
The Taser Intrusion Recovery System

Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li∗, Eyal de Lara∗
Dept. of Electrical and Computer Engineering, Dept. of Computer Science∗

University of Toronto

ABSTRACT
Recovery from intrusions is typically a very time-consuming opera-
tion in current systems. At a time when the cost of human resources
dominates the cost of computing resources, we argue that next gen-
eration systems should be built with automated intrusion recovery
as a primary goal. In this paper, we describe the design of Taser,
a system that helps in selectively recovering legitimate file-system
data after an attack or local damage occurs. Taser reverts tainted,
i.e. attack-dependent, file-system operations but preserves legiti-
mate operations. This process is difficult for two reasons. First, the
set of tainted operations is not known precisely. Second, the recov-
ery process can cause conflicts when legitimate operations depend
on tainted operations. Taser provides several analysis policies that
aid in determining the set of tainted operations. To handle conflicts,
Taser uses automated resolution policies that isolate the tainted op-
erations. Our evaluation shows that Taser is effective in recovering
from a wide range of intrusions as well as damage caused by system
management errors.

Categories and Subject Descriptors
E.5 [Files]: Backup/recovery; D.4.5 [Reliability]: Backup proce-
dures, Fault-tolerance; D.4.6 [Security and Protection]: Informa-
tion flow controls, Invasive software (e.g., viruses, worms, Trojan
horses); K.6.5 [Security and Protection]: Unauthorized access
(e.g., hacking, phreaking)

General Terms
Management, Reliability, Security

Keywords
File Systems, Intrusion Analysis, Intrusion Recovery, Snapshots

1. INTRODUCTION
When systems are compromised, one of the most error-prone and

time-consuming tasks is recovery of persistent data. Recovery is
performed after an attack is discovered and typically involves many
steps: installation of a new system image that includes the operat-
ing system and all applications, installation of software patches that
fix known vulnerabilities, and retrieval of uncorrupted user data.
Each of these recovery steps is manual, tedious and time-intensive.

Today, snapshot-based file-systems [22, 25] provide a well un-
derstood and commonly deployed recovery solution [30]. This
method gets rid of all corrupted data, but unfortunately, it also gets

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05, October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

rid of useful data not related to the intrusion, and this data must
then be manually retrieved or recovered separately.

Given the high human costs associated with recovery, sacrificing
some machine and networking resources for automating the recov-
ery process should be an attractive proposition. Moreover, with the
rapid and continuous decline in computing, networking, and stor-
age costs, logging all system activity, which is needed for recovery,
is now technically and economically feasible [26, 5, 12, 8].

This paper describes the design of Taser, a system that selectively
recovers file-system data after an intrusion is detected or after some
damage is caused by system management error. Taser reverts the
effects of file-system modification operations of tainted processes,
or processes that were affected by the intrusion, but preserves the
operations of legitimate processes. This approach has similarities
with system software upgrade where the upgrade can be selectively
rolled back without affecting the rest of the system [1, 10].

The Taser recovery method raises two main challenges. First, the
set of file-system operations that depend on an intrusion, or tainted
operations, is not known precisely because legitimate user activi-
ties may unknowingly interact with attack-dependent objects. For
example, a legitimate process may become falsely dependent on
a tainted process as a result of reading a shared file such as a log
file or a password file. Second, legitimate operations that need to
be preserved may depend on tainted operations that should be re-
verted. For example, a legitimate operation could have modified
a file that was created by a tainted operation. If the tainted create
operation is reverted by simply removing the file then the legiti-
mate modification is lost. With intrusion recovery, the challenge
is to preserve all legitimate file-system operations, revert or isolate
the ill-effects of tainted operations, and at the same time, automate
recovery as much as possible.

Taser operates in three steps: auditing, analysis and recovery.
The auditing step uses the Forensix system to securely and accu-
rately audit operations related to files, processes and sockets [8].
Forensix attributes file-system operations to processes and allows
replaying them. The analysis step uses the audit information to
taint processes, files and sockets based on dependency rules. For
example, a rule may taint a process that reads a tainted file. To-
gether with an initial set of externally provided tainted processes,
files or sockets, these rules help separate the tainted from the le-
gitimate file-system operations. Finally, the recovery step reverts
the effects of tainted operations by selectively replaying only the
legitimate operations on tainted file-system objects.

The choice of dependency rules involves an inherent trade-off.
These rules can be chosen conservatively. For example, any inter-
action between processes, files and sockets could be used to taint
an object. This approach simplifies the recovery process, but it can
mistakenly mark legitimate operations as tainted, so data is lost. In
contrast, some of the interactions could be ignored, which reduces
the number of false dependencies. However, this approach can miss
tainted operations and recovery becomes more complicated due to
conflicts that can arise between tainted and legitimate operations.
The analysis step exposes this trade-off by providing a choice of

policies from conservative to optimistic. The optimistic policies
ignore certain dependencies. For example, a policy may optimisti-
cally assume that reading certain log files does not cause a process
to be tainted.

The optimistic policies can lead to conflicts during recovery.
Conflicts arise when legitimate operations depend on tainted op-
erations. For example, a legitimate file may have been created in
a tainted directory. Simply removing the tainted directory conflicts
with the legitimate file that needs to be preserved. Such conflicts
become more likely when the intrusion or administration error is
detected long after its occurrence. Since manual resolution of con-
flicts is an arduous and error-prone process, Taser uses automatic
conflict resolution methods during recovery. To do so, it separates
file-system operations into name, content and attribute operations.
This approach simplifies resolution, allows recovery actions that
are suited for each type of operation, and enables fully automatic
name and attribute conflict resolution.

This paper shows that the Taser intrusion recovery system sim-
plifies the task of recovering file-system data after intrusions or
damage caused by system management error. Taser implements
several analysis policies that help in deriving tainted operations and
it provides automated resolution methods for tainted operations that
conflict with legitimate user operations. Our evaluation shows that
Taser correctly recovers from a wide range of intrusions as well as
erroneous system management activities.

The rest of the paper provides the details of our approach. Sec-
tion 2 presents the design of the Taser recovery system. Section 3
describes enhancements that improve the accuracy of the recovery
process. Section 4 discusses key implementation issues. Section 5
provides a detailed evaluation of our system. Section 6 discusses
related work in the area. Finally, Section 7 presents our conclusions
and directions for future work.

2. DESIGN OF THE TASER SYSTEM
The Taser system recovers file-system data after an intrusion or

management error by reverting the file-system modification oper-
ations affected by the intrusion while preserving the modifications
made by legitimate processes. In the rest of this paper, we use the
term intrusion to mean a system compromise as well as a manage-
ment error.

The Taser architecture consists of three main components: au-
ditor, analyzer, and resolver. The auditor runs in the background
during normal system operation and creates an audit log of all sys-
tem activities including file-system operations. The analyzer and
resolver are executed by an administrator during the recovery pro-
cess. Recovery is started after an intrusion has been detected exter-
nally such as by an intrusion detection system (IDS) or by an ad-
ministrator. The analyzer uses the audit log to determine the set of
tainted file-system objects that were affected by the intrusion. The
resolver uses this set of tainted objects and the audit log to revert
file-system modifications resulting from the intrusion. To revert
operations, the resolver selectively replays legitimate file-system
operations on the tainted objects.

The rest of this section describes the design of the Taser system
by first presenting the Taser recovery model. Then it describes the
auditor, analyzer and resolver components of Taser. The overall
system, as presented in this section, correctly reverts all file-system
modifications resulting from an intrusion. Unfortunately, it also re-
sults in a large number of false dependencies, leading to legitimate
operations being marked tainted. Section 3 presents enhancements
that improve the accuracy of the recovery process.

name op : name id → directory name id, name
content op : object id → content
attribute op : object id → attribute

Table 1: The Recovery Model

2.1 Recovery Model
Taser assumes a POSIX-compliant Unix file-system consisting

of regular files, directories, symbolic links and device nodes, each
of which has three types of information associated with it: name,
content, and attributes. Taser treats file name, content and attributes
as separate objects during recovery, and assumes that operations on
each object are independent. For example, it assumes that name
operations occur independently of content or attribute operations.
Separating file-system operations helps in optimizing name and at-
tribute recovery as discussed later in Section 2.4, and it allows finer-
grained analysis policies as discussed in Section 3.1.

Taser distinguishes between a file object and a name object be-
cause Unix files can have multiple names. It assumes that an object
id uniquely identifies a file object and a name id uniquely identifies
a name object. In Unix file systems, the object id contains the in-
ode number of the file. A name id is associated with exactly one
object id and this association is immutable over the lifetime of the
system. In contrast, an object id can be associated with multiple
name ids because a file object can have multiple names. Additional
requirements on these identifiers, such as uniqueness over time, are
described later in Section 4. File names in a Unix file system are
stored as part of the contents of directories. Taser recovers these
contents indirectly during name recovery.

Taser enforces file attributes such as permissions and ownership
at the file object (or inode) level, immaterial of the name by which
the file is accessed. For example, modifications to file permissions
(e.g., via chmod) are assumed to occur directly on the inode rather
than via the name of the file.

To formalize this model, we define the three types of file-system
operations as the mappings shown in Table 1. A name operation
(e.g., rename) creates, modifies or removes the mapping between
a name object and the pair (directory name id, name). A directory
name id is a name id associated with a file object of type directory.
A content operation creates, modifies or removes the mapping be-
tween a file object and its content, and similarly for the attribute
operation. These definitions make the three different types of oper-
ations on an object independent of other operations on the same or
other objects provided that three consistency requirements imposed
by the file system are met:

1. The name or object id must exist for a successful operation.

2. The directory name id must exist for a successful name op-
eration.

3. The name mapping must be one-to-one, i.e. two different
name objects in the same directory must map to different file
names at any given time.

