
16

Spiffy: Enabling File-System Aware Storage Applications

KUEI SUN, DANIEL FRYER, RUSSELL WANG, SAGAR PATEL, JOSEPH CHU,

MATTHEW LAKIER, ANGELA DEMKE BROWN, and ASHVIN GOEL, University of Toronto,

Canada

Many file-system applications such as defragmentation tools, file-system checkers, or data recovery tools,
operate at the storage layer. Today, developers of these file-system aware storage applications require detailed
knowledge of the file-system format, which requires significant time to learn, often by trial and error, due
to insufficient documentation or specification of the format. Furthermore, these applications perform ad-hoc
processing of the file-system metadata, leading to bugs and vulnerabilities.

We propose Spiffy, an annotation language for specifying the on-disk format of a file system. File-system
developers annotate the data structures of a file system, and we use these annotations to generate a library
that allows identifying, parsing, and traversing file-system metadata, providing support for both offline and
online storage applications. This approach simplifies the development of storage applications that work across
different file systems because it reduces the amount of file-system–specific code that needs to be written.

We have written annotations for the Linux Ext4, Btrfs, and F2FS file systems, and developed several ap-
plications for these file systems, including a type-specific metadata corruptor, a file-system converter, an
online storage layer cache that preferentially caches files for certain users, and a runtime file-system checker.
Our experiments show that applications built with the Spiffy library for accessing file-system metadata can
achieve good performance and are robust against file-system corruption errors.

CCS Concepts: • General and reference → Reliability; • Software and its engineering → File systems

management; Compilers; Source code generation; Domain specific languages;

Additional Key Words and Phrases: Annotation language, metadata parsing and serialization, file-system
traversal, robustness, generic file-system aware applications, Ext4, Btrfs, F2FS

ACM Reference format:

Kuei Sun, Daniel Fryer, Russell Wang, Sagar Patel, Joseph Chu, Matthew Lakier, Angela Demke Brown, and
Ashvin Goel. 2020. Spiffy: Enabling File-System Aware Storage Applications. ACM Trans. Storage 16, 3, Article
16 (August 2020), 39 pages.
https://doi.org/10.1145/3386368

This work was supported by NSERC Discovery.

Authors’ addresses: K. Sun, D. Fryer, R. Wang, S. Patel, J. Chu, M. Lakier, A. D. Brown, and A. Goel, University of Toronto,

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s Col-

lege Road, Room SFB540, Ontario M5S 3G4, Toronto, Canada; emails: kuei.sun@mail.utoronto.ca, dfryer@cs.toronto.edu,

russell.wang@mail.utoronto.ca, sagu.patel@mail.utoronto.ca, josephchu21@gmail.com, matthew.lakier@mail.utoronto.

ca, demke@cs.toronto.edu, ashvin@eecg.toronto.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1553-3077/2020/08-ART16 $15.00

https://doi.org/10.1145/3386368

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

https://doi.org/10.1145/3386368
mailto:permissions@acm.org
https://doi.org/10.1145/3386368

16:2 K. Sun et al.

1 INTRODUCTION

There are many file-system aware storage applications that bypass the virtual file-system interface
and operate directly on the file-system image. These applications require a detailed understanding
of the format of a file system, including the ability to identify, parse, and traverse file-system
structures. These applications can operate in an offline or online context, as shown in Table 1.

Offline tools operate on the file-system image when the file system is not being used. Exam-
ples of such tools include a file-system checker that traverses the file-system image to check the
consistency of its metadata [23], and a data recovery tool that helps recover deleted files [5].

Online applications operate at the storage or block layer while the file system is in use. These
applications need to understand the file-system semantics of blocks as they are accessed at runtime
(e.g., whether the block contains data or metadata, whether it belongs to a specific type of file).
Online applications improve the performance or reliability of a storage system by performing file-
system-specific processing at the storage layer. For example, differentiated storage services [24]
improve performance by preferentially caching blocks that contain file-system metadata or the
data of small files. I/O shepherding [16] improves reliability by using file structure information to
implement checksumming and replication. Similarly, Recon [11] improves reliability by verifying
the consistency of file-system metadata at the storage layer.

Today, developers of both offline and online storage applications perform ad-hoc processing of
file-system metadata because most file systems do not provide the requisite library code. Even
when such library code exists, its interface may not be usable by all storage applications. For
example, the libext2fs library only supports offline interpretation of a Linux Ext3/4 file-system
partition; it does not support online use. Furthermore, the libraries of different file systems, even
when they exist, do not provide similar interfaces. As a result, these storage applications have to
be developed from scratch, or significantly rewritten for each file system, impeding the adoption
of new file systems or new file-system functionality.

To make matters worse, many file systems do not provide detailed and up-to-date documenta-
tion of their metadata format. The ad-hoc processing performed by these storage applications is
thus error-prone and can lead to system instability, security vulnerability, and data corruption [3].
For example, fsck can sometimes further corrupt a file system [43]. Some storage applications
reduce the amount of file-system-specific code in their implementation by modifying their target
file system and operating system [16, 24]. This approach only works for specific file systems, and
can introduce its own bugs. It also requires custom system software, which may be impractical in
virtual machine and cloud environments.

Our aim is to reduce the burden of developing file-system aware storage applications. To do so,
we enable file-system developers to specify the format of their file system using a domain-specific
language so that the file-system metadata can be parsed, traversed, and updated correctly. We
introduce Spiffy,1 a language for annotating file-system data structures defined in the C language.
We chose this approach because commonly deployed, local file systems are written in C, and our
annotation-based approach allows reusing existing data structures in C, compared to writing and
maintaining the complete data-structure specification in a separate language.

Spiffy allows file-system developers to unambiguously specify the physical layout of the file
system. The annotations handle low-level details such as the encoding of specific fields, and the
pointer relationships between file-system structures. We compile the annotated sources to gen-
erate a Spiffy library that provides interfaces for type-safe parsing, traversal, and update of file-
system metadata. The library allows an application developer to write actions for different file-
system metadata structures, invoking file-system-specific or generic code as needed, for their

1Specifying and Interpreting the Format of Filesystems.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:3

Table 1. Example File-System Aware Storage Applications

Storage Applications Category Purpose

Differentiated services [24] online
performance

Defragmentation tool either
File-system checker [17] either

reliability
Data recovery tool [5] offline
IO shepherding [16] online
Runtime verification [11] online
File-system conversion tool offline

administrative
Partition editor [15] offline
Type-specific corruption [2] offline

debugging
Metadata dump tool offline

Offline applications have exclusive access to the file system; online applications operate

on an in-use file system.

Fig. 1. Example of a structure definition for file-system metadata.

offline or online application. For offline applications, we support both reading and writing file-
system metadata. However, for online applications, we currently only support reading metadata
(e.g., differentiated storage services [24] or Recon [11]) but not modifying metadata (e.g., online
defragmentation).

The generic interfaces provided by the library simplify the development of applications that
work across different file systems. Consider an application that shows file-system fragmentation
by plotting a histogram of the size of free extents in the file system. This application needs to
traverse the file system to find and parse structures that represent free space, and then collect the
extent information. With Spiffy, the application code for finding and parsing structures is similar
for different file systems. File-system-specific actions are only needed for collecting the extent
information from the free space structures (e.g., bitmaps for Ext4 and free space extents for Btrfs).

The complexity of modern file systems [22] raises several challenges for our specification-based
approach. Many aspects of file-system structures and their relationships are not captured by their
declarations in header files. First, an on-disk pointer in a file-system structure may be implicitly
specified, e.g., as an integer, as shown in Figure 1. The naming convention suggests that this field
is a pointer but that cannot be deduced from the structure definition because the information is
embedded in file-system code.

Second, the interpretation of file-system structures can depend on other structures. For example,
the size of an inode structure in a Linux Ext3/4 file system is stored in a field within the super block.
This field must be accessed before an inode block can be interpreted correctly. Similarly, many
structures are variable sized, with the size information being stored in other structures. Third,
the semantics of metadata fields may be context-sensitive. For example, pointers inside an inode
structure can refer to either directory blocks or data blocks, depending on the type of the inode.
Fourth, the placement of structures on disk may be implicit in the code that operates on them (e.g.,
an instance of structure B optionally follows structure A) and some structures may not be declared
at all (e.g., treating a buffer as an array of integers).

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:4 K. Sun et al.

Finally, many applications need to identify objects in the file system, but these identities are
type-specific and not available in current data-structure specifications. For example, suppose a
file-system corruption tool needs to target a specific inode object, such as the root directory inode.
Ideally, the corruption tool would allow specifying an inode by its unique id, i.e., its inode number.
However, the relationship between inode numbers and their corresponding inode objects is not
specified as part of the file-system structure definition. These challenges are not addressed by
existing specification tools, as discussed in Section 8.

In Spiffy, the key to specifying the relationships between file-system structures is a pointer
annotation that specifies that a field holds an address to a data structure on physical storage.
Pointers have an address space type that indicates how the address should be mapped to the
physical location. In the Figure 1 example, this annotation would help clarify that bar_block_ptr
holds an address to a structure of type bar, and its address space type is a (little-endian) block
pointer. We expose cross-structure dependencies by using a name resolution mechanism that
allows annotations to name the necessary structures unambiguously. We handle context-sensitive
fields and structures by providing support for conditional types and conditionally inherited struc-
tures. We also provide support for specifying implicit fields that are computed at runtime. Finally,
annotations can be used to specify the identity of metadata structures so that applications can op-
erate at object granularity, with the ability to locate and compare specific objects, or their different
versions.

Together, these Spiffy features have allowed us to annotate three widely deployed file systems
with very different metadata structures.

Ext4. The Extended file systems (ext) are a group of update-in-place file systems. At the time of
writing, the Linux Ext4 file system is the most popular Linux file system. Unlike its predecessor
Ext3, it uses extent-based allocation instead of block-based allocation, which significantly reduces
metadata block usage for contiguous allocations.

