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\\Can one CPU scheduler fit ally

A. Traditional
Scheduling Approach

multi-level feedback queue
algorithm — hasn’t changed in 30
years.

e Separate CPU and IO intensive jobs

* Priority based.

* Breaks down for mixed CPU and IO
intensive jobs, like video
applications, security enabled web
servers, databases etc.

*Using real time priority leads to
starvation and live locks.
*Behavior can be hard to predict

e deadlocks, live locks or priority

Inversion may occur.

C. Pure Fairshare Scheduling

*Time based approach opposed to
priority.

No starvation. Overall fairness in
the system.

*Better balance between desktop
and server performance needs.
*Benefits from recent

infrastructural components
*Fine grained time accounting.

*High resolution timers.
o Effective data structures (heaps, red-
black trees etc.)

Q: Can we do better? o
A: Yes, by combining fair

sharing with cooperation.

e poor adaptation for adaptive time-
sensitive workloads.

B. O(1) scheduler

Dispatcher latency with increasing videos
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eDispatcher latency:
e actual — requested dispatch time.

°The latency increases quickly under
heavy load with increasing videos.
Some of the videos experience
noticeable interruptions.
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D. Overview of Our Approach:

Cooperative Polling
O coop_poll() system call

Step 3: The kernel chooses the next task to
run by inspecting the head o virtua
time queue. The task with smallest virtua
time gets chosen.
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*Have overall fairness.
*Allow cooperation between time

sensitive tasks via the kernel:

*Glve preferential treatment to TS
tasks within the boundaries of
fairness.

facllitates uniform fidelity across
tasks.

E. Overview of our

implementation
*Virtual time based.
*One new system call :coop poll()
eUses efficient heaps for priority
queues.
*Benefits from high resolution one-
shot timers & precise time
accounting in the kernel.
*\We use playback of multiple videos

to represent a rich workload of
multiple time-sensitive applications.
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F. Pure Fairshare vs
Cooperative Approach

Fair-share Cooperative

Scheduling ~ Scheduling
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eFairshare at finest granularity has

IS 2X Worse.
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Frame rate of all 12 videos at
overload.

latency of coop, yet context switch rate

/G. Coordinated Adaptation\

The videos are able to maintain a

5X

\\ uniform quality even at overload/
/ H. Conclusion \

Coop + fairshare:

°Gives better timeliness (smaller
latency) even under overload.
*Facilitates coordinated adaptation
for multiple adaptive tasks.
°Informed context switching is

cache efficient — leading to a better

\\timeliness-throughput balance. /