2.2 Auditor
The auditor tracks operations on three types of kernel objects:

processes, files and socket connections. In particular, the auditor
captures the names and all the arguments of system call operations
related to process management, file system operations and network-
ing in an audit log. We assume that the auditor captures the identity
of the objects (e.g., process id, file object id, etc.) associated with

system calls and it audits concurrent system call operations cor-
rectly. We also assume that the auditor is not corrupted as a result
of an attack. Section 4 describes the prototype implementation of
the auditor and discusses the measures we take to ensure that these
assumptions are held.

2.3 Analyzer
The analyzer determines the set of tainted file-system objects by

creating dependencies between sockets, processes and files based
on entries in the audit log. Socket connections form initiating points
for remote attacks, processes issue operations that create other de-
pendent processes or files, and file accesses cause additional depen-
dencies, and, in addition, files are the persistent state of the system
that need to be recovered. The following sections describe how de-
pendencies are created and then present the tainting algorithm used
by the analyzer.

2.3.1 Dependency Rules
We say that a dependency is caused when information flows from

one kernel object to another via a system-call operation. A depen-
dency is denoted by Os

op→ Od where Os is a source object, Od is
the dependent object, and op is the relevant operation. For exam-
ple, when a process writes to a file, the file becomes dependent on
the process. Similarly, a process becomes dependent on a file when
it reads the file. Table 2 shows the dependency rules between the
kernel objects that are considered by the analyzer. These rules are
used to taint a dependent object when the source object is tainted.
Each dependency, which always involves a process, is caused by
the type of operations shown in the corresponding row. The last
column of Table 2 shows some of the key system call operations
that constitute each type of operation.

A process to process dependency occurs when a child process
is forked, which captures a tainted process hierarchy, and when
IPC and signal-based communication occurs between processes. A
process to file dependency occurs when a process writes to the con-
tent, name (e.g., creating or removing a file name), or attributes
(permissions, ownership) of a file. A file to process dependency
occurs either when a process executes a file or reads the content,
name or attributes of the file. For example, suppose a directory’s
attribute is tainted. A process accessing that directory will then be-
come tainted. When a process reads or accesses a path name, a
dependency occurs from every component of the path name to the
process since each component is considered a separate object in
the Taser recovery model. A process to socket dependency occurs
when a process writes to a socket, and a socket to process depen-
dency occurs when a process reads from a socket.

2.3.2 Tainting Algorithm
The tainting algorithm derives the set of tainted objects using the

audit log, the dependency rules shown in Table 2 and an initial set
of tainted objects, known as detection points, that are provided by
an intrusion detection system (IDS) or an administrator. Detection
points can either be the source of an attack (e.g., a malicious socket
connection that originates an intrusion), or the result of an attack
(e.g., some strange files identified by a host IDS).

When the detection points are not the source of an attack, the
algorithm goes into an initial tracing phase that starts from the de-
tection points and scans the audit log backwards to trace the source
objects of the attack. The algorithm then switches to the propaga-
tion phase that starts from the source objects of the attack and scans
the audit log forwards and taints objects affected by the intrusion.
Below, the tracing and propagation phases are described in more
detail.

Dependency Rule Type of Operation Operation

Process → Process Fork
IPC, Signals

fork, vfork
pipe, kill, mmap

Process → File

Write file content

Write file name

Write file attributes

creat, truncate,
unlink, write
creat, link, sym-
link, rename, un-
link
create, unlink,
chown, chmod

File → Process

Execute
Read file content
Read file name

Read file attributes

execve
read
open, truncate,
chown, chmod
open, truncate,
chown, chmod

Process → Socket Write write, socketcall,
sendfile

Socket → Process Read read, socketcall

Table 2: Dependency rules between processes, files and sockets

Tracing Phase. To identify the source objects of an attack, this
phase starts with a set of detection points and traverses dependen-
cies in reverse causality order. The trace phase is given a conserva-
tive estimate of the attack start time by an administrator, and the re-
verse traversal starts from the last occurrence of the detection points
in the audit log, and it proceeds until the start-time.

The output of this phase is a set of objects. This set helps an
administrator choose objects that are deemed to be attack sources.
This step, while requiring manual feedback, allows the adminis-
trator to limit the set of tainted source objects. For example, the
administrator might know that a process but not an entire session is
tainted. Grouping the output according to various criteria, such as
processes that have accepted remote connections, setuid processes
or files, may aid the administrator perform this analysis.

Propagation Phase. The propagation phase starts with a set of
source objects determined by the tracing phase or provided by an
IDS or an administrator. This phase traverses dependencies forward
to compute a causal dependency graph that consists of the transitive
closure of all tainted objects. The propagation phase starts from the
attack start-time and uses the dependency rules to mark objects as
tainted. When an operation shown in Table 2 occurs, and the source
object is tainted, the taint status propagates to the dependent object.
The dependent object is then marked tainted, and the tainting time
is recorded. This process is repeated until the tainted status does
not propagate to other objects any further. At the end of this phase
the analyzer outputs the set of tainted file-system objects.

The propagation phase treats file content, name and attributes as
separate objects. Section 3 describes how this separation helps im-
plement optimistic analysis policies that reduce false dependencies.

2.4 Resolver
The goal of the resolver is to revert tainted file-system operations

but preserve legitimate operations. It takes as input a file-system
snapshot, the set of tainted file-system objects generated by the ana-
lyzer, and the audit log created by the auditor. To revert operations,
the resolver uses a selective redo algorithm that only replays legit-
imate operations in the log that occur on the tainted objects. The
resolver assumes that recovery starts with an immutable file system
so that the file-system state does not change during recovery.

The resolver only considers successful legitimate operations that
modify the file system; it ignores read-only operations or opera-
tions that returned with a failed status. It is possible that that these
operations would have yielded different results (e.g., a failed le-
gitimate operation could have succeeded) if the intrusion had not
occurred. However, the resolver does not know the semantics of
the processes that issued the legitimate operations, and hence does
not attempt to predict process behavior if tainted operations had not
occurred. Similarly, the resolver preserves the effects of all legiti-
mate operations even though it is possible that a legitimate opera-
tion may have failed if the intrusion had not occurred (e.g., writes
to a file made accessible by a tainted operation).

The rest of this section first considers a simple recovery algo-
rithm based on redo logging. Then it presents selective redo, an
optimized redo algorithm that is used by the resolver.

2.4.1 Simple Redo Algorithm
In the simple redo algorithm, recovery starts with a file-system

snapshot and sequentially replays the file-system modification op-
erations captured in the audit log. Only the legitimate operations
should be replayed since the effects of the tainted operations should
be ignored. The resolver uses the set of tainted file-system objects
(generated by the analyzer) to differentiate between legitimate and
tainted file-system modifications operations in the audit log. In par-
ticular, modification operations to a file-system object that occur af-
ter the time the object was tainted are marked as tainted operations
and are not replayed. This simple redo solution is correct because
the dependency rules in Table 2 ensure that legitimate operations
do not depend on tainted operations. Unfortunately, replaying all
legitimate operations can be a slow process.

2.4.2 Selective Redo Algorithm
The Taser selective redo algorithm makes two optimizations to

improve the performance of the recovery process. First, we observe
that the file-system state at recovery time has the correct state for
all non-tainted objects. Therefore, the resolver starts the recovery
process with the file system at the recovery time instead of the file
system at the snapshot time, and it selectively replays legitimate
operations only on tainted objects. To recover a tainted object, the
resolver obtains an initial version of the object from the file-system
snapshot and sequentially replays the object’s legitimate modifica-
tion operations since the snapshot.

A second optimization takes advantage of the Taser recovery
model and performs recovery for file name, content and attribute
operations separately. Separating file-system operations helps in
optimizing name and attribute recovery. At each name or attribute
operation, the auditor captures the complete state of the object as
shown in Table 1. For example, it captures all the attributes (per-
mission, ownership) of a file after an attribute operation. As a re-
sult, a sequence of attribute and name operations can simply be
replaced by the last operation during recovery. Therefore, the re-
solver recovers a tainted attribute or name by replaying the last le-
gitimate operation on that attribute or name. In contrast, to recover
file contents, the resolver replays all legitimate content operations
starting from the snapshot until the first tainted operation. It does
so because, for storage efficiency, the audit log does not store the
complete state of the content mapping at each operation. Note that
name recovery implicitly recovers directory contents.

The resolver performs name recovery before content or attribute
recovery. This ordering helps meet the consistency requirements
discussed in Section 2.1. Intuitively, name recovery sets up a vir-
tual, consistent name space for the recovered file system, and then
content and attribute operations are performed on this name space.

��������	�	
���

���
��	��

��������
�	
�

������
�
�	
�

������
�	
�

�� � � � � � � �� �� ��

 �
���

� ��

��

���
	!"�����

� ��

��

����

���
	!"�����

� �

#��������

��

����

#��������

� �

��
���
$	��%�����

���
��	���

&	
�

� ��

 �
���

� '

' ����

Figure 1: Separating content, name and attribute operations

Figure 1 presents an example to illustrate the selective redo re-
covery algorithm. This figure shows the snapshot time when the
file-system snapshot is taken, the attack time when an attack oc-
curs, and the recovery time when the attack is detected and intru-
sion recovery is started. All the file-system operations are shown
at the top of the figure. This example shows how the file-system
operations can be separated into name, content and attribute opera-
tions for two files, File 1 and File 2. Operations that occur after the
attack time are marked tainted and are shown in boxes. Note that
the dependency rules in Table 2 ensure that after the first tainted op-
eration, all operations on a tainted name, content or attribute object
are marked tainted.

