facility. At IFS
start-up, this capability is passed to the kernel, stored in a per-IFS
kernel data structure and enforced during the exec system call.
Unlike the current Linux security model in which applications that
require any privileges are run with all privileges (as root), our im-
plementation ensures that only the privileges needed by any appli-
cation are given to it, thereby restricting the Linux security model.
Currently, we require manual specification of IFS capabilities for
an application. We plan to develop a tool that will help simplify
this process.

5.2 Sharing Policies

The Solitude sharing policies are implemented within the IFS
monitor process. The default policy is copy-on-write, i.e. read
share and write isolate, with a few exceptions such as write sharing
for some /dev devices. Currently, we are in the process of imple-
menting the Rsnapshot mode in Solitude. This mode requires
integration with a standard file-system versioning mechanism [37,
19, 1], and is especially useful if the user plans to run multiple ver-
sions of an application in different IFS environments.

While our sharing policy language is simple by design, we find
that determining the correct policy for a large application can take
time. For example, determining the full set of files used by an appli-
cation and determining the correct policy for each sharing scenario
can be challenging even for individuals with intimate knowledge of
the internals of an application. Even when the correct policy has
been supplied externally such as by a community of users, individ-
ual system administrators may still wish to customize policy files
to their specific system configurations and specific needs.

Accordingly, we have created a simple tool that profiles an ap-
plication’s file I/O behavior and produces a list of files that are cre-
ated, deleted, read or written by the application. This output pro-
vides a good starting point for deciding the set of files that need to
be shared. In Section 6, we describe our experiences with writing
sharing policies for several popular client- and server-side applica-
tions.

5.3 Taint Propagation and Recovery

We have implemented taint propagation and the logging system
(for recovery) in the kernel of the target system with Forensix. The
taint propagation algorithm starts when a user commits files to the
base file system or when files are write shared. File commit is im-

plemented as a separate commit process, although it is logically a
part of the IFS monitor process since it also enforces the sharing
policies. The commit process uses redo logging to ensure atom-
icity. This process first explicitly taints itself (similar to the IFS
monitor process which is always tainted), creates a commit log of
operations to be performed (e.g., creating or synchronizing a file
in the base), sends the commit log to the backend with a new sys-
tem call called solitude_commit, and then performs the op-
erations. Tainting the commit process taints all its file operations,
which are then automatically appended to the tainted operation log
and sent to the backend system. All IFS updates to write-shared
files between two explicit commits are associated with the subse-
quent commit, which provides a logical grouping of the various
modifications to the base file system to discrete commit points for
the purposes of recovery.

The taint propagation algorithm maintains the taint status of base
processes and files by simply following the rules shown in Table 3.
File taints are maintained persistently across reboot. The logging
system initially sends a snapshot of the base file system namespace
to the backend. After that, it logs all base namespace modifications
to the backend so that the backend recovery process can recreate a
consistent view of the base file system. When a file is first tainted,
a snapshot of its pre-tainted contents are sent to the backend. After
that, all content updates to the tainted file are logged to the back-
end. The backend can then rollback a file to its pre-tainted state
and apply updates until the time associated with a specific rollback
commit ID.

6. EVALUATION

Our evaluation of Solitude focuses on the effort involved in con-
figuring sharing policies and how well the system limits the spread
of contamination from the untrusted IFS environments. We start by
evaluating sharing patterns among existing applications to gauge
the complexity of isolating various classes of applications. Second,
we describe the effort involved in configuring the sharing policies
and capabilities for applications run within IFS environments to
determine the usability of the system. Third, we measure the con-
tamination that occurs due to explicitly shared files and the storage
requirements of tracking and logging the actions of contaminated
processes. Finally, we evaluate the performance overhead of Soli-
tude.

6.1 Measurement of Sharing

Our first study is designed to evaluate file- and IPC-based sharing
patterns among existing applications run in Linux environments.
Our hypothesis is that both file and IPC-based communication is
limited among applications that are targeted for IFS environments
(e.g., network applications) and hence configuring explicit sharing
for these applications is a viable option. We test this hypothesis
for both client and server environments by using Forensix [5], a
system that logs all system calls and provides MySQL-based tools
that help with analysis of past system behavior. The client system
is one of the authors’ machines and it runs Ubuntu Linux 2.6.15.
The server also runs the same OS and provides web server (with a
php/mysql backend), imap, webmail, postfix, NES, VNC, dhcp, tftp
and sshd services to a cluster of 128 machines with roughly 10-15
active users. We present results for any potential sharing that occurs
among applications based on file and IPC-based communication.