Btrfs. The B-tree file system is a copy-on-write file system that stores its metadata in a number
of B-trees [28]. Each B-tree uses two types of containers, an internal node that contains a sorted
list of key-pointer pairs, and a leaf node that contains a set of keys and their associated file-system
metadata objects.

F2FS. The Flash-Friendly file system [21] is a relatively new log-structured file system optimized
for NAND flash storage devices. Its on-disk layout is partitioned into fixed-sized segments com-
posed of a set of contiguous blocks, with each segment sized in units of the SSD’s erase block size
to minimize wear.

We have implemented six applications that are designed to work across file systems. Four of
them are offline applications: a file-system dump tool, a file-system corruption tool, a free space
display tool, and a file-system converter. The other two are online applications: a storage layer
service that preferentially caches data for specific users, and a runtime file-system checker based
on Recon [11].

The rest of the article is organized as follows. In Section 2, we motivate the need for our approach
by describing various parsing-related bugs in file-system applications. Section 3 presents the core
concepts that underlie the design of the annotation language and the library API. Section 4 shows
our file-system annotation language with examples of annotated structures for the Ext4, Btrfs,
and F2FS file systems. Section 5 describes the applications that we have implemented using the
generated library. Section 6 describes the implementation of our system, and Section 7 evaluates
our approach in terms of programming effort, robustness, and performance. We present related
work in Section 8 and discuss our conclusions in Section 9.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:5

Table 2. Bugs Due to Incorrect Parsing of File-System Formats

Tool FS Bug Title Closed

1 libparted Fat32 #22266: jump instruction and boot code corrupted with
random bytes after fat is resized

2016-05

2 ntfsprogs NTFS #723343 - Negative Number of Free Clusters in NTFS Not
Properly Interpreted

2014-02

3 e2fsck Ext4 #781110 e2fsprogs: e2fsck does not detect corruption 2016-05

4 e2fsck Ext4 #760275 e2fsprogs: e2fsck corrupts Hurd file systems 2015-05

5 e2fsck Ext4 #1187032 - missing first_meta_bg boundary check leading to
heap buffer overflow

2014-08

6 e2fsck Ext4 #1768556 - crafted ext4 partition leads to out-of-bounds write 2019-12

7 btrfsck Btrfs #104141 - Malformed input causing crash/floating point
exception in btrfsck

2015-10

8 btrfsck Btrfs #59541 - Btrfsck reports free space cache errors when using
skinny extents

2013-06

2 BUGS IN FILE-SYSTEM APPLICATIONS

We motivate this work by presenting various bugs caused by incorrect parsing of file-system meta-
data in storage applications, as shown in Table 2. Some of these bugs cause crashes, while others
may result in file-system corruption. For each bug, we discuss the root cause.

(1) An extra memory allocation caused uninitialized bytes to be written to the boot jump field
of Fat32 file systems during resizing. Since Windows depends on the correctness of this
field, the bug rendered the file system unrecognizable by the operating system.

(2) NTFS has a complex specification for the size of the Master File Table (MFT) record. If the
value is positive, it is interpreted as the number of clusters per record. Otherwise, the size
of the record is 2 |value | bytes (e.g., −10 would mean that the record size is 1,024 bytes). The
developers of ntfsprogs were unaware of this detail, and so the GParted partition editing
tool would fail when attempting to resize an NTFS partition.

(3) The e2fsck file-system checker failed to detect corrupted directory entries if the size field
of the entries was set to zero, which resulted in no repair being performed. Ironically,
other programs, such as debugfs, ls, and the file system itself, could correctly detect the
corruption.

(4) Ext2/3/4 inodes contain union fields for storing operating system (OS) specific metadata.
A sanity check was omitted in e2fsck prior to accessing this field, and repairs were always
performed assuming that the creator OS was Linux. Consequently, the file system becomes
corrupt for Hurd and possibly other OSs.

(5) Meta block groups were introduced in Ext3 to increase the maximum file-system size
from 256 TB to 512 PB for a file system using a 4 KB block size. When the feature was
first introduced, the libext2fs library failed to perform a boundary check on the number
of block group descriptor blocks, which could lead to a buffer overflow if the super block
field s_first_meta_bg is corrupted.

(6) Ext4 v1.42 introduced a new feature that tracks usage statistics for implementing quotas
on the file system. However, several sanity checks were missing when attempting to read
usage information from the quota files. As such, a corrupted quota file could cause a crash,
or worse yet, cause an out-of-bounds write on the heap that can allow arbitrary code
execution.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:6 K. Sun et al.

Fig. 2. Developing file-system aware storage applications with Spiffy.

(7) A fuzzer [44] was able to craft corrupted super blocks that would crash the Btrfsck tool.
In response, Btrfs developers added 15 extra checks (for a total of 17 checks) to the super
block parsing code.

(8) When the skinny metadata feature was added to Btrfs, the developers neglected to also
patch Btrfsck, resulting in false error reports.

The common theme among all these bugs is that (1) they occur because developers may lack
a detailed understanding of the file-system format and its evolution; (2) they can cause serious
data loss or corruption; (3) most of these bugs were fixed in less than five lines of code; and
(4) it is difficult to keep all relevant applications up-to-date with changing file-system formats.
Our domain-specific language allows generating libraries that can sanitize file-system metadata
by checking various structural constraints before it is accessed in memory. In the presence of cor-
rupt metadata, our libraries generate error codes, rather than crashing the tools or propagating the
corruption further. Section 3.1 discusses how our approach can help prevent or detect these bugs.

3 APPROACH

Our annotation language enables type-safe interpretation and identification of file-system struc-
tures, in both offline and online contexts. Type safety ensures that parsing and serialization of
file-system structures will detect data corruption that leads to type violations, thus avoiding crash
failures and reducing the chance of corruption propagation. Identification enables applications
that require looking up or comparing specific file-system structures and their versions.

Ideally, data-structure types and their relationships could be extracted from file-system source
code. Although the C header files of a file system contain the structural definitions for various
metadata types, they are incomplete descriptions of the file-system format because information
is often hidden within the file-system code. Our annotations augment the C language, helping
specify parts of a file system’s format that cannot be easily expressed in C.

Figure 2 shows how Spiffy applications are developed. After a file-system developer annotates
his or her file system’s data structures, we use the Spiffy compiler to parse the annotated structure
definitions and to generate a library that provides file-system-specific interpretation routines. The
library supports traversal and selective retrieval of metadata structures through type introspec-
tion. These facilities allow writing generic or file-system-specific actions on specific file-system
metadata structures. For example, the application may wish to operate on the directory entries of
a file system. Instead of attempting to parse the entire file system and find all directory entries,
which requires significant file-system-specific code, a developer using Spiffy would use generic
type introspection code to find and operate on all directory entries. However, since the directory
entry format may not be the same across file systems, the application may still require file-system-
specific actions on the directory entry structures.

Our annotation-based approach has several advantages. First, it provides a concise and
clear documentation of the file system’s format. Second, our generated libraries enable rapid

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:7

Fig. 3. Ext4 directory entry structure definition.

prototyping of file-system aware storage applications. The libraries provide a uniform API, easing
the development of applications that work across file systems so that the programmer can focus
on the logic and not the format of the file systems. Third, our approach requires minimal changes
to the file-system source code (the annotations are only in the C header files and are backwards
compatible with existing binary code), reducing the chance of introducing file-system bugs. In
contrast, differentiated storage services [24] needed to modify the file system and the kernel’s
storage stack to enable I/O classification. With our approach, this application can be implemented
by using introspection at the block layer for an unmodified file system, or at the hypervisor for
an existing virtual machine. Finally, file-system formats are known to be stable over time [22], so
there is minimal cost for maintaining annotations.

3.1 Designing Annotations

Our annotation language provides the ability to specify the type and identity of file-system data
structures, and to check constraints on them.

3.1.1 Specifying Types. Next, we describe several key concepts that form the basis for specify-
ing the type of file-system structures.

File-System Pointers. In a file system, pointers connect the metadata structures. However, they
are not well specified in C data-structure definitions, as explained in Section 1. Unlike an in-
memory pointer whose value is always interpreted as the in-memory address of the pointed-to
data, interpreting a file-system pointer may involve multiple layers of translation. For example,
the most common type of file-system pointer is a block pointer, where the address maps to a
physical block location that contains a contiguous data structure. However, file-system structures
may also be laid out discontiguously. For example, the journal of an Ext4 file system is a logically
contiguous structure that can be stored on disk non-contiguously, as a file. Similarly, Btrfs maps
logical addresses to physical addresses for supporting RAID configurations.

Our design incorporates this requirement by associating an address space with each file-system
pointer. Each address space specifies a mapping of its addresses to physical locations. In the case
of the Ext4 journal, we use the inode number, which uniquely identifies files in Unix file systems,
as an address in the file address space (see Section 6.2 for more detail).

Cross-Structure Dependencies. File-system structures often depend on other structures. For ex-
ample, the length of a directory entry’s name in Ext4 is stored in a field called name_len, as shown
in Figure 3. However, this data-structure definition does not provide the linkage between the two
fields.2 Structures may depend on fields in other structures as well. For example, several fields of
the super block are frequently accessed to determine the block size, the features that are enabled
in the file system, and so forth. To support these dependencies, we need to name these structures.
For example, the Spiffy expression sb.s_inode_size helps determine the size of an inode object,
where sb is the name assigned to the super block.

2Confusingly, name has a fixed size in the definition.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:8 K. Sun et al.

Fig. 4. Each F2FS checkpoint pack contains a header followed by a variable number of orphan blocks.

The naming mechanism must ensure that a name refers to the correct structure. For example,
the F2FS file system contains two checkpoint packs for ensuring file system consistency, as shown
in Figure 4. The number of orphan blocks in an F2FS checkpoint pack is determined by a field in the
checkpoint header. Our naming mechanism ensures correct reference to the associated checkpoint
header when the field is accessed.