Recovery starts with the file-system state at the recovery time.
Note that File 2 is untainted and no operations need to be redone
for this file. In contrast, File 1 has to be recovered. Name 1 can
be recovered in a single step by replaying operation 3. Similarly
Attributes 1 can be recovered by replaying operation 8. Finally,
Content 1 is recovered by replaying operations 5 and 6. In this
example, selective redo requires replaying four legitimate opera-
tions, whereas the simple redo algorithm requires replaying all ten
legitimate operations. In general, selective redo is beneficial if the
footprint of the attack is small compared to the total number of le-
gitimate modification operations since the snapshot.

3. DESIGN ENHANCEMENTS
The Taser system presented in the previous section reverts all

tainted objects to their legitimate states, but it can also result in a
large number of false dependencies leading to legitimate objects be-
ing marked tainted. These objects are then unnecessarily reverted
to a previous state. While the dependency rules presented in Ta-
ble 2 cause information flow, it is unclear, without detailed pro-
gram analysis [21], whether the dependencies that are created are
real dependencies. For example, a signal sent from a tainted pro-
cess to another process may occur as part of normal activity, and
hence the dependent process should not be marked tainted. Simi-

Policy Description Conflicts

Conservative All operations shown in
Table 2 none

NoI Ignores IPC, signals none

NoIA Ignore reading file at-
tributes

attribute con-
flicts

NoIAN Ignore reading file at-
tributes and names

attribute, name
conflicts

NoIANC Ignore reading file at-
tributes, names, content

attribute, name,
content conflicts

Table 3: Optimistic analysis policies and classes of conflicts

larly, applications may read and write from /dev/null but this
file does not cause any explicit information flow. This section de-
scribes enhancements to the analyzer and the resolver that improve
the accuracy of Taser.

3.1 Analyzer Enhancements
The analyzer enhancements reduce the possibility of tainting le-

gitimate objects by relaxing the application of dependency rules.
The analyzer relaxes dependency rules in three different ways, op-
timistic analysis policies, dependency intervals and white lists, that
are described below. Relaxing the rules can lead to conflicting
recovery actions. The resolver enhancements discussed in Sec-
tion 3.2 handle such conflicts. Furthermore, the analyzer enhance-
ments can miss tainting an attacker’s operations. This issue is dis-
cussed further in Section 5.

3.1.1 Optimistic Analysis Policies
The analyzer described in Section 2.3 uses a conservative taint

analysis policy that takes into account all dependency rules listed in
Table 2. This policy correctly identifies all tainted kernel objects,
but it generates a large number of false dependencies that cause
legitimate objects to be marked tainted. To reduce this problem,
and in turn enable the recovery system to preserve more legitimate
operations, we extend the analyzer with optimistic taint analysis
policies that ignore some of the dependency rules listed in Table 2.

Table 3 shows the conservative analysis policy implemented by
the original analyzer and four optimistic analysis policies. The
names of the optimistic policies reflect the set of dependency rules
that the optimistic policy ignores. For example, the NoI policy
ignores IPC and signal operations. Similarly, NoIA, NoIAN and
NoIANC successively ignore reading file attributes, file names, and
file contents. The NoIANC policy is the most optimistic policy. It
includes a minimal set of operations that we consider essential for
creating tainting dependencies: fork that creates the tainted process
hierarchy, file or socket writes by a tainted process, execution of a
tainted file, and reads from a tainted socket. Table 3 also shows the
conflicts that may be generated by the different optimistic policies.
These conflicts and their resolution are discussed in Section 3.2.

Although the burden of choosing an appropriate policy for an
intrusion lies with the system administrator, in practice, we find that
running all the policies and comparing their results helps in quickly
determining appropriate recovery actions. This issue is discussed
further in Section 5.

3.1.2 Dependency Intervals
Until now, the analysis policies were based on dependencies be-

tween different objects, which we call inter-object dependencies.
Furthermore, similar to previous dependency analysis approaches
such as the Backtracker [12], we have implicitly assumed that an

����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��	
����

�	
����

�	
�����

Objects are shown on the left side of the figure. Inter-object depen-
dencies are shown as vertical arrows while intra-object dependen-
cies are shown as horizontal lines. The start and end of an intra-
object dependency interval is shown with a ¨ symbol. Dependency
intervals can be multiplexed over time as shown by the | symbol for
Process 1. For this process, reading from different sockets starts the
different intervals.

Figure 2: Inter- and intra-object dependencies

intra-object dependency exists within an object for the life-time
of the object. With this conservative approach, once an object
is tainted, it remains tainted forever. For example, a process re-
mains tainted until it dies. This approach avoids missing dependent
tainted operations but, unfortunately, it can be too coarse-grained,
especially when objects exist for long periods. For example, a
server process often performs activities that are logically distinct,
one for each connection. Tainting based on this long running pro-
cess will generate false dependencies between these unrelated ac-
tivities simply because the same process issues them.

To reduce these false dependencies, we enhance the analyzer to
optimistically limit intra-object dependencies to certain intervals so
that each interval is considered independent of the other intervals.
Below, we explain how these intervals are defined for each of the
kernel objects.

Processes. For processes, we consider two cases: 1) source pro-
cesses that communicate using a socket connection that is initiated
by a remote source, and 2) all other processes. For the latter case,
we define the dependency interval as simply the process lifetime.
For the former case, a source process can be the initiating point
for external attacks. Such a process or its parent is typically a de-
multiplexing point for large numbers of unrelated activities (e.g., a
server process). Hence, creating different intervals for the unrelated
activities can significantly avoid false dependency sharing.

To derive intervals for a source process, the analyzer examines
successful socket reads where a process reads remote data. A read
from a different remote socket indicates that the process switches
“context” to work for another unrelated activity. Such a read termi-
nates the current interval and starts another interval. This interval
method can be used for various common server models such as
separate processes started by Inetd, worker processes that handle
different multiple connections, and event-driven servers that multi-
plex the activities of different connections.

Figure 2 illustrates inter- and intra-object dependencies. Similar
to the notation used in Magpie [2], the start and end of an intra-
object dependency interval is shown with a ¨ symbol. However,
unlike Magpie, the analyzer uses directed dependencies. The figure
shows two different intervals for Process 1 based on whether the
process is serving Socket 1 or Socket 2. Each of these intervals is
multiplexed over time as shown by the | symbol.

File name. With the default analysis policies, once a name in a
directory is tainted, it remains tainted forever. For example, say a
tainted name is removed and a legitimate process creates the same
name again. Then this name will still be tainted. With dependency
intervals, a file name interval starts when a new file name is created
and it ends when the file name is removed. A new file name is
created either when a file is created or the link system call is used
to create a new name for an existing file. A rename operation
is treated as a name removal followed by the creation of another
name.

Files content. For file content, the dependency interval starts
when a new file is created and it ends when the file is removed.
In addition, the interval ends and starts another interval if the data
of an object is completely overwritten. For example, the complete
truncation of a file starts a new interval since the truncation stops
any file content related dependency.

File attributes. For file attributes, the dependency interval starts
when a new file is created and it ends when the file is removed.

Sockets. For sockets, the dependency interval is simply the life-
time of the socket. A new connection on the same port creates a
different object.

The analysis policies shown in Table 3 can optionally use the
dependency intervals described above. With these intervals, the
tainted status of an object ends with the end of the interval. Hence,
if this object interacts with a dependent object after the interval,
the taint status is not propagated to the dependent object. Such an
interval policy is more optimistic than the corresponding default
policy because it limits the time over which an object can create
causal dependencies.

3.1.3 White lists
In practice, we find that some analysis policies that create depen-

dencies based on reading tainted files can cause widespread taint-
ing. For example, many processes read and write shared files such
as /var/log/wtmp and /dev/null. To avoid creating such
false dependencies, Taser provides a white list mechanism that al-
lows an administrator to designate a list of files that are ignored by
these policies. A white-listed file that is written by a tainted pro-
cess becomes tainted and will be reverted, but this object does not
propagate its tainted status to other objects.

3.2 Resolver Enhancements
While the analyzer enhancements described in Section 3.1 help

reduce false dependencies, they can, however, cause conflicts when
legitimate operations depend on tainted operations. In this case,
reverting the tainted operations may result in reverting legitimate
file-system operations or the loss of legitimate file-system objects.
For example, with the NoIAN policy, which ignores tainted file
attributes and names, a conflict occurs when a legitimate file is
created inside a tainted directory. A recovery action that simply
removes the tainted directory will lose the legitimate file creation.
We consider such a recovery action as having failed because our
goal is to preserve all legitimate operations.

Conflicts occur when an operation reads a tainted file-system ob-
ject, and this read is ignored by some analysis policy shown in Ta-
ble 3. As a result, legitimate operations can occur after tainted
operations as shown in Figure 3. Table 3 shows the classes of con-
flicts that can arise with each analysis policy. Conflicts arise only
when file-system dependencies are ignored. For example, ignor-
ing attributes causes attribute conflicts, ignoring names cause name

�� � � � � � � �	 �� ���� �� ��

��
�
���������

������
���

��������
�
��

��������
�
��

�����
�
�� �
��

� ��

 ���!�

� "

"

��

���
#$���!�

� � ��

��

%������!�

� � ��

����

&���!��'
�
����

������
��

Figure 3: Legitimate operations occur after tainted operations

conflicts, etc. The more optimistic policies, by ignoring more de-
pendencies, can cause more conflicts. In the example above, read-
ing a tainted directory does not taint the process or the file creation.
This conflict would occur with the NoIAN and the NoIANC poli-
cies that ignore reading file (or directory) names.