Table 4 shows the results for write-write sharing of files by more
than one program in both a client and a server environment. This
table indicates that sharing is relatively uncommon compared to
the total number of file accesses on the client side. On the server
side, the majority of the sharing occurs due to a set of related mail

Client Server
Jul 26-Aug 23 | Jul 25-Aug 13

Experiment dates

Experiment time 29 days 20 days
Files written 30353 151856
Write shared files 173 88154

Table 4: File sharing statistics

programs shown in the first row of Table 5. This table shows the
shared files, the programs that accessed them, and the type of shar-
ing that would be needed to support these applications in a Soli-
tude environment. The first column of each row shows the num-
ber of shared files in the client and the server study in parenthe-
sis. The Unshared files can be accessed in an IFS environment
with no additional policies. The Write-shared files require a corre-
sponding write-shared policy. Some files, such as log files, may
either be in Unshared mode when accessed from IFS, or could
be directly accessed by programs in the base environment. Also,
certain programs, typically used for system administration, will
mainly be run in the base. Files in home directories may be ac-
cessed within IFS or base depending on the types of programs
being used. For example, a development IFS could be used for
accessing files from a remote repository and editing and compil-
ing these files. Similarly, other networked applications, such as
web browsers would be run in their own IFS and their configura-
tion files could be periodically committed to the base home direc-
tory.

We also performed an IPC study using the same experimental
data to determine whether an explicit IPC specification is reason-
able across IFS and base environments. Common IPC mechanisms
in Unix systems include FIFO, Unix domain sockets, shared mem-
ory and local INET (TCP, UDP) sockets. The first three mecha-
nisms have unnamed and named counterparts. The unnamed mech-
anisms work for related programs in a process hierarchy and are
allowed within an IFS but disallowed across IFS and base in Soli-
tude. For named communication, our study showed that there was
no shared memory communication, and a very small set of applica-
tions used FIFO and Unix domain sockets during the course of the
experiment.

Based on this initial result, we disabled these IPC mechanisms
across IFS and base and different IFS environments to avoid im-
plicit sharing, and re-ran the few applications using the [PC mech-
anisms. Surprisingly, we found that they still worked correctly.
For example, Gnome applications use Unix sockets to communi-
cate with the Gnome application-configuration registry. Our exper-
iments show that disabling Unix domain sockets has no effect on
these applications running in an IFS because they start another con-
figuration daemon in the IFS. The configuration data is stored in a
file hierarchy, and hence we were able to use commit sharing to
synchronize the application configuration data in the IFS with the
base (if desired by the user).

For local INET sockets, we saw no UDP based communication
during the entire experiment. We saw local TCP connections to
three services, the printing server, X server and the ssh server. The
printing server should be run in an IFS, but the other servers provide
basic services (desktop environment and remote access) and would
need to be run in the base. In all these cases, these services would
need to be shared with many IFS environments. Even so, these
results are promising because the total number of such services is
small, and hence we plan to incorporate explicit IPC specification
in Solitude.

Shared files (client, server) Programs Type of sharing
Files in /var/spool/postfix (0, 85927) Postfix, smtp, local, cleanup Unshared
Files in home directories (30, 1639) Compilation, etc. Unshared,
Commit
In base
Files in /tmp (122, 553) Cron, tex, other programs Unshared
Files in /var/mail, /var/mail/$USER .lock (0, 10) Procmail, imap, mail clients Write shared
Device files, /dev/null, /dev/ptmx, /dev/ttyXX, /dev/pts/0 (5, 3) Numerous programs Write Shared
Log files, /var/log/wtmp, /var/run/utmp, /var/log/lastlog, .xsession-errors gnome-pty-helper, xterm, sshd, Unshared, In
(5,6) sessreg base
Libraries, /usr/local/lib/libfuse.a, /usr/local/lib/libulockmgr.a (2, 0) install, ranlib In base
Files in /var/lib/belocs, /var/lib/texmf/Is-R, /var/lib/dpkg/lock, locale-gen, synaptic, apt-get, In base
/var/cache/debconf/ (9, 16) gnome-session, gnome-panel

Table 5: File sharing on a client and a server system

6.2 Sharing Policies

In this section, we discuss the usability of our system by describ-
ing examples of sharing and capability policies for various classes
of client and server-side applications suited for IFS environments.