Spiffy uses a path-based name resolution mechanism, based on the observation that every file-
system structure is accessed along a path of pointers starting from the super block. In the simplest
case, the automatic self variable is used to reference the fields of the same structure. Otherwise,
a name lookup is performed in the reverse order of the path that was used to access the data
structure. For example, in Figure 4, when we need to reference the checkpoint header (cphdr
in the figure) while identifying the orphan blocks in the checkpoint pack, the name resolution
mechanism can unambiguously determine that it is referring to its parent checkpoint header. We
use reference counting to ensure that a referenced structure is valid in memory when it needs to
be accessed, which also avoids excessive copying.

Context-Sensitive Types. File-system metadata are frequently context-sensitive. A pointer may
reference different types of metadata, or a structure may have optional fields, based on a field value.
For example, the type of a journal block in Ext4 depends on a common field called h_blocktype. If
the field’s value is 3, then it is the journal super block, which contains many additional fields that
can be parsed. However, if its value is 2, then it is a commit block that contains no other fields. We
need to be able to handle such context-sensitive structures and pointers. We use a when expression,
evaluated at runtime, to support such context-sensitive types. These conditional expressions also
allow us to specify when different fields of a union are valid, which enables Spiffy to enforce a
strict access discipline at runtime, and would prevent Bug #4 from Section 2.

Computed Fields. Sometimes file systems compute a value from one or more fields and use it to
locate structures. For example, the block group descriptor table in Ext4 is implicitly the block or
blocks that immediately follow the super block. However, the exact address of the descriptor blocks
depends on the block size, which is specified in the super block. We annotate this information as
an implicit field of the super block that is computed at runtime. This approach allows the field to
be dereferenced like a normal pointer, allowing traversal of the file system without requiring any
changes to the underlying format. A computed field annotation can also be used to specify the size
calculation for an NTFS MFT record, avoiding Bug #2 from Section 2.

3.1.2 Specifying Identity. So far, we have described the design of annotations for specifying the
type of the metadata structures. However, some file-system aware applications require the ability
to identify objects even if their locations (or contents) change over time. For example, a Btrfs inode

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:9

object is placed inside a B-tree leaf node block. During its lifetime, the inode object can be moved
to a different offset within the block, or to another block.

We allow file-system developers to declare an identity expression for each metadata structure
so that at runtime, each instance of the structure will be assigned a unique type-specific identity
value by evaluating the identity expression. We use existing identity definition whenever possible,
e.g., inode numbers for inode structures, Btrfs keys for B-tree items, and so forth. Otherwise, we
use an expression that logically identifies the objects, e.g., the index of the block group descriptor
structure in Ext4.

Once the identity for a given type of object has been specified, it can be used to locate an object of
that type, compare different versions of the same object, sort a group of objects, or check if a group
of objects are placed in correct order. To do so, Spiffy supports relational operators (e.g., equality
and less than operators) for object identity. This logical identity-based approach is different from
physical content equality.

While there are multiple ways to define a unique identifier for an object, there is often one nat-
ural identifier for each type of object. For example, since many file systems implement the virtual
file-system (VFS) interface, they must use inode numbers as an identifier for inode structures. Al-
though it is possible to specify the identity of an inode structure by other means, such as its byte
offset from the start of disk (when inodes are located in static locations on disk), this value is much
less meaningful within the context of a generic file-system tool.

To specify identity correctly, the file-system developer must know the identifier that makes an
object unique. Spiffy currently makes no assumptions or checks on whether the identity specifi-
cation will generate unique identity, since doing so may require scanning the entire file system.

The Spiffy identity specification allows locating specific objects of a given type. Currently, we
enumerate all objects of a given type and then filter a specific object based on its identity. Support-
ing an efficient lookup in general will require specifying a data-structure-specific search algorithm
(e.g., a B-tree search in Btrfs), but this is currently not supported in our annotations. In some simple
cases, an alternative is to generate an efficient lookup based on solving constraints on the identity
specification. For example, the identity of an Ext4 inode is specified by indexing into the block
group descriptor table and then indexing into the corresponding inode table, as shown in Figure 8
on page 14. Thus, given an inode identity value, the index values for the two tables can be obtained
using a method similar to a two-level page table lookup.

3.1.3 Checking Constraints. The values of metadata fields within or across different objects
often have constraints. For example, an Ext4 extent header always begins with the magic num-
ber 0xF30A to help detect corrupt blocks. Similarly, the name_len field of an Ext4 directory entry
should be less than the rec_len field. Such constraints can be specified for each structure so that
they can be checked to ensure correctness when parsing the structure. The use of constraint an-
notations could have helped prevent Bug #1, and detect Bugs #3, #5, #6, and #7 from Section 2.

The set of valid addresses for a metadata block may also have a placement constraint. For ex-
ample, F2FS NAT blocks can only be placed inside the NAT area, which is specified in the F2FS
super block. By annotating this constraint for metadata blocks, Spiffy can verify that the address
assigned to newly allocated metadata is within the correct bounds before the metadata is persisted
to disk. Similarly, some data structures need to be placed in a sorted order. This constraint can be
specified by using object identities, as shown in Section 4.4.

3.2 The Spiffy API

Table 3 shows the core API for building Spiffy applications. The API consists of three sets of func-
tions. The Spiffy file-system library functions are automatically generated by Spiffy based on the

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:10 K. Sun et al.

Table 3. Spiffy C++ Library API

Base Class Member Function Description

Spiffy File System Library

Entity int process_fields(Visitor & v) allows v to visit all fields of this object

int process_pointers(Visitor & v) allows v to visit all pointer fields of this object

int process_by_type(int t, Visitor
& v)

allows v to visit all structures of type t

int compare(Entity & e,
Visitor & v)

allows v to process the difference between
this and e

Pointer Entity * fetch() retrieves the pointed-to container from disk

Container int save(bool alloc=true) serializes and then persists the container,
may assign a new address to the container

FileSystem FileSystem(IO & io) instantiates a new file-system object

Entity * fetch_super() retrieves the super block from disk

Entity * create_container(
int type, Path & p)

creates a new container of metadata type

Entity * parse_by_type(int type,
Path & p, Address & addr,
const char * buf, size_t len)

parses the buffer as metadata type, using p to
resolve cross-structure dependencies

File-System Developer

IO int read(Address & addr,
char * & buf)

reads from an address space specified by addr

int write(Address & addr,
const char * buf)

writes to an address space specified by addr

int alloc(Address & addr, int type) allocates an on-disk address for metadata type

Application Programmer

Visitor int visit(Entity * e) visits an entity and possibly processes it

int diff(Entity * e, Field * a,
Field * b)

callback function during compare invocation

annotated file-system data structures. The second set of functions need to be implemented by
file-systems developers and are reusable across different applications. The third set of functions
are written by the application programmer for implementing application and file-system-specific
logic.

The Spiffy library uses the visitor pattern [12], allowing a programmer to customize the oper-
ations performed on each file-system metadata type by implementing the visit function of the
abstract base class Visitor.

The Entity base class provides a common interface for all file-system metadata structures.
Spiffy classifies these structures as containers, objects, or extents. A container is an addressable
structure with at least one pointer annotation pointing to it. For example, an F2FS checkpoint
block is a container since the super block points to it. A container is sized at the granularity of
file-system blocks, i.e., it consists of one or more consecutive file-system blocks. A container is
also a unit of disk access, i.e., it is loaded from and stored on disk in its entirety. An object is a non-
addressable structure that does not have any direct pointers to it, and it lies within a container. An
extent is a type of container that contains a vector of objects, containers, or other extents. Like a
container, it is addressable, but its elements are loaded on demand. For example, the inode table is
an extent, and the inode blocks of the table are loaded as inodes are accessed.

The process_pointers function invokes the visit function of an application-defined Visitor
class on each pointer within the entity. The process_by_type function allows visiting a

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:11

Fig. 5. Address structure to locate container on disk.

Fig. 6. Example of a generated fetch function. IBlockPtr is a subclass of Pointer.

specific type of structure that is reachable from the entity. Unlike the other process functions,
process_by_type will automatically follow pointers. For example, invoking process_by_type
on the super block with the type id of an inode structure3 as an argument results in visiting all
inodes in the file system. The compare function allows comparing two entities of the same type.
The application must implement the diff function of the Visitor class to process the differences
between the two entities. For each field that is different, the diff function is invoked.

In the Spiffy API, every container has an associated address that allows it to be accessed from
disk. Figure 5 shows the format of an address, consisting of an address space, an identifier, an offset
within the address space, and the size of the container. The offset field is used when a container is
part of an extent, which is used in the read() implementation.

The Pointer class stores the address of a container, and its fetch function reads the pointed-to
container from disk. Figure 6 shows the generated code for the fetch function for a pointer to a
container named IBlock (inode block). The file-system developer implements an IO class with a
read function for each address space defined for the file system. On line 6, when the IBlock is
constructed, it invokes the constructors of its fields, thus creating all the objects (e.g., inodes) within
the container. The constructors for inodes, in turn, invoke the constructors of block pointers in the
inodes, which initialize a part of the address (address space, size, and offset) of the block pointers
based on the annotations. Then the container is parsed, which initializes the container fields in a
nested manner, including setting the id component of the address of all the block pointers in the
inodes contained in the IBlock.

The Path object is associated with every entity and contains the list of structures that are needed
to resolve cross-structure dependencies during parsing or serializing the container. It is set up
based on the sequence of constructor calls, with each constructor adding the current object to the
path passed to it.

The save function shown in Figure 7 serializes a container by invoking nested serialization on its
fields. Then, on line 6, it invokes the alloc function for newly created metadata, or when existing

3All annotated structures are given a unique type id in the generated Spiffy library.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:12 K. Sun et al.

Fig. 7. Abbreviated version of the save function.