Table 4 provides a finer classification of conflicts, which allows
designing resolution policies suited for each type of conflict. The
file-system operations are divided into elementary operations and
the types of conflicts are based on these operations. A conflict
arises when a legitimate operation, shown along the top row, reads
an object that was modified by a tainted operation shown along the
left column. Directory-related operations are not shown in the table
but are discussed below.

Next, we describe the different types of name, content and at-
tribute conflicts, and the resolution policies implemented by the
resolver. The resolution policies help isolate conflicting tainted op-
erations because these operations cannot be completely reverted.

3.2.1 Name Conflicts

Name-create conflict. A name-create conflict occurs when a
legitimate name creation operation accesses a tainted name. For
example, an administrator renames a file created by an attacker.
Recall that a tainted name is recovered by simply replaying the last
legitimate operation on that name. This operation may conflict with
a previous tainted name operation. For example, in Figure 3, op-
eration 9 may generate a name that depends on the name produced
by tainted operation 7. This name conflict occurs with the NoIAN
and NoIANC policies that ignore dependencies caused by reading
tainted file names (shown in Table 3). The resolver also ignores this
conflict because the conflict does not violate any of the consistency
requirements described in Section 2.1.

Name-remove conflict. A name-remove conflict occurs when
a legitimate operation removes a tainted name or a directory con-
taining a tainted name. These conflicts could be ignored because
the object was legitimately removed previously. However, it is pos-
sible that a user would not have removed this object if the name
had not been tainted. For example, the user may have removed a
legitimate file that was renamed to an unusual name by a tainted op-
eration. Hence, for these conflicts, the object is recreated with the
name that has a .removed extension so that it can be inspected
manually.

Legitimate Operations
Tainted Operations Name Create Name, Object Remove Content Update Attribute Update
Name Create name-create conflict name-remove conflict name-access conflict name-access conflict
Name, Object Remove name-recreate conflict not possible not possible not possible
Content Update non-conflicting content-remove conflict content-access conflict non-conflicting
Attribute Update attribute-access conflict attribute-remove conflict attribute-access conflict attribute-access conflict

Table 4: Types of conflicts caused by different legitimate and tainted operations

Name-access conflict. A name-access conflict occurs when a
legitimate operation updates the content or attributes of a file with
a tainted name, or modifies a file under a tainted directory. In this
case, the file or the directory has seen no legitimate name oper-
ations. This object should be removed, but the relevant legitimate
operations should be recovered. For example, an administrator may
have created a legitimate file under a tainted directory. Simply re-
moving the tainted name would violate one of the first two consis-
tency requirements described in Section 2.1. To resolve this con-
flict, the tainted name of the object is isolated, instead of being
reverted, and recovered with a .nonexistent extension. This
extension indicates that the name was not created legitimately. At
the end of recovery, a list of these suspect objects is provided so
that the user can inspect the objects and take appropriate actions.

Name-recreate conflict. A name-recreate conflict occurs when
a legitimate operation recreates a name that was removed by a
tainted operation. For example, the administrator may recreate a
legitimate file that was removed by an attacker. Simply recreat-
ing the removed tainted object leads to two different but legitimate
objects with the same name, which violates the third consistency
requirement. If the recovery action recreates the same object such
as via multiple names of a file, then the conflict is ignored. Oth-
erwise, the resolver recreates the previous objects with the same
name but with a version number extension.

3.2.2 Content Conflicts

Content-access conflict. A content-access conflict occurs when
a legitimate operation updates the tainted contents of an object. Re-
call that the resolver replays the legitimate content operations start-
ing from the snapshot until the first tainted operation. For exam-
ple, operations 5 and 6 would be replayed to recover Content 1 in
Figure 3. Any legitimate operation after the first tainted operation
causes a content-access conflict because we assume that content
operations always read contents before modifying them. Content-
access conflicts need to be fixed manually since file contents are
typically unstructured. An alternative is to use application-specific
conflicts resolvers [19, 13, 29].

Content-remove conflict. This conflict occurs when a legiti-
mate operation removes an object whose content is tainted. Sim-
ilar to the reasons for storing objects that are involved in a name-
remove conflict, objects involved in a content-remove conflict are
also recreated with a name that has a .removed extension so that
the contents of the object can be inspected manually.

3.2.3 Attribute Conflicts

Attribute-access conflict. An attribute-access conflict occurs
when a legitimate operation (other than remove) accesses the tainted
attributes (permission or ownership) of an object. Recall that a
tainted attribute is recovered by simply replaying the last legitimate
operation on that attribute. For example, Figure 3 shows the last le-

gitimate and the last tainted operations (operations 14 and 11) on
Attributes 1. In this case, since the last operation is legitimate, noth-
ing needs to be done for recovery, otherwise, operation 14 would be
replayed if there were tainted operations after it. Similar to name-
create conflicts, the resolver ignores this conflict because it does
not violate the consistency requirements.

Attribute-remove conflict. This conflict occurs when a legiti-
mate operation removes an object whose attributes are tainted. This
conflict is resolved in a similar way to name-remove conflicts by
recreating the object with a name and that has a .removed exten-
sion and with legitimate attributes.

3.2.4 Global Conflict Resolution
Recall from Section 2.4 that the resolver performs name, content

and attribute recovery separately. Typically, conflict resolution is
performed as part of the corresponding recovery operation. For ex-
ample, name conflicts are resolved as part of name recovery, etc.
However, certain conflicts must be resolved globally after all re-
covery actions have been generated. For example, a name-access
conflict occurs when a legitimate operation updates the content or
attributes of a file with a tainted name. This name conflict can be
detected and resolved only after the name, content and attribute re-
covery algorithms have been executed. In particular, the tainted
name cannot be removed during name recovery if the object has
legitimate content or attribute modifications.

4. IMPLEMENTATION
The Taser recovery system consists of the auditor, analyzer and

the resolver. Each component is discussed below.

4.1 Auditor
The auditor tracks the operations of three types of kernel objects:

processes, files and socket connections. The prototype implemen-
tation uses the Forensix system [8] to audit all kernel operations
related to process management, file system and networking. Fig-
ure 4 shows the Forensix architecture. The target system, which
provides services to the public network, is potentially vulnerable.

����������	
��
��

������
	����
�

�
�����
	����
� �����	�
��	����

�����	�

������

��
�	���
��������

����	���	��
�����

��
���

������

��
�	���
��
	��
�����

 ��
���	�
������

Figure 4: The Forensix architecture

�������

��	
�����	�

�����

���
����

�	������
��������

�������	�

	����

��������	������

�
�
�
�
�

���
�
�
�
�
�
�

Figure 5: The Analyzer architecture

The Forensix kernel logger is implemented as a module that loads
into a Linux kernel. It logs all process management, file system and
networking system calls and uses the Linux security modules facil-
ity [31] to capture additional information that helps disambiguate
the identity of the kernel objects accessed during system calls. This
approach provides accurate ordering of operations and avoids race
conditions during auditing [6].

The logger transmits the target’s system-call audit log over a ded-
icated network to a secured backend system where the log is stored
in append-only files. Separating the backend from the target ma-
chine helps ensure that the logged information cannot be destroyed
easily. In the backend system, the audit log is batch-loaded into a
database periodically or on demand. This log is then used by the
analyzer and the resolver that operate entirely on the backend.

We assume that the logging system on the target is not corrupted
as a result of an attack. Since Forensix runs in the kernel on the tar-
get system, this implies the assumption that the applications but not
the kernel on the target are vulnerable. We examined statistics of
known vulnerabilities for three distributions of Redhat Linux (Fe-
dora Core 1, 2 and 3) and found that the breakdown of the number
of kernel to application-level vulnerabilities in these three systems
was 9/74, 9/132 and 6/112 [24], i.e. kernel vulnerabilities account
for 10% or less of all vulnerabilities. While security statistics are
never conclusive [16], the numbers above substantiate our belief
that it is easier to secure a single piece of kernel code than all appli-
cations combined. To reduce the risk of kernel intrusions, Forensix
uses LIDS [32] to disable 1) user-level writes to kernel memory, 2)
user-level writes via the raw disk interface, 3) writing to the ker-
nel or Forensix binary files, and 4) the loading of kernel modules.
These simple measures make current kernel-level rootkits ineffec-
tive [7, 23].

To facilitate analysis and recovery, each kernel object of interest
(sockets, processes and files) must be assigned an identifier that re-
mains unique over time. For sockets and processes, the Forensix
kernel logger attaches a creation time-stamp to the socket and the
process id. To track operations on a file object, the logger uses an
object identifier, which for Unix-based files is the inode number.
However, since inode numbers can be reused after an object is re-
moved and these numbers are not unique across devices, the logger
uses the three tuple (device, inode, generation number) to uniquely
identify file-system objects. We call this tuple the object id. The
generation number is available in most current Unix file systems
and serves the same purpose as a time stamp.