6.2.1 Client Applications

We wrote and tested policies for a web browser (firefox),
instant messenger (gaim), mail client (thunderbird), a file-
sharing client (Limewire) and an audio player (xmms). These
applications are representative of a large class of networked appli-
cations used for downloading data and executables on the client
side. We used a combination of the copy-on-write IFS environ-
ment and our profiling tool to determine the files accessed by these
applications.

These applications do not require any write-shared files except
some device files. In all cases, the default specification for all these
applications allows committing the application profile directory in
the user’s home directory to ensure that the application profile is
safe even if the application is subverted and its IFS environment
needs to be discarded. Conflicts during commit are unlikely, since
we do not expect that an application’s profile directory will be mod-
ified by other base applications. The user may also specify that the
downloads directory of some of these applications (e.g., ~/Share
for 1imewire) can be committed. The mail client policy is sim-
ilar when using the POP or IMAP protocol. However, when mail
is delivered locally, the mail INBOX folder must be write shared
to enable sharing with the mail transfer agent (e.g., post £ix) IFS
and all mail folders must be write shared when using a mail deliv-
ery agent (e.g, procmail). Figure 3 showed a sample policy for
firefox. The other applications have similar policy files.

While the default policy for all these applications requires three
or fewer lines, the user may choose to use a more fine-grained spec-
ification. For example, the user may write- or commit-share only
the 1ogs directory of the gaim application instead of the entire
application profile directory. Similarly, the user may choose to
commit only the bookmarks file in firefox and specific exten-
sions that are known to not be malicious [13]. All policies could be
further refined by users to protect the privacy of specific files and
directories using the read-deny policy. Finally, if these applications
were [FS aware, these policies could be set up based on user input
when the user runs the application for the first time.

6.2.2 Server applications

We wrote and tested policies for server applications like a web
server (apache?2), a web server with a php-based photo applica-
tion (gallery), a mail server (postfix and procmail), an

Application /usr/sbin/postfix root.root
Wshare /var/mail/

Fcap /var/spool/postfix/pid/ root.root

Fcap /var/spool/postfix/private perm=00750
CAP /usr/lib/postfix/master net_bind_service
setgid setuid

CAP /usr/lib/postfix/pickup setgid setuid

Figure 4: Policy for the Postfix MTA

IMAP server (Dovecot), a DHCP server (dhcp3), a print server
(Cupsd), an SVN server (Svnserve), and an ftp server (vsftpd)
based on most of the services running on our cluster server (see
Section 6.1). We used our profiling tool to derive the file sharing
policies for these applications.

The basic web server policy is shown in Figure 2. This policy
only allows committing the server log files for safe keeping. The
Fcap capabilities are needed so that apache2 can access the rel-
evant files when running as the www-data user (these files are
owned and readable only by the root user in the base environment).
We also downloaded and ran the gallery application [17] within
the web server running in an IFS. This application stores albums,
pictures, album users, etc. in the /var/www/albums directory.
We added a single commit line in the apache?2 policy file for this
directory because it stores important user data. Any other operation
performed by gallery or apache? is confined to the IFS.

The post £ix policy shown in Figure 4 allows write sharing of
the /var/mail folder so that mail clients running in a different
IFS can access these folders. Postfix runs its main process as user
root but it has various processes running as user postfix. It
needs file capabilities because the root user has no special priv-
ileges in IFS. The master proces needs net_bind_service
to bind to privileged port 25 and setuid and setgid because it
runs processes as user post £ix and changes its identity to each
user that receives mail. Seven other processes are forked by the
master process and start executing as the root user. They require
setuid and setgid to later switch to the postfix user (only one is
shown in the figure). The policy files for the rest of the applications
are all simpler than the postfix policy and not presented here.

6.3 Taint Propagation and Logging

In this section, we measure the contamination that can occur due
to explicitly shared or committed files and the storage requirements
of tracking and logging the actions of processes contaminated by
the taint propagation rules shown in Table 3. This data is hard to
collect because it requires attacks on real user systems. A hon-

Client Server
Experiment time 10 days 14 days
Total log size 30.8GB 26.1GB
Total # of events 4544 M 151.8 M
Namespace events | 0.2 M (.04%) | 3.5 M (2.3%)
Total files 276,118 3,315,437
Table 6: Forensix logging statistics
Tainted files Logged Events

Client

acroread 2 0.3 million (.07%)
firefox 107 0.4 million (.09%)
amsn 134 0.4 million (.09%)
thunderbird 174 1.7 million (.37%)
nautilus 198 1.4 million (.31%)
gedit 222 | 10.0 million (2.2%)
Server

svnserve 65 3.6 million (2.4%)
apache2 5 3.7 million (2.4%)
dovecot/imap 35 4.7 million (3.1%)
mysqld 15 3.7 million (2.4%)
pine 20 4.3 million (2.8%)
procmail 38 4.8 million (3.2%)

Table 7: Taint propagation and logging

eypot can be used to detect attack activity, but it may cause little
contamination because it has no real users. Instead, we use the data
collected in the user study described in Section 6.1 to provide an es-
timate of the level of contamination that may occur and the logging
requirements during normal system activity.