Table 4. List of Properties of an Entity that Can Be Introspected

Property Description
index index of element (0 if not part of an array)
name name of field (blank if not a field)
type name of type (in string)
addr address of container or extents
size the actual size of the entity

traits traits of entity (e.g., integral, array)
id identity of entity

blocksize block size of file system (super block only)

metadata has to be reallocated (e.g., copy-on-write allocator). The allocator finds a new address
for the container and updates any metadata that tracks allocation (e.g., the Ext4 block bitmap). If
the address passes placement constraint checks, the buffer is written to disk.

The create_container function constructs empty containers of a given type. The application
developer can then fill the container with data and invoke save to allocate and write the newly
created container to disk.

Spiffy supports type introspection, which allows the programmer to write generic code for op-
erating on file-system metadata. Table 4 shows a list of properties that each Entity base class
implements. These can be used in annotations or in Spiffy applications. For example, in Figure 17
on page 20, the type of the input Entity e is printed.

3.3 Limitations

The correctness of Spiffy applications depends on correctly written annotations. Therefore, if and
when file-system format changes do occur, the specifications will need to be updated. Spiffy appli-
cations will also need to update all file-system-specific code that is affected by the format changes.
These changes will likely only affect code that directly operates on the updated metadata struc-
tures, since the Spiffy library will provide safe traversal and parsing of any intermediate structures.

Unlike typical file-system applications that operate at the VFS layer and are file-system indepen-
dent, Spiffy applications operate directly on file-system-specific structures and are thus file-system
dependent. Since file systems share common abstractions (e.g., files, directories, inodes), it may be
possible to carefully abstract the functionality that is shared between implementations, reducing
file-system dependence even further.

Our storage-layer online applications read file-system metadata but do not modify it. We are cur-
rently exploring modifying file-system metadata at the storage layer using Spiffy. We expect this
will require an infrastructure similar to IO shepherding [16] to support transactions and allocation.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:13

Table 5. Spiffy File-System Annotations

Keyword Description Arguments Meaning

FSSTRUCT File system
structure

name=IDENT Name of structure for cross referencing

ident=EXPR Identity expression for the structure

FSSUPER File system super
block

base=TYPE,when=BOOL Structure inherits base when condition is true

size=INT Size of the structure

location=INT,BOOL Super block offset or placement constraint

blocksize=INT Block size of the file system (FSSUPER only)

POINTER Field is a pointer to
a container

aspc=IDENT Name of an address space type

type=TYPE Type of the referenced structure

OFFSET Field is an offset to
an object within
container

when=BOOL Pointer/offset valid when condition is true

size=INT Size of the referenced metadata

name=IDENT,expr=INT Name of an implicit pointer, its expression

ADDRSPACE An address space name=IDENT Name of the address space type

VECTOR Defines a vector
field

name=IDENT Name of the vector/extent

type=TYPE Structure type of the contained elements

EXTENT Defines an extent
type

count=INT Number of elements in vector/extent

size=INT Size of vector/extent, in bytes

sentinel=BOOL Sentinel value specifying end of vector/extent

CHECK Constraint check expr=BOOL Condition for the structure’s correctness

IDENT is a valid C identifier. TYPE is the type name of a structure, vector, or extent type. BOOL, INT, EXPR are syntactically

valid, dynamically scoped, C expressions. BOOL and INT evaluate to a Boolean and integer type, while EXPR can also be a

string or tuple type. For each group of annotations, the arguments are applicable to all keywords within the group unless

otherwise specified.

4 ANNOTATION LANGUAGE

Spiffy uses annotations on C structures to specify the format of file-system structures. We chose
this approach to reduce duplication of structure definitions. The annotations are defined using
C preprocessor macros. They are designed to be compatible with existing code by expanding to
empty code during normal compilation. Although many annotations can simply be added to exist-
ing structures, sometimes we need to add new structures or modify existing structures when they
are a poor fit for our needs.

Table 5 shows the list of annotations supported by Spiffy. Each annotation is written using one
or more keywords, followed by their arguments. We now describe each annotation.

4.1 FSSTRUCT, FSSUPER

These annotations are written by replacing the struct keyword in a C structure with FSSTRUCT
or FSSUPER. They help distinguish file-system metadata from in-memory file-system structures so
that the Spiffy compiler only parses C data structures marked with these two annotations. The
FSSUPER annotation identifies the root of the file system. The location argument describes its
physical location as an offset (in bytes) from the beginning of the file-system image. The blocksize
argument specifies the block size of the file system. The name argument is used by a descendant to

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:14 K. Sun et al.

Fig. 8. Ext4 inode structure annotation.

Fig. 9. Ext4 directory entry and directory block annotations.

reference this structure (see Section 3.1). For FSSTRUCT, the location argument optionally speci-
fies its placement constraint, as described in Section 3.1.3.

The ident argument specifies the identity expression of the structure. By default, a structure
has no identity. To specify identity, one can reference fields of the same or other structures, as well
as the properties of a structure (see Table 4). For example, in Figure 8, the identity of an inode is
specified using the index property of the parent block group descriptor. To differentiate property
from regular fields, the $ operator is used.4

The identity of a metadata object may have multiple constituents. For example, Figure 9 shows
the identity specification for the Ext4 directory entry structure. Since it is possible to have two
entries with the same file name across two different directories, the name is not a sufficiently
unique identifier. Therefore, the identity is specified as a tuple, where $(in).id is the identity of
the associated inode and self.name is the file name.

The base-when argument enables supporting context-sensitive types. It defines a structure that
is derived from a base structure when the condition is true. Conceptually, the derived structure is
appended to the base structure, similar to the way inheritance is implemented in object-oriented
languages. Figure 10 shows an example in which the F2FS inode structure is inherited by either a
directory inode structure or a file inode structure, depending on the mode of the inode. The use of
two derived inode structures allows using different types in the two structures. For example, we
use a dir_block pointer in the directory inode and a data_block pointer in the file inode.

Notice that the size argument in the FSSTRUCT definition of f2fs_inode references the super
block using the name sb. In addition, the location argument specifies its placement constraint so
that incorrect allocation will not result in clobbering parts of the F2FS static metadata area. Note
$(self).addr refers to the address of the container (see Table 4 and Figure 5).

4.2 POINTER, OFFSET, ADDRSPACE

The POINTER annotation is used to specify the address type and the pointed-to type of a pointer.
It allows fetching a container from disk and parsing it using the correct type information. As an
example, we annotate the s_journal_inum field in the Ext4 super block, shown in Figure 11, to
indicate that it points to an ext4_journal type in the file address space.

4The syntax is inspired by JQuery, which is a JavaScript library.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:15

Fig. 10. Annotations for file and directory inode structures in F2FS.

Fig. 11. Annotated Ext4 super block.

File systems may use the same pointer field to reference different types of metadata. The when
argument is used to specify context-sensitive pointers. For example, Figure 12 shows that the Btrfs
“tree of tree” root points to a B-tree leaf when the level of the tree is 0, or else it points to a B-tree
node. In this case, two pointer annotations are needed to specify each of the pointed-to types and
their when expression. The size argument in the pointer annotation is useful when the structure
that contains the pointer also stores the information about the size of the pointed-to structure.
This may be the case when the pointed-to structure is variable-sized or a data block.

Spiffy supports implicit pointers with the name-expr argument, which names a pointer and
specifies an expression for computing the address value. For example, Figure 11 shows that we

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:16 K. Sun et al.

Fig. 12. Annotated Btrfs super block.

Fig. 13. Annotations for Ext4 extent header and leaf structures.

added an implicit field to the end of the Ext4 super block, because it does not have a pointer field
to the block group descriptor table. The descriptor table is located at block 2 if the block size is
1,024 bytes, or block 1 for every other block size.

The OFFSET annotation is similar to a pointer, but it is used to specify offset fields that reference
an object within a container. Unlike a file-system pointer, an offset field access does not require
fetching data from disk, and hence it does not require an address space.

The ADDRSPACE annotation specifies an address space for a pointer type. Figure 12 shows that
the Btrfs pointers have a raid address type. In Section 6, we describe how the annotation developer
implements this annotation.

4.3 VECTOR, EXTENT

The VECTOR and EXTENT annotations help specify variable-length arrays of structures. The VECTOR
annotation is placed inside structures, and it defines an implicit array field of a structure, such as
the name field in the Ext4 directory structure shown in Figure 9, or the eb_extent field in the Ext4
extent leaf shown in Figure 13.

The EXTENT annotation is placed outside a structure definition. It defines a new type, such as the
ext4_dir_block structure in Figure 9. The EXTENT annotation generates a Spiffy extent containing
an array of objects, containers, or other extents (see Section 3.2).

The size of the vector or extent can be specified using any of the count, size, or sentinel
arguments. The size argument is useful when the elements are variable-sized and the number
of elements cannot be easily deduced. The sentinel argument specifies a Boolean condition for

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:17

Fig. 14. Btrfs B-tree leaf structure annotation.

determining the last element of a vector. All combinations of the three arguments are valid, and
parsing ends as soon as one of the stopping conditions are met.

4.4 CHECK

The CHECK annotation allows specifying arbitrary constraints on a structure. These checks are
performed both after parsing a structure, and before serializing it. This annotation acts as an as-
sertion, which upon failure, results in a parsing or a serialization error. Figure 13 shows an example
where the CHECK annotation is used to verify that the Ext4 extent header contains the correct magic
number.

In file systems that use sorted data structures, such as B-trees, metadata objects must be placed
in a particular order to guarantee that they can be found using the intended search algorithm for
the data structure. Therefore, Spiffy can be used to detect any ordering-related corruption. As an
example, Btrfs uses B-trees to store all of its metadata objects, and B-tree items must be sorted in
monotonically increasing order, based on their identity (i.e., their associated btrfs_key). Figure 14
shows the annotated leaf node data-structure definition. The CHECK annotation verifies correct
ordering of elements in the array using the identity of btrfs_items. This identity is specified as
the key field in this structure. The CHECK expression loops through the array and checks that the
identity of the current element is strictly less than the next element. This check is added to the
generated parsing and serialization routines, allowing developers using Spiffy to detect ordering
violations before accessing this data structure.