The object id, by itself, is not sufficient for tracking the names
of an object since file objects can have multiple names. To track
names, the backend maintains a name id for each name of the file

�
�
�
���
��
��
��
�
	
�
�

��
�

�
�
�
��
�
��
�
�
�
�
�
�
� �����

��������

��	����������������
	�����	������������

��	�������	����
����������

��	�������	�����

�������
��������

�������
����	��

Figure 6: The Resolver architecture

that consists of the tuple (object id, creation id). When a file object
is created, it is assigned a starting creation id and when a new name
for the file is created (e.g., with the link system call), this new
name is given a new creation id. The creation id does not change
when a name is updated, e.g, with the rename system call. The
removal of a name ends the lifetime of the name id associated with
that name. The name id approach allows tracking name operations
independently of file object or inode (content, attribute) operations.

4.2 Analyzer
Figure 5 shows the architecture of the analyzer. The implementa-

tion of the analyzer is relatively straightforward. Starting from the
detection points, all the relevant system call operations in the audit
log, available from the Forensix database, are parsed to create the
dependency information. This parsing is performed in reverse time
order during tracing and forward time order during the propaga-
tion phases. As an optimization, dependencies between legitimate
objects are not created since they are not needed. The manual feed-
back step is needed between the tracing and the propagation phases
to choose attack sources. Although the Forensix database contains
IPC and signal operations, the analyzer currently ignores these op-
erations while creating dependencies. As a result, it implements all
policies in Table 3 except the Conservative policy.

4.3 Resolver
The resolver obtains the tainted objects from the analyzer and

then uses the Forensix database to derive the legitimate file-system
operations on these objects. Figure 6 shows the architecture of the
resolver. The recovery algorithm implements and uses several map-
ping tables in the Forensix database. These tables store an archive
of the mapping information described in Table 1, and they allow
creating snapshots of the file system, including the state of the file
system just before the attack time or at the recovery time on the
backend machine.

The output of the recovery and the conflict resolution algorithms
is a set of recovery actions that take the immutable file system at
recovery time to a recovered state that reverts the effects of tainted
operations. A final recovery script generation phase orders the re-
covery actions so that they can be executed consistently. For ex-
ample, suppose that name A at recovery time must be renamed to
name B. However, name B exists at recovery time and must be
renamed to name B.new. Then the script generation phase orders
the second action before the first one. This phase takes into account
user preferences such as whether old object versions should be kept
or certain files can be ignored during recovery (e.g., editor backup
files). The recovery script is executed on the target machine.

5. EVALUATION
Our evaluation of Taser consists of two parts. First, we eval-

uate the accuracy of the system to determine whether Taser can
effectively recover from a wide range of intrusion and management
errors. Second, we evaluate the performance of the system by mea-
suring the time to perform analysis and recovery and the perfor-
mance and space overheads of auditing. Below, we first describe
the experimental method and setup and then present our evaluation.

5.1 Experimental Method
We evaluated Taser using several scenarios that are described in

Section 5.3. For each scenario, the trace phase of the analyzer
uses the most conservative taint analysis policy that we have im-
plemented (the NoI policy) so that the attack source is not missed.
The propagation phase uses three different policies: NoI (ignores
IPC and signals), NoIAN (ignores IPC, signals, file name and at-
tributes) and NoIANC (the most optimistic policy that ignores all
previous dependencies and file content). We don’t present the re-
sults for the NoIA policy because preliminary analysis showed that
these results are similar to the NoI policy.

To evaluate accuracy, we use two metrics: 1) the number of false
positives, which are legitimate operations that are marked tainted
and reverted to a previous state, and 2) the number of false neg-
atives, which are the attacker’s operations that are not caught and
for which no recovery action is taken. For each metric, we count
the number of distinct name and attribute recovery actions, and the
number of distinct file objects that require content recovery. To
calculate the number of false positives and negatives, we need to
determine the correct number of recovery actions. To this end, we
manually examine the name, contents and attributes of every file
that has changed since the attack. This information is available
from the Forensix database.

To evaluate the analysis policies, we also implemented a base
case Snapshot policy in the analyzer. This policy is implemented
by tainting all processes and their file operations after the attack
time. This policy can have false positives only, which is the number
of legitimate actions after the attack that are reverted. The Snapshot
policy represents the best possible case for a traditional snapshot-
based file-system recovery approach since it assumes that a snap-
shot is taken just before the attack.

The NoI and the NoIAN policies create dependencies due to
reading file content. In general, they can generate large numbers of
false positives due to false dependencies caused by reading char-
acter device files and log files. As a result, we ran experiments for
these policies using a small set of white list files that are determined
experimentally. Unless explicitly mentioned, the default white list
for these policies consisted of the following: 1) all character de-
vice files such as /dev/null and /dev/pts/0, 2) the log files
/var/log/wtmp*, /var/run/utmp, /var/log/lastlog,
and 3) shell history files. There is no reason to use a white list with
the Snapshot policy, and the white list does not make any difference
for the NoIANC policy because this policy does not taint objects
via reading file content.

By default, we used intra-object dependency intervals defined
in Section 3.1.2 for all the policies. One of the scenarios used a
server process, and for this scenario, we show that using a single
dependency interval causes a large number of false positives.

5.2 Experimental Setup
The experimental setup consists of a target and a backend ma-

chine. The target machine is an AMD Athlon 2600+ machine with
512 MB memory. It runs stock Redhat 7.2 together with the Foren-
six logger. It contains four vulnerable services or executables: the

samba and the wu-ftpd daemon that allow remote root exploits, and
the sendmail and the pwck-setuid programs that allow local root
escalation exploits. The backend machine is an Intel Pentium 4
2.4 GHz CPU with Hyper-Threading and 512 MB memory. It runs
Redhat Fedora Core 3 and uses the MySQL version 4.1.10 database
for storing the audit data.

We evaluated Taser for approximately a week. During this time,
we ran a popular web-based photo album application called Gallery
on the target system. To induce concurrent activity and to load the
system, we simulated users interacting with Gallery with a client-
side Galhogger program that was run continuously for the entire
week. Galhogger simulated an anonymous user that browses the
albums every 2 seconds on average, and 5 registered users that each
modify the albums every 3000 seconds on average.

5.3 Recovery Accuracy
We use six different scenarios to evaluate the accuracy of Taser.

For each scenario, we performed recovery one-day and one-week
after the incidents to evaluate the accuracy of Taser over time. Be-
low, we describe each scenario, the correct recovery actions for
each scenario, the initial detection points and the results of using
Taser. The accuracy results are summarized in Figure 5. This fig-
ure shows the false positives and negatives (separated by a comma)
for the different taint analysis policies under each of the scenarios.
We performed recovery for all the scenarios after all the attacks
have been performed. As a result, the false positive numbers for
the Snapshot policy are similar for the different scenarios.

5.3.1 Illegal storage
Scenario: A user logs into the system and launches the pwck lo-
cal escalation exploit. This exploit allows the user to get a root
shell. This attacker creates a new root account root100 by di-
rectly writing to the /etc/passwd and the /etc/shadow files.
This attacker creates a directory under another user’s directory (as
root) and downloads 500 illegal pictures into this directory. Finally,
he downloads a binary ls program from the user-level Ambient’s
Rootkit (ARK) in the user’s bin directory to hide the existence of
the illegal directory. Later, the victim user logs in, uses the tro-
janed ls program and creates two files in his home directory. The
attacker logs back in as root100 after two days and downloads two
more pictures into the hidden directory.
Correct recovery actions: Remove all the illegal pictures and the
hidden directory, the trojaned ls binary, and the home directory
of the attacker’s root100 account. In addition, the legitimate ver-
sions of the /etc/passwd and /etc/shadow files need to be
recovered.
Detection point: The trojaned ls program is detected by the vic-
tim and given to the trace phase.
Results: The trace phase detected the remote connection of the at-
tacker and propagation is started using the remote host address. The
NoI and the NoIAN policies with the default white list generated
several false positives because /etc/passwd and /etc/sha-
dow are written by the attacker and their content is read by all the
following ssh login processes which also get tainted. As a result,
all these activities would be reverted. We added /etc/passwd
and /etc/shadow to the white list and re-ran these policies. Ta-
ble 5 shows that two false positives occur with the NoI policy when
recovery is performed after a day. These errors occur because the
victim’s shell process got tainted when it accessed the name of the
trojan ls program. As a result, the two new files created by the
attacker are tainted and will be removed by this policy. The other
two policies have no errors when recovery is performed after one
day.

Recovery one day after attack Recovery one week after attack
Scenario Recovery

Actions
Snapshot NoI NoIAN NoIANC Snapshot NoI NoIAN NoIANC

Illegal storage 507 633, 0 2, 0 0, 0 0, 0 4154, 0 7, 0 0, 2 0, 2
Content destruction 739 1877, 0 0, 0 0, 0 0, 0 5338, 0 0, 0 0, 0 0, 1
Unhappy student 167 1106, 0 2, 0 0, 0 0, 1 4617, 0 4, 0 0, 0 0, 1
Compromised database 3 814, 0 0, 0 0, 0 0, 2 2557, 0 0, 0 0, 0 0, 2
Software installation 350 1542, 0 1, 0 0, 0 0, 0 5006, 0 1, 0 0, 0 0, 0
Inexperienced admin 39 1366, 0 11, 0 11, 0 0, 0 4982, 0 11, 0 11, 0 0, 0
Inexperienced admin
(single interval)

39 1366, 0 415, 0 415, 0 125, 0 4982, 0 701, 0 701, 0 126, 0

For each scenario, the second column shows the correct number of recovery actions as determined manually. These numbers are roughly the
same one day or one week after the attack. The rest of the columns show the accuracy of four analysis policies in terms of false positives (a
legitimate operation is marked tainted and reverted to a previous state) and false negatives (a tainted operation is not caught and no recovery
action is taken for it). The accuracy numbers are shown separated by commas. The accuracy of the policies are shown one day and one week
after each attack.

