ACHIEVING PREDICTABLE TIMING AND FAIRNESS THROUGH COOPERATIVE POLLING

Anirban Sinha, Charles ‘Buck’ Krasic
University of British Columbia

\\Can one CPU scheduler fit ally

A. Traditional
Scheduling Approach

multi-level feedback queue
algorithm — hasn’t changed in 30
years.

e Separate CPU and IO intensive jobs

* Priority based.

* Breaks down for mixed CPU and IO
intensive jobs, like video
applications, security enabled web
servers, databases etc.

*Using real time priority leads to
starvation and live locks.
*Behavior can be hard to predict

e deadlocks, live locks or priority

Inversion may occur.

C. Pure Fairshare Scheduling

*Time based approach opposed to
priority.

No starvation. Overall fairness in
the system.

*Better balance between desktop
and server performance needs.
*Benefits from recent

infrastructural components
*Fine grained time accounting.

*High resolution timers.
o Effective data structures (heaps, red-
black trees etc.)

Q: Can we do better? o
A: Yes, by combining fair

sharing with cooperation.

e poor adaptation for adaptive time-
sensitive workloads.

B. O(1) scheduler

Dispatcher latency with increasing videos

r""C_ﬁ' 30 T T T 100 ?\"i
|8 25 [. = e _'_'._I | =] o
g:: o !:r_;;n:"l'rq_,_‘:r _'_"l.._ !_P_’I:' 1 IJ__|.__P_,F"“_— lJyf— 75 E
o ny | Y @
%_‘ 15 - 4 5O ﬂ

'_|
UT: 1':' B | r -—

_ =
% L . L 25 5
& 5T e U g o
E 0 E== Ay = L [If s 0 %
100 150 200 250 200

video 1 video 7
video 2 video 8
video 3 video 9
video 4 video 10
video 5 lokbal CPU
video &

Frame rate of all 10 simultaneous
videos

eDispatcher latency:
e actual — requested dispatch time.

°The latency increases quickly under
heavy load with increasing videos.
Some of the videos experience
noticeable interruptions.

A /

D. Overview of Our Approach:

Cooperative Polling
O coop_poll() system call

Step 3: The kernel chooses the next task to
run by inspecting the head o virtua
time queue. The task with smallest virtua
time gets chosen.

-
-+
= I
()

*Have overall fairness.
*Allow cooperation between time

sensitive tasks via the kernel:

*Glve preferential treatment to TS
tasks within the boundaries of
fairness.

facllitates uniform fidelity across
tasks.

E. Overview of our

implementation
*Virtual time based.
*One new system call :coop poll()
eUses efficient heaps for priority
queues.
*Benefits from high resolution one-
shot timers & precise time
accounting in the kernel.
*\We use playback of multiple videos

to represent a rich workload of
multiple time-sensitive applications.

Ashvin Goel
University of Toronto

F. Pure Fairshare vs
Cooperative Approach

Fair-share Cooperative

Scheduling ~ Scheduling

0000000000

000000000000

000000000000
000000

Timeslice: 20 ms

000000

00000

Throughput as a % of single player case.

eFairshare at finest granularity has

IS 2X Worse.

o
e
]
O 25
“ 20

Q
oy

- \
75 9

]

1]

ey _ . O i 3
10 F T ey e e o e

video 2
video 3
video 4

Frame rate of all 12 videos at
overload.

latency of coop, yet context switch rate

/G. Coordinated Adaptation\

The videos are able to maintain a

5X

\\ uniform quality even at overload/
/ H. Conclusion \

Coop + fairshare:

°Gives better timeliness (smaller
latency) even under overload.
*Facilitates coordinated adaptation
for multiple adaptive tasks.
°Informed context switching is

cache efficient — leading to a better

\\timeliness-throughput balance. /