4.5 Ext4

We have modified and added some Ext4 data structures so that they can can be specified correctly.
For backward compatibility, the Ext4 developers decided to leave the i_block field of the inode
structure definition alone, although the space it occupies is now used for an extent tree. We re-
defined an Ext4 inode so that it now correctly defines an extent header followed by four extent
entries. We also support Ext3’s block-based allocation scheme, which is not shown here for brevity.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:18 K. Sun et al.

Fig. 15. Btrfs leaf node layout.

We also added a definition for the extent leaf blocks, shown in Figure 13, which was omitted in
the original header file.

We show the structure annotation for the Ext4 inode in Figure 8. The name argument specifies
the name of the structure for cross referencing. For example, Figure 9 shows that this name is
used to specify the identity of directory entries. The size argument specifies the size of the inode
structure. The ident argument specifies the identity of the structure, which is its inode number.
In this case, the inode number is calculated from its block group number and its index in the inode
table. The block group number is obtained from the index of the parent block group descriptor
structure, which is referenced through the name gd.

In Figure 9, we show the annotated Ext4 directory entry structure. This structure is uniquely
identified by its associated inode and its file name (file names within the same directory must be
unique). Therefore, its identity is specified as a tuple with two elements. The size of the directory
entry structure is specified by the rec_len field.

4.6 Btrfs

Btrfs places all of the file system’s metadata objects (e.g., inode, directory entries) in reverse order,
starting from the end of the B-tree leaf block, as shown in Figure 15. For each metadata object,
there is a corresponding btrfs_item object that stores the offset and size of the metadata object.
For example, items[0] stores the offset and size for data[0].

Figure 14 shows the annotated Btrfs leaf node (btrfs_leaf), containing a header and a vector of
btrfs_item structures, which is defined as a flexible array member that contains header.nritems.
This figure shows that the btrfs_item structure defines implicit offset fields with the OFFSET
annotation. These fields use the when expression to point to all the different types of metadata
objects that can be stored in a leaf object. The offset field is an offset to a metadata object from
the end of the header field of btrfs_leaf, and so we must add this value to obtain the offset from
the beginning of the container (the leaf node).

4.7 F2FS

F2FS contains five static metadata areas, and one main area for data blocks and dynamically allo-
cated metadata, such as the inode shown in Figure 10. The static metadata area consists of a pair of
checkpoint packs, as shown in Figure 4 on page 8, and various lookup tables for space and pointer
management.

F2FS has a pointer in the super block to the first checkpoint pack. After that, all other blocks
in the checkpoint region are accessed using pointer arithmetic in the code. In Figure 16, we show
a partial annotation for the checkpoint header. We use an implicit pointer to point to a vector of
orphan blocks, which are present when the when condition is true. The expression for the implicit
pointer is calculated using the address of its container (i.e., the checkpoint header within the same

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:19

Fig. 16. F2FS checkpoint header annotations.

checkpoint pack). This expression shows that the orphan blocks are located one block after the
start of the checkpoint header block, as shown in Figure 4.

4.8 Future Work

We designed Spiffy to be general, and we expect it would be straightforward to annotate popular
file systems in other operating systems, such as the New Technology File System (NTFS) for the
Windows operating system.

NTFS has a relatively simple metadata layout in the block address space because almost ev-
erything in NTFS is a file, including the inode table, known as a master file table (MFT). The file
system starts with the super block (partition boot sector) as usual. It contains a block pointer5

to the first block of the master file table, where the first inode (MFT record) stores the metadata
on the extents allocated to the MFT. It is used to find subsequent blocks used by the MFT. Other
metadata, including block allocation bitmap, journal, and volume information are also stored as
files (a.k.a. metafiles) with a designated inode number.

To annotate NTFS, we would first declare a file address space, similar to the Ext4 journal’s
file address space. In the super block, we would add an implicit file address space pointer to the
master file table. This is necessary to present the master file table as a contiguous entity. In similar
fashion, we would annotate all other metafiles and reference them using implicit file address space
pointers. The MFT record comes in two forms: resident (inlined data) vs. non-resident (extent-
based allocation). We would annotate these two forms as context-sensitive types, with the when
argument in the structure annotation.

5 FILE-SYSTEM APPLICATIONS

We have written six file-system aware storage applications using the Spiffy framework: a dump
tool, a free space reporting tool, a type-specific metadata corruptor, a file-system conversion tool, a
prioritized block-layer cache, and a runtime file-system checker. The first four applications operate
offline, while the last two are online applications.

5.1 Offline Applications

Figure 17 shows a sample offline application built using the Spiffy API. Our actual offline applica-
tions are implemented using variations of the file traversal code shown in Figure 17.

This application prints the type of each metadata block in an Ext4 file system in depth-first
order. The Ext4IO class on line 16 implements the block and the file address space, as described
in Section 6.2. The program starts by invoking fetch_super, which fetches the super block from
a known location on disk and parses it. Then it uses two mutually recursive visitors, EntVisitor
and PtrVisitor, to traverse the file system.

The EntVisitor::visit function on line 11 takes an entity as input, prints its type, and then
invokes process_pointers, which calls the PtrVisitor::visit function on line 3 for every

5Confusingly named logical cluster number in NTFS terminology, where a cluster means a block.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:20 K. Sun et al.

Fig. 17. Code for traversing and printing the types of all the metadata blocks in an Ext4 file system.

pointer in the entity. The PtrVisitor::visit function invokes fetch, which fetches the pointed-
to entity from disk, and invokes EntVisitor::visit on it.

5.1.1 File-System Dump Tool. The file-system dump tool parses all the metadata in a file-system
image and exports the result in an XML format. In addition to process_pointers, the Entity class
provides a process_fields method that allows iterating over all fields (not just pointer fields)
of the class. The dump tool can be configured to prevent structures such as unallocated inode
structures from being exported.

5.1.2 Type-Specific Corruption Tool. This tool is a variant of the dump tool that injects file-
system corruption in a type-specific manner [2], allowing us to test the robustness of file systems
and their tools. When we decide to corrupt a field, we cannot simply modify its in-memory value,
since serialization is type-safe. For example, the serializer will refuse to serialize a corrupted value
that violates its type constraints. Instead, corruption is performed after a block is serialized but
before it is written. We currently support corrupting an object at random, or by identity. In the
latter case, we iterate through all objects of the specified type until we find the object with the
matching identity.

5.1.3 Free Space Tool. This tool shows file-system fragmentation by generating a bitmap of
free blocks in the file system and plotting a histogram of the size of free extents. The tool re-
trieves the metadata structures that store free space information and processes them. This logic
is implemented using process_by_type (see Table 3) and a file-system-specific visit function
that processes all the retrieved metadata structures. The Ext4 implementation uses the Ext4 block
bitmaps within the group descriptor table. The Btrfs implementation uses the extent start and

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:21

size values from the extent items and metadata items (which include system extents) in the ex-
tent tree. The F2FS implementation uses the segment information table (SIT) from the latest valid
checkpoint. It also uses the SIT entries in the checkpoint journal, recording them with higher
precedence than the segment table. The code to traverse the file system and parse intermediate
structures is provided by the Spiffy library.

5.1.4 File System Conversion Tool. Converting an existing file system into a file system of an-
other type is a time-consuming process, involving copying files to another disk, reformatting the
disk, and then copying the files back to the new file system. In-place file-system conversion that
updates file-system metadata without moving most file data can speed up the conversion dra-
matically. While some such conversion tools exist,6 they are hard to implement correctly and not
generally available.

We have designed an in-place file-system conversion tool using the Spiffy framework. Such a
conversion tool requires detailed knowledge of the source and the destination file systems, and is
thus a challenging application for our approach. In-place conversion involves several steps. First,
the file- and directory-related metadata, such as inodes, extent mappings, and directory entries
of the source file system, are parsed into a standard format. Second, the free space in the source
file system is tracked. Third, if any source file data occupies blocks that are statically allocated in
the destination file system, then those blocks are reallocated to the free space, and the conversion
aborted if sufficient free space is not available. Finally, the metadata for the destination file system
is created and written to disk. In this version of the tool, a power failure during the last step would
corrupt the source file system. A newer version of the tool supports failure atomicity through
journaling [35].

Our tool converts extent-based Ext4 file systems to log-structured F2FS file systems. The source
file system is read using a custom set of visitors that efficiently traverse the file system and create
in-memory copies of relevant metadata. For example, unused block groups can be skipped while
processing block group descriptors. Next, we generate the free space list by reusing components
from the free space tool, and then removing F2FS’s static metadata area from the list (so this area
is not available for dynamic allocation). Then, Ext4 extents in this static metadata area are relo-
cated to the free space with their mappings updated. Finally, F2FS metadata is created from the
in-memory copies and written to disk, which involves allocation and pointer management, requir-
ing significant file-system-specific logic.

Fortunately, various pieces of the code can be reused for different combinations of source and
destination file system when adapting new file systems. As an example, only the code to copy Btrfs
metadata from an existing file system and to list its free space is required to support the conversion
from Btrfs to F2FS, since the in-memory data structures are generic across file systems that support
VFS. If the file system does not support VFS, suitable default values can be used, which would be
helpful for upgrading from a legacy file system such as FAT32.

5.2 Online Applications

Spiffy supports online file-system aware storage applications via a kernel module that performs
file-system interpretation at the block layer of the Linux kernel using the generated libraries. These
storage applications are typically difficult to write and error prone, since manual parsing code is
needed for each block type. However, our implementation only requires a small amount of boot-
strap code to support any annotated file system. The rest of the code is file-system independent.

6The convert utility converts FAT32 to NTFS [37], and updating to iOS 10.3 upgrades the file system from HFS+ to APFS [38].

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:22 K. Sun et al.