Table 5: Recovery accuracy

When recovery is performed one week after the attack, the NoIAN
and the NoIANC policies have two false negatives (see Figure 5)
because the attacker’s second login (that occurred after more than a
day) and the creation of the two new picture files is missed by these
policies (they would have been caught if the password files were not
in the white list). The NoI policy has no false negatives because the
second login by the attacker accesses the tainted root100 directory
which taints this session. However, it has additional false positives
because the victim user performed other legitimate actions later in
the week. Table 5 shows that the recovery results after a week are
similar to the recovery results after a day, and therefore, we limit
the discussion below to recovery results after a day for the rest of
the scenarios.

5.3.2 Content destruction
Scenario: A software developer has been working on the files
src/project.c, hfiles/p1.h and hfiles/p2.h. He has
also saved a backup of the project.c file in backup/project.c-
.bak. Another developer on the system launches the sendmail lo-
cal escalation exploit to get the root shell. This attacker deletes the
project.c and p2.h files. The victim notices that the pro-
ject.c file is missing. He copies the backup file to the src di-
rectory and also moves the p1.h file to the src directory. Then,
he deletes the hfiles directory and notifies the administrator.
Correct recovery actions: Remove numerous files generated by
the sendmail attack, restore the deleted p2.h file in the hfiles
directory, recover the original project.c file and deal with dif-
ferent versions of this file.
Detection points: The missing p2.h and project.c files.
Results: The trace phase detected the attacker’s login process, whi-
ch is used for propagation. The results show that none of the poli-
cies, except the snapshot policy, have any errors. The hfiles
directory is recovered with a .removed extension since it was le-
gitimately removed by the victim (a name-remove conflict). The
original project.c file is recovered with a version number ex-
tension (a name-recreate conflict).

5.3.3 Unhappy student
Scenario: An attacker launches a remote attack on the wu-ftpd
daemon running on the system and modifies the permissions of a
grades file in a professor’s home directory to be globally writable.
Later, student A (an accomplice) with a regular account modifies

the grades file in the professor’s directory and also copies the pro-
fessor’s whole home directory into his own directory. Then, student
B (another accomplice) logs in and copies the modified grades file
into his home directory and creates two other files.
Correct recovery actions: Recover the original grades file in the
professor’s directory, restore the attributes of this file, and remove
all copied files in both student A’s and student B’s home directories.
Detection point: The grades file that the professor finds is writable
by others.
Results: The trace phase detected the remote attacker’s root shell
as well as student A’s login session but not student B’s login be-
cause B did not modify the grades file. The NoI propagation pol-
icy detected and tainted student B’s shell process and the two files
created by him which are false positives. The NoIANC policy on
the other hand did not taint student B’s operations, which leads to
a false negative because the illegal copy of the grades file in stu-
dent B’s home directory is not removed. The NoIAN policy had
no errors because this policy tainted B’s copy operation but not B’s
entire shell process.

5.3.4 Compromised database
Scenario: Authenticated MySQL clients update a MySQL data-
base running on a remote server. An attacker launches a remote
attack on the Samba daemon running on the target system, gets a
root shell and creates an SSH backdoor by writing his public key to
root’s authorized_keys2 file. Later, other remote legitimate
clients insert transactions into the database. After six hours, the
attacker uses the ssh backdoor to log back into the machine. He
issues a local MySQL query to remove some transactions from the
database. After that, more legitimate clients update the database.
Correct recovery actions: Remove the attacker’s ssh backdoor by
removing his public key from the authorized_keys2 file. In
addition, recover two files associated with a MySQL table in the
compromised database.
Detection point: Use the Snort [20] network IDS to detect the
Samba attack. Since Snort does not give us enough host related
information about the attack, we then use Forensix tools [8] to de-
termine the root shell created by the attack.
Results: The trace phase started from the root shell and detected
the attacker’s first connection, which is used for propagation. The
results show that none of the policies have any false positives. All
of them recover the authorized_keys2 file. The NoI and the

NoIAN policies detected the attacker’s second login via the depen-
dency caused by the tainted authorized_keys2 file and then
recovered the database by restoring the modified table files to the
state right before the attacker’s second login when he modified the
database. The rest of the legitimate database writes were marked
with a content-access conflict but we were unable to recover them.
The Snapshot policy would revert the database to the state before
the attacker’s first login and miss all database writes. TasTaserer
uses file-based recovery. This approach works for MySQL because
MySQL is typically used in a non-transactional mode. For trans-
actional databases, the database recovery logs would need to be
incorporated in the recovery process [14, 17]. The NoIANC pol-
icy missed the attacker’s second login and hence did not revert the
attacker’s delete transactions causing two false negatives.

5.3.5 Software installation
Scenario: Unlike the previous scenarios, the next two scenarios
present and analyze system administration errors. Using a root ac-
count, we install RealPlayer 8 in the wrong directory which causes
it to create many files and directories in this directory. In addition,
it creates or updates various Netscape, KDE and Gnome config-
uration files or directories in /root including a .netscape/-
plugins directory. Later, the root user browses the web with the
netscape browser and downloads and saves a PDF reader plugin for
Netscape in the plugins directory.
Correct recovery actions: All the RealPlayer files and directories
should be removed and the configuration files should be restored.
Detection point: One of the RealPlayer files.
Results: The trace phase detected the process that ran the Re-
alPlayer installer program, which is used for propagation. For this
scenario, none of the policies generated any false negatives. How-
ever, the NoI policy has one false positive because the plugins di-
rectory is tainted and this policy taints and removes the PDF reader
plugin. The NoIAN and the NoIANC policies do not taint the plu-
gin but the plugins directory is recovered with a .nonexistent
extension because this directory was created by the tainted process
and it contains the legitimate plugin file. The user needs to retrieve
this plugin file separately.

5.3.6 Inexperienced administrator
Scenario: The administrator uses the photo Gallery software (whi-
ch is also used as background load in the experiments) to store his
digital pictures and also creates an account for a guest user. The
new account is set up with a weak password because the admin-
istrator expects the guest to change the password soon. Then, the
administrator adds new albums and pictures under his account and
logs off. Before the guest can change his password, an attacker at
a remote site logs into the guest’s account by using a dictionary at-
tack. The attacker creates two new albums and uploads 14 pictures
to the site and then views the administrator’s albums. Later, the ad-
ministrator views the albums and discovers inappropriate images in
the two new albums. He contacts the guest user and finds out that
the guest user did not create these albums.
Correct recovery actions: Remove the attacker’s album and all
related data (such as thumbnails) generated by Gallery.
Detection point: A directory containing an attacker’s album.
Results: The trace phase detected the attacker’s remote connection
and propagation is started using the remote host address. Gallery
maintains album, image, thumbnail and photo visit counters in a
file hierarchy. Table 5 shows that there are 39 necessary recovery
actions: 2 of which are to remove the attacker’s albums, 14 are to
remove the images, 16 are to remove the automatically generated
thumbnails, 6 are to remove the data files generated by Gallery,

and the remaining one is to recover a common data file called
albumdb.dat that contains some global Gallery information. The
NoI and the NoIAN policies generated many false positives be-
cause these policies create content-related dependencies and Gal-
lery always reads the albumdb.dat file which taints all connec-
tions and their subsequent operations. We added the albumdb.dat
file and a per-directory album.dat file to the white list and re-ran
these policies, which then generated 11 false positives. In con-
trast, the NoIANC policy generated no false positives because the
tainted status does not propagate via the albumdb.dat file. This
scenario created several name-recreate and name-access conflicts
due to the visit counts that are stored as files in albums. These do
not affect application behavior after recovery except that some visit
counts become stale.

Gallery runs on the Apache server that uses a worker model for
servicing requests. The experiment above was performed using
multiple dependency intervals, one per connection, for the Apache
worker processes. We perform the same analysis but this time cre-
ate a single interval for the worker processes. The last row of Ta-
ble 5 shows that the single interval policy results in false positives
even with the NoIANC policy, the most optimistic policy, because
once a worker process is tainted by the malicious connection then it
remains tainted even if it later services a legitimate connection. We
find that Apache kills and re-spawns a new worker thread regularly.
Otherwise, with the single interval policy, all Gallery actions after
the attack would be reverted.

5.3.7 Kernel rootkits
Recall that Forensix avoid compromises to the kernel logger by

securing the target operating system with LIDS [32]. To confirm
that this approach is successful in thwarting attacks, we ran two
kernel-level Linux rootkits, Knark [15] and SucKIT [23]. Knark
loads a kernel module into Linux, while SucKIT directly issues
user-level writes to kernel memory. Both these rootkits run un-
successfully on the target system. They do issue some file-system
modification operations before failure such as downloading, un-
compressing and compiling the attack code as well as installing
some trojan binaries such as /sbin/init. These operations are
correctly recovered by Taser and we do not show any further results
for these attacks.

5.3.8 Discussion of accuracy results
The previous sections have evaluated the accuracy of Taser in

terms of correctly recovering legitimate data under varied scenar-
ios. In this section, we highlight several key results shown in Ta-
ble 5. First, the table shows that the analysis policies typically
achieve high accuracy. There are few false positives or negatives
even though many tainted and legitimate operations occur in the
system as seen in the recovery actions and the snapshot columns
respectively.