For this experiment, we tainted all invocations of an applica-
tion and measured the number of tainted files in the system and
the amount of logging that would have occurred over the course of
10-14 days. This experiment was performed entirely in the back-
end system, and simulates the case of an application being tested
in IFS and then being committed to the base. In general, we expect
users to run network applications in IFS while mainly committing
data files, so this is a worst case scenario for tainting and logging
during normal user activity.

Tables 6 and 7 shows the tainting and logging results. Table 6
shows the number of days over which taint propagation was per-
formed, the total amount of data and the number of system call
events logged by Forensix (in million), the number of file names-
pace related system calls, and the total number of files that either
existed on the system or were created during the 10 or 14 day
tainting period. Table 7 shows several different client or server
applications that we tainted (one at a time), the number of exist-
ing tainted files at the end of tainting period, and the number of
tainted events that would have been logged by Solitude (also shown
as a percentage of the total number of events logged by Foren-
six). These tainted events include the namespace events (tainted
or otherwise) shown in Table 6 that are always logged in Solitude.
Table 7 shows that the number of tainted files is relatively small
for all applications, including applications like firefox that was run
over 100 times during the tainting period, and hence post-intrusion
base file-system recovery should be a feasible option. The percent-
age numbers for the applications also shows that the total amount
of logging in Solitude should be much smaller than our original
Taser/Forensix system.

6.4 Performance Overhead

We measured the overhead introduced by Solitude by running a
set of benchmarks representing different client or server workloads.
We ran two client workloads within an IFS: 1) untar of a Linux
kernel source tarball, representing a filesystem-intensive workload,
and 2) kernel build of the Linux sources, which is mainly CPU
bound and determines the overhead imposed when running simi-
lar CPU bound applications in a regular desktop environment. We
ran three server workloads in an IFS: 1) a large 230 MB file down-
load, which stresses the file-system read performance and repre-
sents a media streaming server, 2) a large 230 MB file upload,
which stresses the file-system write performance and represents an
FTP or a video blogging site, and 3) the Apache ab benchmark,
which stresses a standard Apache web server by issuing back-to-
back requests with four concurrent processes running 20 clients that
request files ranging from 1KB to 15KB, and is representative of a
loaded server environment.

We ran the tests on a Solitude-enabled Ubuntu Linux 6.06 ma-
chine with four Intel(R) Xeon(TM) CPU 3.00GHz processors, 2GB
of RAM and a local ext 3 hard disk. The client machine for the
server experiments is connected to the target machine with a Giga-
bit network. We repeated each test at least 5 times and our results
are averaged over these tests.

Figure 5 shows the performance overhead of Solitude for the five
benchmarks compared to a regular Linux system. The y-axis shows
the overhead in terms of running time for the first four experiments
and in terms of network throughput for the CPU-saturated web
server benchmark. The top graph shows the overhead for a process
running in IFS and the bottom graph for a process running in base.
Each segment of the bar shows the overhead introduced by the var-
ious components of Solitude. We obtained these results by starting
with the base Linux system and then running experiments that pro-
gressively added these components one at a time. For an IFS pro-
cess, these components include 1) the pass-through user-level file
system built on FUSE, 2) the basic copy-on-write IFS environment,
3) IFS sharing and capability policy module, and 4) the kernel-level
tainting module. The base components include the tainting module
and the backend logging (and recovery) system. In both cases, the
tainting module is run with no tainted files or processes to isolate
the overhead introduced by logging. For the logging component,
we taint the application and run the test to measure the overhead of
running an entire application that was downloaded in an IFS and
committed to the base.