In offline applications, the fetch function reads data from disk and parses the structure. The
type of the structure is known from the pointer that is passed to the fetch function. In contrast,
for online interpretation, the file system performs the read, and the application just needs to parse
it. The parse_by_type function in Table 3 allows parsing of arbitrary buffers and constructing the
corresponding containers, without the need for an IO object to read data from disk. However, it
needs to know the type of the block before parsing is possible. Our runtime interpretation depends
on the fact that a pointer to a metadata block must be read before the pointed-to block is read. When
a pointer is found during the parsing of a block, the module tracks the type of the pointed-to block
so that its type is known when it is read.

Our module exports several functions, including interpret_read and interpret_write, that
need to be placed in the I/O path to perform runtime interpretation. These functions operate on
locked block buffers. The module maintains a mapping between block numbers and their types.
After intercepting a write request or a completed read request, it checks whether a mapping exists,
and if so, it is a metadata block and it gets parsed. Next, process_pointers is invoked with a
visitor that adds (or updates) all the pointers that are found in the block into the mapping table.
If a parsed block will be referenced later (e.g., super block), we make a copy so that it is available
during subsequent parsing of structures that depend on the value of its fields (e.g., parsing the Ext4
inode block requires knowing the size of an inode, which is in the super block). The local copy is
atomically replaced when a new version of the block is written to disk.

We provide two types of runtime interpretation. The first type, which we call snapshot-based
interpretation, caches only the latest version of blocks. This method has low memory overhead,
but it suffers from occasional misclassification of block types due to the inability to detect deallo-
cation of blocks. The second type, which we call differencing-based interpretation, caches both the
previous and current versions of blocks so that it can detect deallocation of blocks by observing
that a non-null pointer is set to null. We describe the implementation of these methods in more
detail in Section 6. Next, we discuss their use in two online applications that we have implemented.

5.2.1 Prioritized Block-Layer Cache. We have implemented a file-system aware block-layer
cache based on Bcache [26]. Our cache preferentially caches the files of certain priority users,
identified by the uid of the file. This caching policy can dramatically improve workload perfor-
mance by improving the cache hit rate for prioritized workloads, as shown in previous work [34].
Bcache uses an LRU replacement policy. In our implementation, blocks belonging to priority users
are given a second chance and are only evicted if they return to the head of the LRU list without
being referenced.

We use the snapshot-based interpretation module to identify the types of metadata blocks at
the block layer, without requiring any modifications to the file system. This approach works for a
caching application since a misclassification will not lead to incorrect operation.

We track the data extents that belong to file inodes containing the uid of a priority user, so that
we can preferentially cache these extents. For Ext4, we use custom visit functions to parse inodes
and determine the priority extent nodes. Similarly, we parse the priority extent nodes to determine
the priority extent leaves, which contain the priority data extents.

For Btrfs, the inodes and their file extent items may not be placed close together (e.g., within
the same B-tree leaf block), and so parsing an inode object will not provide information about its
extents. Fortunately, the key of a file extent item is its associated inode number, making it easy to
track the file extents of priority users.

5.2.2 Runtime File-System Checker. Recon is a runtime file-system consistency checker that
can protect the integrity of file-system metadata by checking the consistency of file-system update
operations before they are committed to disk [11]. Recon intercepts IO requests from the file system

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:23

and independently interprets the metadata read or written by the file system. Before a file-system
transaction commits, it enumerates all the logical data-structure updates made by the file system
and verifies their correctness against a set of consistency invariants. If a violation is detected, all
checkpoint operations associated with the transaction are stopped to prevent corruption of the file
system.

We refactored the original Recon code so that it performs generic metadata interpretation and
differencing for all of our annotated file systems using the Spiffy library. Unlike our prioritized
block-layer caching application, this code uses the differencing-based interpretation to track both
the old and new versions of objects, guaranteeing accurate classification of block types. We com-
pare two versions of a block (e.g. BlockA) with pointers to learn whether a pointer is removed (i.e.,
from a valid address to null). If the change removes the last pointer to another block (e.g., Block
B), then we can deduce that Block B has been freed.

This application uses object identities and the compare function (see Table 3 on page 10) to
perform logical differencing of the old and new versions of an object. Then it uses the diff function
to operate on the logical changes to a data-structure field that has been updated. We provide more
details in Section 6.4.

6 IMPLEMENTATION

We implemented a compiler that parses Spiffy annotations. The compiler uses Python Lex-Yacc
(PLY 3.4) [4] as its parser generator and lexical analyzer. The grammar, written in Yacc, is based
on the ANSI C grammar. The compiler is invoked with a set of C header files containing the
annotated data structures (e.g., spiffy --name Ext4 ext4_fs.h). It parses the annotations and
the annotated structures, and ignores the rest of the source code. We verify that the Boolean and
integer expressions used in annotations are syntactically correct by attempting to compile the
expressions using a C++ compiler.

The compiler generates the file system’s internal representation in a symbol table, containing
the definitions of all the file-system metadata, their annotations, their fields (including type and
symbolic name), and each of their field’s annotations. Next, it detects errors such as duplicate
declarations or missing required arguments. Finally, the symbol table and compiler options are
exported for use by the compiler’s backend.

Spiffy’s backend generates C++ code for a file-system-specific metadata library using the
Jinja2 [29] templating engine that is typically used for generating dynamic HTML content. The
code generator works by processing template filters and tags in the source template files, and
the output of the compiler is a pair of C++11 source and header files that can be used by applica-
tions. These files can be compiled as either a user space library or a part of a Linux kernel module.
We linked our kernel module, including our generated library, into the Linux kernel by porting
some C++ standard containers to the kernel environment and integrating the GNU g++ compiler
into the kernel build process, which required minor changes.

Every annotated structure is wrapped in a class that implements the Entity interface that is used
by applications such as the simple file-system traversal application shown in Figure 17. Figure 18
shows an example structure for the Ext4 directory entry shown in Figure 9. The name field is
initialized with its name and type for introspection, and also a reference to the structure so that it
can reference self during parsing. We make each of the fields publicly visible by using the cast
and assignment operators in the field’s template class. Application programmers can thus access
these fields as if they were accessing the actual C structure.

The wrapper classes allow introspection so the class can access its properties (see Table 4 on
page 12) and each field in the wrapped class can reference its containing structure. The generated
library performs various types of error-checking operations. For example, the parsing of offset

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:24 K. Sun et al.

Fig. 18. Wrapper class for Ext4 directory entry.

Fig. 19. Generated parsing code for the btrfs_leaf structure with the ordering constraint check inserted.

The $id() function returns the identity of the object.

fields ensures that objects do not cross container boundaries, and similarly, all variable-sized ob-
jects fit within their containers. In Figure 19, we show a condensed version of the C++ parsing
code that is generated from the btrfs_leaf annotation shown in Figure 14. The expression in the
CHECK annotation is converted to equivalent C++ code that will return an error if the items array
is not sorted correctly based on the identity of its elements. These checks are essential if an appli-
cation aims to handle file-system corruption. When parsing does fail, an error code is propagated
to the caller of the parse or serialize function.

Our path-based name resolution mechanism resolves a name in the reverse order of the path
from the super block. For example, suppose the path is A→ B1 → C → B2 → D, where each sym-
bol is a unique structure type, and B1 and B2 are separate instances of the same type. Structure
C would resolve B as B1, but D would resolve B as B2, and not see B1. However, it can use C .B to
access B1. This mechanism is implemented by associating a path object and a parent entity with
each entity. After a pointer is used to fetch and parse an entity, its path object is created by per-
forming a shallow copy of the parent’s path object, and appending a pointer to the current entity.
The shallow copy increments entity reference counts, ensuring that the names in the path can be
referenced correctly. When a name is not specified for a structure (in the FSSTRUCT annotation),
the corresponding entity is not added to the path.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:25

Currently, the fetch function always reads data from storage because we have not implemented
an entity cache. This doesn’t affect a tree traversal in which each entity is read once, but if a
structure can be accessed using multiple paths, then it would be read multiple times.

6.1 Access Unit

Most existing file systems assume that the underlying storage media is a block device and access
data in block units. Data structures can exist within such blocks or they can span contiguous
physical blocks. Some data structures that span blocks are read in their entirety. For example,
the Btrfs B-tree nodes are (by default) 16 KB, or four blocks, and these blocks are read from disk
together. In other cases, the data structure is read in portions. For example, an Ext4 inode table
contains a group of inode blocks. The file system does not load the entire table in memory because
it can be very large. Instead, it only loads the portions that are needed.

We support these types of operations by classifying data structures as objects, containers, or
extents, as explained in Section 3.2. Containers are multiples of block sizes, and Spiffy loads and
stores data at container granularity. Extents are vectors of objects or containers, and they are
loaded on demand at container granularity when a container is accessed. One complication occurs
when an extent consists of a vector of objects. In this case, there are no containers within the extent.
We solve this problem by defining implicit containers (by default, of block size) that contain these
objects, and we also check that the objects do not cross these container boundaries.

6.2 Address Spaces

Annotation developers must implement the IO interface shown in Table 3 for offline applications.
The read function maps a pointer address in an address space to a physical location on disk, and
then reads a container of a given size, specified by addr.size, into the buffer buf. We show its
use in Figure 6. The write function writes an in-memory data structure to disk, with the same
parameters as read. It is used by the save function shown in Figure 7.

At minimum, Spiffy requires a byte address space implementation so that the super block can be
fetched at a fixed byte offset on disk. The super block usually contains the block size, which enables
a block address space implementation. Supporting other address spaces involves more work.

The Ext4 file address space implementation for the Ext4IO class (see line 16 on Figure 17,
page 20) requires fetching the file contents associated with an inode number. For Btrfs, we cur-
rently support the RAID address space for a single device, which only allows metadata mirroring
(RAID-1). For F2FS, we support the NID address space, which maps a NID (node id) to a node block.
The implementation involves a lookup to see if a valid mapping entry is in the journal. If not, the
mapping is obtained from the node address table.