Second, the accuracy results do not vary significantly when re-
covery is performed one day or one week after the attack. This
result shows that attacks do not have to be detected immediately
for useful intrusion recovery.

Third, the number of recovery actions (column two of Table 5)
compared to the number of legitimate actions (Snapshot columns)
indicates that attacks often have a small footprint and hence the se-
lective recovery approach is beneficial. However, more experience
with real-world attacks is needed to validate this result.

Finally, the most significant result is that no policy performs ide-
ally under all circumstances, a result that may seem undesirable.
However, note that the optimistic policies have relatively few false
positives while the conservative policies have few false negatives.

Policy Propagation
day

Recovery
day

Propagation
week

Recovery
week

Snapshot 5.5±1.1 1.7±0.6 102.9±7.4 32.2±8.7
NoI 4.5±0.9 0.3±0.3 58.3±3.3 0.9±1.3
NoIAN 4.4±1.0 0.3±0.3 56.2±3.1 0.8±1.2
NoIANC 4.0±0.9 0.4±0.3 63.6±12.6 0.9±1.3

The performance numbers show the time to perform propa-
gation and recovery one day and one week after the attack.
Each number is shown in minutes and averaged across the
different scenarios.

Table 6: Recovery performance

For example, the NoIANC policy had no false positives in the sce-
narios described above, while the NoI policy had no false negatives.
For the experiments, we compared the difference in the outputs of
the various policies and quickly determined the correct set of re-
covery actions. Recovery actions that occur in all policies are most
likely to be correct actions. The difference in the outputs of these
policies are the recovery actions that are ambiguous, i.e. whether
these actions are tainted or legitimate. This difference is exactly the
sum of false positives and negatives, which in our evaluation, is a
small number. Hence, it is easy to classify these actions manually.

5.4 Performance Evaluation
In this section, we evaluate the viability of Taser by measuring

the time to perform analysis and recovery and the performance and
space overheads of auditing.

5.4.1 Recovery Time
Table 6 shows the time required to perform recovery when re-

covery is started one day and one week after the attack. The table
shows the average recovery times and the 95% confidence intervals
in minutes for each of the four analysis policies. The average is
taken across all the scenarios evaluated in Section 5.3.

The trace phase was run once for each scenario. The tracing
time for all scenarios is less than a minute and not shown in the
table. The total propagation and recovery times are below 5 min-
utes when recovery is started one day after the attack. However,
the propagation time can be more than one hour when recovery
is performed after a week. The propagation time depends mainly
on the time to recovery because propagation creates dependencies
for every operation in the system. Averaging the recovery times
across scenarios is reasonable because the propagation time domi-
nates the total recovery time. The recovery time is typically short
because it depends only on the number of objects that were tainted
by the propagation phase. With the Snapshot policy, Taser needs
to recover a much larger number of objects and hence the recovery
times are larger.

The propagation phase is implemented in two steps. First, it
queries the Forensix database to retrieve all the operations. Sec-
ond, it creates dependencies between the operations. We found that
approximately 80% of the propagation time is spent in querying
the MySQL database. Although the numbers in Table 6 show the
total propagation time, if all policies are run for a scenario, then
the database query needs to be done once only. While storing the
Forensix audit data in a database is useful for intrusion analysis, we
believe that Taser can be greatly optimized by using an implemen-
tation specially designed for recovery.

While the performance results above show that the analysis and
recovery phases can be run relatively quickly, note that the admin-

Number of operations 13.3 Million
Size of events in flat file 1.9 GB
Size of database 2.3 GB
Database loading time 36.3 min

Table 7: Average daily backend statistics

istrator must still spend time choosing the appropriate detection
points or attack source objects between the trace and the propaga-
tion phases of the analyzer. Our entire recovery method depends on
choosing correct detection points. Interactive and graphical analy-
sis tools that can display the tainted source objects together with
their attributes, such as the number of dependent objects, can ease
this process.

5.4.2 Auditing Overhead
Auditing system call operations imposes overhead on the target

system while loading the audit log into a database at the backend
machine imposes overhead on the backend. With the load imposed
by Galhogger on the Gallery photo album application, the logging
overhead at the target is insignificant. The cost imposed at the back-
end, averaged per day, is shown in Table 7. The system load is sta-
ble and the daily numbers do not vary much over time. The table
shows the number of system-call operations generated on the target
machine. The most common operations consist of read (5.8 M),
open (3.0 M), close (2.0 M), mmap (1.7M), write (371 K),
dup (155 K), signal (106 K), connection (31 K), unlink (16
K), exec (9 K) and fork (8 K) events. These constitute 99% of
all operations.

The total amount of uncompressed file data generated is 1.9 GB
per day. When this data is loaded into a database, the database size
grows by 2.3 GB per day. The loading time is 36.3 minutes per day.
Another way to interpret this result is that the backend system can
sustain loads that are approximately 40 (24∗60/36.3) times larger
than the load imposed by Galhogger or one backend system can
audit 40 target machines with the same load. The database loading
time is the main bottleneck in Taser. An implementation optimized
for Taser could potentially avoid the loading times.

Overhead Under Heavy Load. To measure the overhead of
auditing at the target system under heavy loads, we ran the Web-
stone and the Linux kernel build benchmarks on the target system.
The Webstone benchmark stresses a standard Apache web server
running on the target by issuing back-to-back client requests and is
representative of a loaded server environment. For the Webstone
client, a third machine with the same configuration as the target
machine was used and it was connected to the target machine with
a Gigabit network. The kernel build benchmark is mainly CPU
bound and determines the overhead imposed on the target system
when running similar CPU bound applications in a regular desktop
environment.

We measure the performance overhead of auditing on the target
machine by logging the events on the target machine and stream-
ing this data to the backend where it is stored in append-only files.
Auditing has an insignificant effect on kernel compilation (0.6%)
while Webstone throughput decreases from 258.3 Mbs to 239.2
Mbs or about 7.4%. These results are encouraging because they
show that even under heavy load, the Forensix logging mechanism
on the target has low overhead.

The amount of compressed data collected in these experiments
(extrapolated per day) is 8 GB per day for kernel compilation and
11 GB per day for the Webstone benchmark. Even though the

amount of logged data is roughly the same, the Webstone through-
put suffers more than kernel compilation because Webstone gener-
ated approximately 11 times the number of system call operations
compared to kernel compilation. While the storage requirements
of Taser can be large under heavy loads, we argue that the large
amount of network capacity and massive and inexpensive storage
space available in local networks today (e.g, a terrabyte costs be-
tween $500-$1000) make the Taser approach feasible and essential
for reliably analyzing and recovering from intrusions.

6. RELATED WORK
Our work consists of three main components, analysis, recovery

and auditing system activity. We focus on related work in these ar-
eas in turn. The analyzer is directly motivated by the work on back-
tracking intrusions [12]. This work uses a time-based approach
to generate dependencies between processes, files and sockets and
uses the dependency graph to view intrusions. The primary differ-
ence between the two systems stems from the difference in their
goals. While backtracking is focused on tracking the sources of an
intrusion, our analyzer generates a set of tainted files that need to be
recovered. As a result, the backtracking taint analysis policies are
conservative or else it would miss the intrusion, while we provide
optimistic policies so that legitimate data can be preserved as much
as possible during recovery. In addition, our optimistic policies use
interval-based analysis.

Magpie [2] extracts the control flow and the resource require-
ments of requests in a clustered server environment by monitoring
kernel and application-level events. Then it correlates these events
using an application-specific event schema. Magpie uses interval-
based correlation similar to our dependency intervals. However,
while Magpie uses undirected dependencies to clustered sets of
events, our analysis uses directed dependencies to derive data flow.
Data lifetime analysis using system-level simulation [4] or hard-
ware-based information flow [27] allows detecting or protecting
programs against malicious attacks by identifying spurious infor-
mation flows from untrusted I/O sources. Both can provide more
accurate taint analysis than our approach but either run orders of
magnitude times slower or require special architectural support.

Versioning file systems retain earlier versions of modified files,
allowing recovery from user mistakes or system corruption. A key
focus of versioning systems is encoding efficiency. For example,
the Elephant file system [22] uses a clever purging method that
keeps “landmark” data versions and purges generated and tempo-
rary files aggressively, while CVFS encodes metadata versions ef-
ficiently [26, 25]. Our system, which uses an unoptimized data
storage mechanism, would benefit from some of these techniques,
although purging data versions would limit some of the benefits of
our recovery approach. While versioning approaches provide the
basic capability to rollback system state to a previous time, such a
rollback discards all modifications made since that time, regardless
of whether they were done by a tainted or legitimate process.

The Repairable File System [33] has goals closest to our work.
Its contamination analysis is similar to our taint analysis although
it only uses a propagation phase and does not have any notion of
analysis policies, intervals or white-lists. In addition, their file sys-
tem does not seem to consider conflicting operations. Application-
specific conflict resolution has been extensively studied in the con-
text of replicated file systems [19, 13] and databases [29]. While
we have not experimented with these policies, they would directly
apply to our conflict resolution techniques.

Fastrek [17] recovers databases by attributing modifications to
malicious activities and then rolling back changes selectively. A
potential issue with this approach is cascading aborts where a legit-

imate operation is rolled back if it may have depended on the data
produced by a tainted operation. While conservative analysis poli-
cies in our system effectively achieve the same result, our conflict
resolution policies allow using optimistic policies that reduce this
problem. Liu et al. [14] describe resolution algorithms that rewrite
transaction history in a database by moving the attacking transac-
tion and all affected transactions after non-affected transactions.