The Untar test creates a large number files and directories, stress-
ing the IFS file system. The FUSE overhead is largely a conse-
quence of filesystem operations being redirected into user-space
code which then makes more system calls into the kernel, and as
a result, the user-level IFS code also incurs significant overhead.
We expect both these overheads to decrease dramatically with a
kernel-level implementation. The Solitude overhead occurs almost
entirely due to hard links. Solitude, in addition to tainting, pro-
vides a file generation number for uniquely identifying files to the
IFS code. As described in Section 5.1.1, the code stores the inode
and generation number in a persistent mapping table for correctly
handling the multiple names of a file due to hard links. In the fu-
ture, we plan to assess whether hard links are sufficiently useful for
IFS applications to justify the implementation complexity and over-
head. For a base process, logging introduces significant overhead
because all file and directory updates are logged to the backend sys-
tem. This represents the worst case scenario when the entire tar
application is tainted and run in the base.

The Build and the Apache benchmarks have smaller overhead
than Untar in IFS and minimal overhead in base. The Upload

'g 51 ‘ ‘ ‘SO"tl:Ide —
Qo Policy s
o} 41 IFS s
3 Fuse ===
3 3! BaseLinux
s
S
e H
| alm
=

0

Untar Build Download Upload Apache

g 27 ‘ ‘ " With Logging
_g Tainting Module T
2 15 Base Linux —
:
E 1
o
% 05+
o0

Untar Build Download Upload Apache

Figure 5: Performance overhead in IFS and base

benchmark stresses the FUSE code in IFS and the logging code in
base since the tainted file is logged to the backend. The Download
benchmark has no overhead.

7. RELATED WORK

There are several areas related to this work, access control, sand-
boxing techniques, file systems, and intrusion analysis and recov-
ery. Access control policies restrict access to a system and its ob-
jects based on a set of discretionary or mandatory policies. Discre-
tionary policies permit users to entirely determine the access that
is granted to the resources they own, allowing them to give access
to these resources to unauthorized users, whether by accident or
malice. For example, in the Unix context, a file owner may set
file permissions incorrectly, allowing implicit sharing of files with
other users. Users can use Unix groups to share files, but these
groups must be created by administrators, and it is not easy to pro-
vide per-application isolation with the Unix access control model.
In contrast, IFS environments provide application isolation by de-
fault, and when applications do not require any Linux capabilities,
the applications can be started in IFS environments by any user.
Unix systems provide setuid capabilities that allow bypassing all
access controls, making it dangerous for programs to possess these
capabilities. IFS provides a finer-grained capability model that en-
hances Linux capabilities.

Mandatory policies enforce explicit sharing and are specified by
an administrator based on the principle of least privilege. For ex-
ample, SELinux [16] provides a powerful mandatory access control
model, but it is commonly acknowledged that designing SELinux
policies is a complicated process [10]. Solitude provides a sim-
pler, but more coarse-grained isolation model in which policies are
primarily needed for file sharing. However, more importantly, ac-
cess control requires correctly specifying policies, while with our
commit sharing policy, errors can be handled until commit is per-
formed. Furthermore, Solitude audits and tracks commits and de-

pendant changes so that if our sharing policies are used incorrectly
and lead to attacks, it is still possible to recover the system.

The UMIP model, similar to Solitude, aims to preserve system
integrity in the face of network-based attacks [14]. This model
leverages information available in existing discretionary access con-
trol (DAC) policies to derive file labels for mandatory integrity pro-
tection. The basic UMIP policy partitions processes into low and
high integrity. When a process performs an operation that poten-
tially contaminates it, such as via reading from a network socket
or communicating with another low integrity process, it drops in-
tegrity and cannot perform sensitive operations. The basic UMIP
policy is enhanced with capability exceptions to support server ap-
plications. Our capability model was developed concurrently and
has many similarities with UMIP capabilities. The primary differ-
ence is that our default policy is read sharing and not read deny,
and hence our policy files are easier to specify because they typi-
cally do not need exceptions for reading files. More importantly,
UMIP does not provide isolation to client-side applications run by
the same user because it uses DAC policies to configure its policies.
Since UMIP is an access control mechanism, it shares the limi-
tation with SELinux that the policies must be correctly specified
when files are updated. In contrast, our copy-on-write approach al-
lows files to be in both low and high integrity states with explicit
commits to raise the integrity of the files.

Information flow control systems employ the principle of least
privilege to limit the impact of software vulnerabilities. For exam-
ple, HiStar [38] allows users to specify precise security policies,
but it often requires restructuring applications to meet its security
goals. Our focus is on improving isolation by retrofitting existing
applications.

Sandboxing techniques such as virtual-machine isolation and op-
erating system-level virtualization ensure that the effects of an ap-
plication are constrained within a restricted environment. Hypervisor-
based virtual machines (VM) can provide strong isolation guaran-
tees but they have limited support for sharing. For example, a vir-
tual machine can be used to run multiple versions of the Office
word processor, but each machine has its own separate desktop that
may lead to a confusing and error-prone user experience.