6.3 Snapshot-Based Interpretation

As described in Section 5.2, for online applications, metadata blocks are parsed as the requests are
intercepted at runtime. When the I/O operation is a read, the block is parsed immediately since
its type is already known from the mapping table. After parsing, the block can be immediately
discarded.

However, when the I/O operation is a write, the module needs to determine the type of the
written block. A statically allocated block can be immediately parsed because its type will not
change. For example, most metadata blocks in Ext4 are statically allocated. However, in Btrfs,
the super block is the only statically allocated metadata block. For dynamically allocated blocks,
the block must first be labeled as unknown and its contents cached, since its type may either be
unknown or have changed. Interpretation for this block is deferred until it is referenced by a block

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:26 K. Sun et al.

Fig. 20. Recon architecture (figure reproduced from [11]).

that is subsequently accessed (either read or written), and whose type is known. At that point, the
module will interpret all unknown blocks that are referenced.

Since most dynamically typed blocks are data blocks, they should be discarded immediately
to reduce memory overhead. For the Btrfs file system, this is relatively easy because metadata
blocks are self-identifying. For Ext4, these blocks need to be temporarily buffered until they can
be interpreted. However, we use a heuristic for Ext4 to quickly identify dynamically typed blocks
that are definitely not metadata, to reduce the memory overhead of deferred interpretation. The
block is first parsed as if it were a dynamically allocated block (e.g., a directory block or extent
metadata block), and if the parsing results in an error, then the block is assumed to be data and
discarded. This heuristic could be used in other file systems as well because most file systems have
a small number of dynamically allocated metadata block types, or their blocks are self-identifying.

The module currently relies on the file system to issue trim operations to detect deallocation of
blocks so that stale entries can be removed from the mapping table. Since file systems do not guar-
antee correct implementation of trim, the module additionally flushes out entries for dynamically
allocated blocks that have not been accessed recently.

6.4 Differencing-Based Interpretation

As shown in Figure 20, Recon [11] interposes between the file system and the underlying de-
vice and intercepts all IO requests. Recon performs runtime verification in three steps: metadata
interpretation, type-specific differencing, and invariant checking. Since invariant checking is file-
system specific, we focus on how we use the Spiffy libraries to build a generic framework for
metadata interpretation and type-specific differencing.

A runtime checker needs to know about all the changes made to the file system during a transac-
tion so that it can check their correctness before committing the transaction. To do so, Recon com-
pares the updated state of the file system against its previous state. The updated state is available
in the metadata write cache and the previous state is available in the metadata read cache, shown
in Figure 20. While both of these caches contain file-system blocks, the comparison is performed

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:27

Table 6. Block Differencing Actions for Each Metadata Block

Not in write cache In write cache
Not in read cache ignore objects created

In read cache, freed objects deleted objects compared
In read cache, allocated ignore objects compared

Fig. 21. Block differencing pseudocode.

by interpreting the metadata blocks to generate logical objects, and then performing type-specific
differencing for all objects that have been modified. This differencing generates change records for
each object field that is modified. The change records are used for invariant checking.

To perform type-specific differencing, we use two methods: block differencing, or set differencing.
Block differencing is more efficient and is used when all the objects in a block remain at their fixed
locations in the block while they are alive (i.e., from allocation until deallocation). We call such
blocks location invariant. We use block differencing for most Ext4 blocks since they are location
invariant. Set differencing is used when objects in a block may move while being alive. For example,
we use set differencing for Ext4 directory blocks since live directory entry objects may be moved
within directory blocks. Similarly, we use set differencing for most Btrfs structures since they are
allocated using copy-on-write, and so the updated and the previous versions of an object are placed
at different locations. For F2FS, we use block differencing for the static metadata blocks, and set
differencing for the dynamic data blocks that are written in a log-structured manner.

6.4.1 Block Differencing. Table 6 shows the different types of actions taken during block dif-
ferencing, based on whether the block is in the read cache and the write cache. If a block is not
in the write cache, then the block has not been updated, and so it does not need to be compared.
However, the block may have been freed, and so all objects within the freed block are marked
as deleted. When a block is in the write cache but not in the read cache, then the block is newly
allocated, thus all the objects within the block are processed as newly created. If a block is in both
the read and write cache, then we compare the two copies of the object. In the case when the block
is freed, the write may have zeroed the block.

Figure 21 shows the pseudocode for the block differencing algorithm. The compare function
takes two arrays of objects (in unsorted order) and compares the two versions of each object to
generate change records. The created and deleted functions also generate change records but
make no comparison since a created object has no previous state, and a deleted object has no next
state.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:28 K. Sun et al.

6.4.2 Location Invariant Blocks. Set differencing is a general technique that will work for all
blocks, but as mentioned earlier, block differencing is more efficient. To perform block differenc-
ing, we need to know the blocks that are location invariant. We use a heuristic based on the identity
specification of objects to determine location invariant blocks. When the identity expression con-
tains just the index property, as shown in Table 4 or immutable fields from the super block, then we
assume that the object is location invariant. In particular, the identity expression must not contain
any contents of file-system objects.

For example, the Ext4 inode identity, shown in Figure 8, is location invariant since it uses index
information and a constant from the super block. However, the Ext4 directory entry structure
shown in Figure 9 is not location invariant since its identity contains self.name, which is a field
in the structure. Similarly, the btrfs_item shown in Figure 14 is not location invariant since its
identity is the key field in the structure. A block is considered location invariant if it only contains
location invariant objects, and all these objects are of the same type.

6.4.3 Handling Temporary Objects. While our approach allows generic differencing of file-
system blocks, some file-system-specific code is required for handling the transaction mechanisms
that file systems employ to maintain crash consistency. For example, in Ext4, all metadata writes
are first logged into a journal, and then after the commit block is written to the journal, all the
journal blocks are checkpointed to their final locations. However, a runtime file-system checker
must check the invariants before the transaction commits.

The generic block differencing method described in Section 6.4.1 requires the physical block
numbers in the read and the write cache to match (see line 3 in Figure 21). However, at the point
when the file system commits, the blocks written to the journal have not been checkpointed yet,
and thus there would not be a matching write cache entry for an updated block. As such, we need to
map the blocks from their temporary locations in the journal to their final locations for performing
the generic differencing. While the file system keeps this mapping in the journal since it needs to
checkpoint the metadata blocks, this procedure cannot be generated from our annotations.

Thus, for each file system, we create a temporary mapping of blocks from their temporary loca-
tions to their final locations during metadata interpretation, and then use this mapping to create
the final versions of the blocks in the write cache7 (as if they have already been checkpointed) be-
fore performing the type-specific differencing. Next, we describe how we handle the transaction
mechanism of each of the file systems that we support.

Ext4. In Ext4, metadata are journaled at the block granularity, which makes it simple to map each
block to its final destination in the write cache. For example, suppose an inode block is placed in
journal block J , and its final location is physical block P . Then we would insert block J into the
write cache as block P , which enables performing differencing correctly. This mapping information
is obtained from the journal descriptor block. We ignore any metadata writes to blocks outside the
journal, since those writes are part of the checkpointing process. Note that Recon only interprets
metadata blocks and ignores all data blocks, so the data journaling mode of Ext4 does not affect
the correctness of Recon’s operations.

Btrfs. Btrfs implements copy-on-write semantics, which means all block writes go to a new but
final location, and so no mapping is necessary. However, Btrfs uses a log tree, which is similar to
a journal, to alleviate write amplification in fsync-heavy workloads. Currently, we have disabled
this optimization for simplicity. To support the log tree, we would need to replay the items in the

7Note that this only affects in-memory blocks in the write cache. We do not alter updates to physical disk.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:29

Table 7. Set Differencing Actions for Each Metadata Block

Not in write cache In write cache
Not in read cache ignore add to new set

In read cache, freed add to old set add to old set
In read cache, allocated ignore add to both sets

Fig. 22. Set differencing pseudocode.

log and add them to the new set during the differencing step, before comparing the new and the
old sets.

F2FS. F2FS is a log-structured file system designed for SSDs. It uses object-level journaling to
mitigate write amplification on SSDs and to improve its performance. While Ext4 journals at block
granularity and so the final version of the block is available in the journal, with F2FS, we need to
replay the items in the journal to create the final version of the block. To do so, we create a copy
of the old block, use the journaled object to overwrite the corresponding object in the copy, and
then place the updated copy in the write cache. Our Ext4 approach of remapping blocks is an
optimization of this general approach.

In addition, F2FS uses two physical blocks for each metadata block to implement checkpointing.
It maintains a bitmap to indicate which physical block is active. Therefore, we also have to map
a logical block address to one of its two physical blocks. For example, logical block address L for
a metadata block may be mapped to either physical block Pa or Pb . When physical block Pb is
written, we perform a reverse map to find its associated logical block address so that we can cache
it as block L in the write cache. Meanwhile, block L in the read cache would be mapped to physical
block Pa . At commit time, we verify that the active bitmap does indeed toggle from Pa to Pb .

6.4.4 Set Differencing. Table 7 shows the different types of actions taken during set differenc-
ing, based on whether the block is in the read cache and the write cache. These actions are similar
to block differencing except that blocks with the same id are not directly compared, since they may
not contain the same objects. Instead, newly created items are added to a new set, deleted items
are added to an old set, and updated items are added to both the new and old sets, and then these
items are compared.

Figure 22 shows the pseudocode for the set differencing algorithm. We use the blocks in the
read and write caches to create the old and the new sets. This code assumes that the type of a

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:30 K. Sun et al.

Table 8. File System Structure Annotation Effort

File System Ext4 Btrfs F2FS
Line Count 491 556 462
Annotated 113 153 127
Structures 15+10+4 27+4+1 14+16+5
Identities 6 1 11

block does not switch within a transaction, a requirement for ensuring crash consistency in file
systems [31]. In particular, a block must be freed in a previous transaction before it can be reused.
As a result, we can look up blocks by the same id in the read and the write cache, since they will
contain objects of the same type, even if they don’t contain the same set of objects. For example,
for a directory block in Ext4, its previous version must either be a directory block (belonging to the
same directory) or a free block. Similarly, the next version must be a directory block (belonging to
the same directory), or a free block. Our assumption holds for copy-on-write file systems trivially,
since the previous and the next version of the same block will not be at the same location.