Brown [3] describes a recovery service that deals with operator
errors in a mail server. Their system provides application-specific
recovery that works well for a mail server, and while it is possible
to extend the service to other applications, it is unclear how much
effort is involved. In contrast, our system is geared towards server
applications that do not necessarily have the well-defined semantics
of a mail server and hence our techniques are more generic.

Sun [28] provides a safe execution environment (SEE) that en-
ables users to try out new software (or configuration changes to
existing software) without fear of damaging the system in any way.
This is accomplished via a novel one-way isolation mechanism
where processes running within the SEE are given read-access to
the environment provided by the host OS, but their write opera-
tions do not affect the host until a commit point. The commit is
performed if a consistency criteria is met or else the SEE is rolled
back. This approach allows recovery only until the commit point.
Furthermore, rollback caused by violating the consistency criteria
can become more likely for long running SEEs.

Although our auditing system uses kernel-based logging it could,
in principle, use other kernel auditing mechanisms such as VM-
based auditing that can provide additional resistance to attacks on
the logging mechanism [5, 7]. Sandboxing techniques are com-
plementary to our approach. They interposition code that allows
blocking program actions that may compromise security, while re-
covery deals with intrusions after they occur. Janus [9] interposi-
tions system calls using the proc file system. Systrace [18] noti-
fies the user about system calls executed by an application. Then it
generates a sandboxing policy based on user response. Sandboxing
raises the issue of policy selection, i.e, determining what actions
are permissible for a given piece of software.

A large body of work has examined intrusion detection meth-
ods. Tripwire [11] monitors the cryptographic hash and size of key
system files and directories and reports file accesses and modifica-
tions. SNORT [20] captures and logs network packets and detects
intrusions based on predefined rules that match packet headers or
data. Garfinkel [7] uses virtual machine monitor (VMM) based
introspection to secure the detection mechanism from host intru-
sions.

7. CONCLUSIONS
Today, snapshot-based file-systems are typically used to recover

from intrusions or human errors. This approach is well understood
and easy to use but it works well only when intrusions or errors can
be immediately detected. Otherwise, a snapshot before an attack
loses legitimate user modifications that occur after the attack. We
have described the design of the Taser intrusion recovery system
that helps in recovering persistent data after an intrusion or local
damage occurs. The key problems we address is determining the
set of tainted file-system operations so that they can be reverted,
and dealing with conflicts caused by dependencies between tainted
and legitimate operations.

We evaluate the accuracy of Taser in dealing with a wide range
of intrusions as well as erroneous user action scenarios. Our evalu-
ation shows that our most optimistic analysis policy does not taint
legitimate data but can miss intrusion activity, while the more con-
servative policies avoid missing any intrusion activity but require

some hand tuning using white list files. Our experience with Taser
shows that an appropriate set of recovery actions can be determined
quickly when the results of the different policies are compared. We
believe that Taser provides the basis for developing automated in-
trusion recovery solutions.

In the future, we wish to explore whether Taser could be inte-
grated with journaling and versioning file systems to improve scal-
ability and to reduce disk space requirements. Taser currently does
not support network file systems such as NFS since it audits at the
client end which causes consistency issues for concurrent accesses.
Implementing Taser at the server end would avoid this problem.

Acknowledgments
We greatly appreciate the valuable and detailed feedback from our
shepherd Frans Kaashoek and the anonymous reviewers. The ideas
in this paper were refined during several discussions with Wu-chang
Feng, Jonathan Walpole, David Maier and Wu-chi Feng. We wish
to thank Thomas Liu, Jim Snow, Lionel Litty, Alex Varshavsky,
Borys Bradel and several other members of the SSRG group in
Toronto who provided comments on initial drafts of the paper.

8. REFERENCES
[1] Edward C. Bailey. Maximum RPM. Sams, August 1997.
[2] Paul T. Barham, Austin Donnelly, Rebecca Isaacs, and Richard

Mortier. Using magpie for request extraction and workload
modelling. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, pages 259–272, 2004.

[3] Aaron B. Brown and David A. Patterson. Undo for operators:
Building an undoable e-mail store. In Proceedings of the USENIX
Technical Conference, pages 1–14, 2003.

[4] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel
Rosenblum. Understanding data lifetime via whole system
simulation. In Proceedings of the USENIX Security Symposium,
pages 321–336, August 2004.

[5] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
ReVirt: Enabling intrusion analysis through virtual-machine logging
and replay. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, December 2002.

[6] Tal Garfinkel. Traps and pitfalls: Practical problems in system call
interposition based security tools. In Proceedings of the Network and
Distributed System Security Symposium, February 2003.

[7] Tal Garfinkel and Mendel Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In
Proceedings of the Network and Distributed System Security
Symposium, February 2003.

[8] Ashvin Goel, Wu-chang Feng, David Maier, Wu-chi Feng, and
Jonathan Walpole. Forensix: A robust, high-performance
reconstruction system. In Proceedings of the International Workshop
on Security in Distributed Computing Systems (SDCS), June 2005. In
conjunction with the International Conference on Distributed
Computing Systems (ICDCS).

[9] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A
secure environment for untrusted helper applications. In Proceedings
of the USENIX Security Symposium, 1996.

[10] Bobbie Harder. Microsoft windows system restore.
http://msdn.microsoft.com/library/en-us/dnwxp/
html/windowsxpsystemrestore.asp, April 2001.

[11] Gene H. Kim and Eugene H. Spafford. The design and
implementation of Tripwire: A file system integrity checker. In
Proceedings of the ACM Conference on Computer and
Communications Security, pages 18–29, 1994.

[12] Samuel T. King and Peter M. Chen. Backtracking intrusions. In
Proceedings of the Symposium on Operating Systems Principles,
October 2003.

[13] Puneet Kumar and Mahadev Satyanarayanan. Flexible and safe
resolution of file conflicts. In Proceedings of the USENIX Technical
Conference, pages 95–106. USENIX, January 1995.

[14] Peng Liu, Paul Ammann, and Sushil Jajodia. Rewriting histories:
Recovering from malicious transactions. Distributed and Parallel
Databases, 8(1):7–40, 2000.

[15] Toby Miller. Analysis of the knark rootkit. http:
//www.ossec.net/rootkits/studies/knark.txt,
2001. SecurityFocus.

[16] Nicholas Petreley. Security report: Windows vs Linux. The Register,
October 2004. http://www.theregister.co.uk/
security/security_report_windows_vs_linux.

[17] Dhruv Pilania and Tzi cker Chiueh. Design, implementation, and
evaluation of an intrusion resilient database system. Technical Report
TR-124, SUNY, Stony Brook, April 2005.

[18] N. Provos. Improving host security with system call policies. In
Proceedings of the USENIX Security Symposium, pages 257–272,
August 2003.

[19] Peter Reiher, John S. Heidemann, David Ratner, Gregory Skinner,
and Gerald J. Popek. Resolving file conflicts in the Ficus file system.
In USENIX Technical Conference, pages 183–195. USENIX, June
1994.

[20] Martin Roesch. Snort - Lightweight intrusion detection for networks.
In Proceedings of the USENIX Large Installation Systems
Administration Conference, pages 229–238, November 1999.

[21] A. Sabelfeld and A. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1),
January 2003.

[22] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson,
Alistair C. Veitch, Ross W. Carton, and Jacob Ofir. Deciding when to
forget in the Elephant file system. In Proceedings of the Symposium
on Operating Systems Principles, pages 110–123, December 1999.

[23] sd and devik. Linux on-the-fly kernel patching without LKM. Phrack
issue 58, December 2001.

[24] Secunia. Secunia vulnerability report.
http://www.secunia.com.

[25] Craig A. N. Soules, Garth R. Goodson, John D. Strunk, and
Gregory R. Ganger. Metadata efficiency in versioning file systems. In
Proceedings of the USENIX Conference on File and Storage
Technologies, pages 43–58, 2003.

[26] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig
A. N. Soules, and Gregory R. Ganger. Self-securing storage:
Protecting data in compromised systems. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation, pages 165–180, 2000.

[27] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas.
Secure program execution via dynamic information flow tracking.
ACM SIGARCH Computer Architecture News, 32(5):85–96, 2004.

[28] Weiqing Sun, Zhenkai Liang, R. Sekar, and V.N. Venkatakrishnan.
One-way Isolation: An Effective Approach for Realizing Safe
Execution Environments. In Proceedings of the Network and
Distributed System Security Symposium, February 2005.

[29] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J.
Demers, Mike J. Spreitzer, and Carl H. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated storage system. In
Proceedings of the 15th Symposium on Operating Systems
Principles, pages 172–183, December 1995.

[30] Andy Watson and Paul Benn. Multiprotocol Data Access: NFS,
CIFS, and HTTP. Technical Report TR3014, Network Appliance,
Inc., 1999.
http://www.netapp.com/tech_library/3014.html.

[31] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and
Greg Kroah-Hartman. Linux Security Modules: General security
support for the Linux kernel. In Proceedings of the USENIX Security
Symposium, pages 17–31, 2002.

[32] Huagang Xie and et. al. Linux intrusion detection system (LIDS)
project. http://www.lids.org/.

[33] Ningning Zhu and Tzi-Cker Chiueh. Design, implementation, and
evaluation of repairable file service. In Proceedings of the IEEE
Dependable Systems and Networks, pages 217–226, June 2003.