A second virtualization approach that trades security for effi-
ciency is to use operating system-level virtualization in which a
single physical server is partitioned so that it appears as multiple
servers that can be administered independently. This approach has
been implemented in several operating systems such as BSD [11],
Solaris [22] and Linux [28]. While similar to our isolation envi-
ronment, OS virtualization is still designed primarily for isolating
applications run by untrusting users (e.g., the different customers of
a service provider) and thus focuses on avoiding denial-of-service
attacks and provides limited sharing. For instance, in university or
small corporate environments, a single machine is often used to run
several server applications such as a web server, mail server, print
server, etc. on behalf of the same set of users. With OS virtual-
ization, by default, each of these server applications would require
its own list of users and user directories. We envision using isola-
tion environments for different applications run by the same user or
by a group of users within the same organization and thus aim to
provide better support for sharing and ease of use.

CapDesk [36] strives to enforce the principle of least authority by
offering interactive policy configuration, such as granting access to
files, when running applications. When trusted policy files are not
available, a similar approach could be used in Solitude. Microsoft
has recently released its Softgrid/SystemGuard technology for vir-
tualizing applications [2]. Softgrid uses a single OS, but uses the
SystemGuard virtual application environment to keep application

dependencies (DLLs, registry entries, fonts, etc.) separate from the
rest of the system, which allows streaming and running multiple
versions of an application such as Office within the same OS. Sys-
temGuard uses a copy-on-write file system but does not allow users
to commit applications or their configurations to the base, and also
does not allow for auditing, tracking or recovery of the base sys-
tem. GreenBorder is another application virtualization technology
that provides copy-on-write protection, but is tailored to provide
protection for specific applications such as web browsers [8].

In One-way Isolation [30], untrusted processes observe the en-
vironment of their host system, but the effects of these processes
are isolated from other applications. Once the code is trusted, all
changes made by it can be committed to the host system. Our com-
mit sharing method is motivated by this work. However, while this
work proposes using one-way isolation for testing and debugging,
we propose to limit sharing by running applications in the long term
in this environment. As a result, our system provides support for
explicit sharing across the isolation environments, an enhanced ca-
pability model for running server applications securely, the ability
to commit selectively as well as perform recovery even after data is
committed.

The idea of per-process namespaces first appeared in Plan 9 [21],
although it was largely motivated by representing various resources
as file systems. Solitude uses namespaces to isolate changes made
by each application. Solitude has similarities with the Ventana file
system [20] that provides sharing and file-level rollback with a rich
file-system level versioning scheme. However, Ventana primarily
focuses on using and managing virtual disks in a virtual machine
environment, while Solitude aims to maintain integrity and pro-
vide recovery facilities after an attack. Many file systems [25, 19]
have been developed for creating snapshots for versioning and re-
covery. These file systems typically implement versioning at the
block level which is simpler to implement and provides good per-
formance. However, our goal is to enable limited sharing and se-
lective commiits at the file-system level, and hence IFS uses copy-
on-write at the file-system level.

Transactional file systems, for example QuickSilver [7] and Vista’s
TxF (transactional file system) [34], allow file system operations to
be handled like transactions so that all the changes within a trans-
action are committed to disk atomically and the intermediate states
of a transaction are not visible to other applications or transactions
within the same application. Both file systems require changes to
applications to use a transactional interface to start, abort or com-
mit a transaction, and they use a pessimistic locking mechanism
for ensuring consistency. Quicksilver holds read locks on files un-
til the file is closed and write locks until the end of a transaction.
Directories are locked when they are modified, for example when a
directory is renamed, created or deleted. TxF’s locking mechanism
is also very similar to QuickSilver. However, a file can be read and
written in two different transactions concurrently. In this case, the
reads do no see the modifications made by the other transaction.

In contrast to QuickSilver and TxF, our IFS environment sup-
ports existing applications without requiring any changes to these
applications. It provides transactional semantics via commit shar-
ing at the IFS granularity, and hence transactions can exist for long
periods of time. To ensure availability in the face of long-running
transactions, IFS uses an optimistic concurrency control method
that allows the different IFS environments to concurrently access
and modify files. IFS transactions can either be rolled back by dis-
carding the entire IFS environment or IFS allows using resolution
policies when conflicts occur during a commit [32].

File-system workloads have been extensively characterized for
improving file system performance through prefetching and cach-

ing [35, 23]. We observe that sharing of files between different ap-
plications is relatively uncommon and thus suggest using explicit
file-sharing mechanisms.

Several efforts have focused on analysis and recovery of compro-
mised systems. The Repairable File Service [39] logs file system
activity and performs contamination analysis to provide system re-
covery after an intrusion. Backtracking [12] helps determine the
source of attacks by tracking dependencies among kernel objects
in reverse time order. Taser [6] determines and reverts the effects
of malicious file-system activities by tracking similar dependencies
in reverse and forward order. Hsu et al. [9] propose a malware re-
moval framework that allows rolling back untrusted updates.

8. CONCLUSIONS

We have described Solitude, a multiple namespace file-system
isolation environment designed for existing applications. Solitude
explores how the benefits of a shared namespace may be preserved
while limiting the implicit sharing that allows compromises to prop-
agate and confounds forensic analysis and recovery. To enable
sharing, Solitude requires an explicit file sharing specification be-
tween its isolation environments and the base file system, which
also helps improve accountability of changes to persistent state.
Solitude’s capability restrictions ensure that even if malware com-
promises a legitimate program running with some privileges in its
isolation environment, then it would be unable to embed itself deep
into the system (e.g. by loading a kernel module) because the host
application would likely possess only a few capabilities. When
sharing operations lead to an attack in the base environment, Soli-
tude provides the ability to perform system-level intrusion analysis
and file-system recovery based on tracking contamination.

We are currently exploring several avenues of future work. We
plan to study whether our isolation and recovery methods are appli-
cable to other systems such as Windows that provide several means
of communication between applications including registry entries.
We are investigating the use of handler programs that are activated
on sharing or commit operations as a way of detecting malicious
synchronization operations, For example, a spyware detector could
be run during each commit. Currently, IFS environments need to
be started manually. We plan to address these issues with a kernel-
level IFS implementation. Finally, we plan to explore the use of the
Solitude infrastructure as a debugging environment and for config-
uration management.

Acknowledgments

The ideas in this paper were refined during several discussions with
Andrew Warfield. We greatly appreciate the valuable and detailed
feedback received from the anonymous reviewers and from our
shepherd, Gernot Heiser. We wish to thank Alex Varshavsky, Eyal
de Lara, Stefan Saroiu and several other members of the SSRG
group in Toronto who provided comments on initial drafts of the

paper.

9. REFERENCES

[1] Brian Cornell, Peter Dinda, and Fabidn Bustamante. Wayback: A
user-level versioning file system for linux. In Proceedings of the
USENIX Technical Conference, pages 19-28, June 2004.

[2] Microsoft Corporatin. Microsoft SoftGrid.
http://www.microsoft.com/systemcenter/
softgrid/evaluation/virtualization.mspx, 2007.

[3] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron,
Lidong Zhou, Lintao Zhang, and Paul Barham. Vigilante: end-to-end
containment of internet worms. In Proceedings of the Symposium on
Operating Systems Principles (SOSP), pages 133—147, 2005.

(4]

[5]

[6

[t

[7

—

[8

[l

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

Steve Friedl. Best practices for UNIX chroot() operations.
http://www.unixwiz.net/techtips/
chroot-practices.html, January 2002.

Ashvin Goel, Wu chang Feng, Wu chi Feng, David Maier, and Jim
Snow. Automatic high-performance reconstruction and recovery.
Journal of Computer Networks, 51(5):1361-1377, April 2007. From
Intrusion Detection to Self-Protection.

Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal

de Lara. The Taser intrusion recovery system. In Proceedings of the
Symposium on Operating Systems Principles (SOSP), October 2005.
Roger Haskin, Yoni Malachi, Wayne Sawdon, and Gregory Chan.
Recovery management in QuickSilver. ACM Transactions on
Computer Systems, 6(1):82 — 108, 1988.

Matt Hines. Google buys into security, acquires GreenBorder.
http://www.infoworld.com/article/07/05/29/
Google-buys—-into-AV_1.html, May 2007.

Francis Hsu, Hao Chen, Thomas Ristenpart, Jason Li, and Zhendong
Su. Back to the future: A framework for automatic malware removal
and system repair. In Proceedings of the Annual Computer Security
Applications Conference, December 2006.

Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. Analyzing integrity
protection in the SELinux example policy. In Proceedings of the
USENIX Security Symposium, pages 5974, August 2003.
Poul-Henning Kamp and R.N.M. Watson. Jails: Confining the
omnipotent root. In Proceedings of the Second International SANE
Conference, 2002.

Samuel T. King and Peter M. Chen. Backtracking intrusions. In
Proceedings of the Symposium on Operating Systems Principles
(SOSP), pages 223-236, October 2003.

John Leyden. Spyware poses as Firefox extension.
urlhttp://www.theregister.co.uk/2006/07/26/
firefox_malware_extension, July 2006.

Ninghui Li, Ziging Mao, and Hong Chen. Usable mandatory
integrity protection for operating systems. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 164—178, 2007.
Linux. Man capabilities(7) in Linux man page. Confirming to
POSIX.1e.

Peter Loscocco and Stephen Smalley. Integrating flexible support for
security policies into the linux operating system. In Proceedings of
the Freenix Track of USENIX Technical Conference, June 2001.
Bharat Mediratta. Gallery photo album organizer.
http://gallery.menalto.com/, 2004.

James Newsome and Dawn Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of exploits on
commodity software. In Proceedings of the Network and Distributed
System Security Symposium, February 2005.

Zachary N.J. Peterson and Randal Burns. Ext3cow: A time-shifting
file system for regulatory compliance. ACM Transactions on Storage,
1(2):190-212, May 2005.

Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Virtualization
aware file systems: Getting beyond the limitations of virtual disks. In
Proceedings of the Networked Systems Design and Implementation
(NSDI), May 2006.

Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil
Winterbottom. The use of name spaces in Plan 9. ACM Operating
Systems Review, 27(2):72-76, 1993.

Daniel Price and Andrew Tucker. Solaris zones: Operating system
support for consolidating commercial workloads. In Proceedings of
the USENIX Large Installation Systems Administration Conference,
2004.

[23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

(311

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. A
comparison of file system workloads. In Proceedings of the USENIX
Technical Conference, June 2000.

A. Sabelfeld and A. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications,
21(1):5-19, January 2003.

Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson,
Alistair C. Veitch, Ross W. Carton, and Jacob Ofir. Deciding when to
forget in the Elephant file system. In Proceedings of the Symposium
on Operating Systems Principles (SOSP), pages 110-123, December
1999.

Secure chroot barrier - Linux-Vserver. http:
//linux-vserver.org/Secure_chroot_Barrier,
viewed in Aug 2007.

Fareha Shafique. Application-level file system isolation. Master’s
thesis, University of Toronto, December 2007.

Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier,
and Larry Peterson. Container-based operating system virtualization:
A scalable, high-performance alternative to hypervisors. In
Proceedings of the EuroSys conference, pages 275-287, 2007.

G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas.
Secure program execution via dynamic information flow tracking. In
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
85-96, 2004.

Weiqing Sun, Zhenkai Liang, R. Sekar, and V.N. Venkatakrishnan.
One-way Isolation: An Effective Approach for Realizing Safe
Execution Environments. In Proceedings of the Network and
Distributed System Security Symposium, February 2005.

Miklos Szeredi. File system in user space (FUSE).
http://fuse.sourgeforge.net.

Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J.
Demers, Mike J. Spreitzer, and Carl H. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated storage system. In
Proceedings of the 15th Symposium on Operating Systems Principles
(SOSP), pages 172—-183, December 1995.

David Thiel. Exposing vulnerabilities in media software. Black Hat
USA 2007, http://www.blackhat.com/html/
bh-usa-07/bh-usa-07-speakers.html#thiel, August
2007.

Surendra Verma and Charles Torre. Vista transactional file system,
December 2005. http://channel9.msdn.com/Showpost.
aspx?postid=142120.

Werner Vogels. File system usage in Windows NT 4.0. In
Proceedings of the Symposium on Operating Systems Principles
(SOSP), December 1999.

David Wagner and Dean Tribble. A security architecture of the
combex darpabrowser architecture, March 2002.
http://www.combex.com/papers/darpa-review/
security-review.pdf.

Andy Watson and Paul Benn. Multiprotocol Data Access: NFS,
CIFS, and HTTP. Technical Report TR3014, Network Appliance,
Inc., 1999.
http://www.netapp.com/tech_library/3014.html.
Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David
Mazieres. Making information flow explicit in HiStar. In
Proceedings of the Operating Systems Design and Implementation
(OSDI), November 2006.

Ningning Zhu and Tzi-Cker Chiueh. Design, implementation, and
evaluation of repairable file service. In Proceedings of the IEEE
Dependable Systems and Networks, pages 217-226, June 2003.