Once the new and the old sets are created, we perform the differencing. For objects that exist
in both sets, we invoke the compare function with the new and the old versions of the objects.
Note that when set.new intersects with set.old, the resulting set contains the new versions of
objects that also exist in the old set, whereas when set.old intersects with set.new, the resulting
set contains the old versions of the objects. The created and deleted functions are invoked for
the newly created and deleted objects.

7 EVALUATION

In this section, we discuss the effort required to annotate the structures of existing file systems,
the effort required to write Spiffy applications, and the robustness of Spiffy libraries. We then
evaluate the performance of our file-system conversion tool, the file-system aware block-layer
caching mechanism, and the runtime checker.

7.1 Annotation Effort

Table 8 shows the effort required to correctly annotate the Ext4, Btrfs, and F2FS file systems. The
second row shows the number of lines of code of existing on-disk data-structure definitions in
these file systems. The lines of code count were obtained using cloc [8] to eliminate comments
and empty lines. The third row shows the number of annotation lines. This number is less than
one-third of the total line count for all the file-system structure definition code.

The fourth row is listed as A + B +C , with A showing no modification to the data structure
(other than adding annotations), B showing the number of data structures that were added, andC
showing the number of data structures that needed to be modified. Structure declarations needed
to be added or modified for three reasons:

(1) We break down structures that benefit from being declared as conditionally inherited
types. For example, btrfs_file_extent_item is split into two parts: the header and an
optional footer, depending on whether it contains inline data or extent information.

(2) Simple structures such as Ext4 extent metadata blocks are not declared in the original
source code. However, for annotation purposes, they need to be explicitly declared. All of
the added structures in Ext4 belong to this category.

(3) Some data structures with a complex or backward-compatible format require modifica-
tions to enable proper annotation. For example, Ext4 inode retains its Ext3 definition in

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:31

Table 9. Lines of Code in C++ for Each Tool

Tool Name Generic Ext4 Btrfs F2FS
Dump Tool 565 50 45 37
Metadata Corruptor 455 28 28 20
Free Space Tool 271 76 77 194
Conversion Tool 504 218 (read) 1,760 (write)
Runtime Interpreter 2,158 111 134
Runtime Differencing 2,826 197 48 473

the official header file even though the i_block field now contains extent tree information
rather than block pointers. We redefined the Ext4 inode structure and replaced i_block
with the extent header followed by four extent entries, as described in Section 4.5.

The last row shows the number of structures that were annotated with identity to enable runtime
consistency checking. Currently, we did not add identity to structures if they have no associated
consistency invariants,8 or if the structure is part of the transaction mechanism (e.g., Ext4 journal
descriptor block or F2FS checkpoint block). In general, structures relating to inodes, directory
entries, block allocation, and block mapping are typically checked by their respective file-system
checkers, and thus have an associated identity. For Btrfs, since all file-system metadata are placed
within the B-tree, they all share the same identity (i.e., btrfs_key).

7.2 Application Developer Effort

Table 9 summarizes the effort required to build each of our tools.
Dump Tool: The file-system dump tool includes a file-system independent XML writer module.
For each file system, we specify their export options in 37 to 50 lines of code. The dump tool
is helpful for debugging issues with real file systems. In addition, an expert can verify that the
annotations are correct when the output of the dump tool matches the expected contents of the
file system. Therefore, this tool has become an integral part of our development process.
Type-Specific Corruptor: This tool is written with less than 30 lines of code required for the
main function of each file system. The structure that the user wants to corrupt is specified via the
command line and the tool uses process_by_type to find it, without the need for any file-system-
specific code.
Free Space Tool: The file-system free space tool has a file-system independent component to
traverse the file system and to plot histograms. File-system-specific parts are needed to process
allocation metadata. F2FS requires more code due to the complex format of its block allocation
information.
Conversion Tool: The Spiffy file-system conversion tool framework currently supports reading
an existing Ext4 file system and converting it to an F2FS file system. In addition, the file-system
developer code for F2FS, which is reused in other applications such as the dump tool, consists of
383 lines. We also wrote a manual converter tool that uses the libext2fs [40] library to parse
Ext4 metadata from the source file system, and then manually write raw data to create an F2FS
file system. The manual converter has 223 lines of Ext4 code, and 2,260 lines for the F2FS code.
While the two converters have asimilar number of lines of code, the Spiffy converter has several
other benefits. For the source file system, the manual converter takes advantage of the libext2fs
library. Writing the code to convert from a different source file system would require significant

8Spiffy automatically checks structural integrity [36] during parsing.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:32 K. Sun et al.

Table 10. Lines of Code for the Spiffy Runtime

File-System Checker

Generic Ext4 Btrfs F2FS
Journaling - 197 48 315

Address Space - - - 158
Interpretation 905 - - -
Differencing 194 - - -

Kernel Module 1,727 - - -

Manual - 2,099 2,897 -

effort, and would require much more code for a file system such as ZFS that lacks a similar user-
level library. On the destination side, the Spiffy converter requires many file-system-specific lines
of code to manually initialize each newly created object. However, Spiffy checks constraints on
objects and uses the create_container and save functions to create and serialize objects in a
type-safe manner, while the manual converter writes raw data, which is error-prone, leading to
the types of bugs discussed in Section 2.
Prioritized Cache: The original Bcache code consisted of 10,518 lines of code. To implement
prioritized caching, we added 289 lines to this code, which invoke our generic, snapshot-based
metadata interpretation framework, listed as Runtime Interpreter in Table 9. This framework pro-
vides hooks to specify file-system-specific policies, which we have implemented for Ext4 and Btrfs.
Currently, we have not implemented prioritized caching for F2FS, which would require tracking
NAT entries, similar to how we track inode numbers for Btrfs to find file extents.
Runtime Checker: Table 10 breaks down the programming effort needed to build the runtime
file-system checker using Spiffy with identity support (summarized in Table 9 under Runtime
Differencing). We omit the file-system-specific code for invariant checking and show only the lines
of code for building generic metadata interpretation and type-specific differencing. The kernel
module code is also generic and implements a Linux device mapper used to intercept block IO
from the file system to disk. It also contains top level logic and calls file-system-specific functions.
For all three file systems, we need to write a small amount of code to handle the temporary objects
created by their transactional mechanism. For Btrfs, while no block remapping is necessary, we
still need to implement the Recon API [11].

In contrast, the manual versions of Recon require substantial boilerplate code for interpretation
and differencing. The original, manual Ext4, and the Btrfs versions of Recon took a significant
amount of development time and effort, and as a result, the F2FS manual implementation was
never attempted. With Spiffy, the F2FS implementation required understanding its journal format,
and implementing the NID address space to access the indirect blocks. The online implementation
of this address space is similar in principle to the offline version described in Section 6.2.

7.3 Corruption Experiments

We use our type-specific corruption tool to evaluate the robustness of Spiffy generated libraries.
The experiment fills a 128MB file-system image with 12,000 files and some directories, then clob-
bers a chosen field in a specific metadata structure (e.g., one of the inode structures) to create a
corrupted file-system image. We corrupt each field in each type of metadata structure three times,
twice to a random value and once to zero.

The Spiffy dump tool was able to generate correctly formatted XML files in the face of arbitrary
single-field corruptions for all of these images. When corruption is detected during the parsing of

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:33

Table 11. List of Segmentation Faults Found During Type-Specific Corruption Experiments

Tool Name Structure Field Description
dumpe2fs super block s_creator_os index out-of-bound error during

OS name lookup
dump.f2fs super block log_blocks_per_seg index out-of-bound error while

building nat bitmap
super block segment_count_main null pointer dereference after

calloc fails
super block cp_blkaddr double free error during error

handling (no valid checkpoint)
summary block n_nats index out-of-bound error during

nid lookup
inode i_namelen index out-of-bound error when

adding null character to end of
name

a container or a pointer fetch (i.e., pointer address is out-of-bound or fails a placement constraint),
an error is printed and the program stops the traversal.

Table 11 describes the crashes we found when we ran existing tools on the same corrupted im-
ages. For dumpe2fs (dump tool for Ext4) v1.42.13, we found a single crash when the s_creator_os
field of the super block is corrupted. For dump.f2fs v1.6.1-1, we observed five instances of segmen-
tation faults. Three of the crashes were due to corruption in the super block, and one crash each
was detected for the summary block and inode structures. We were unable to trigger any crash-
related bugs in btrfs-debug-tree v4.4.

These results are not unexpected since F2FS is a relatively young file system. Btrfs uses metadata
checksumming to detect corruption, and thus requires corruption to be injected before checksum
generation to fully test the robustness of its dump tool. Lastly, dumpe2fs does not traverse the
full file-system metadata, and so does not encounter most of the metadata corruption. Our Spiffy
dump tool is both more complete and more robust than dumpe2fs, without requiring significant
testing effort.

We also tried an extensive set of random corruption experiments, and none of the existing tools
crashed, showing that our type-specific corruptor is a useful tool for testing the robustness of these
applications. Although Spiffy is designed primarily to build new and robust file-system applica-
tions, it can also be used to build tools that expose bugs in existing applications. In other words,
building the type-specific corruption tool with Spiffy helps make the tool itself robust and also
makes it easier to support multiple file systems.

7.4 File-System Conversion Performance

We compare the time it takes to perform copy-based conversion, versus using the Spiffy-based
and the manually written in-place file-system conversion tools. The results are shown in Table 12.
The experiments are run on an Intel 510 Series SATA SSD. We create the file set using Filebench
1.5-a3 [42] in an Ext4 partition on the SSD, and then convert the partition to F2FS. The 20K file set
uses the msnfs file size distribution with the largest file size up to 1 GB. The rest of the file sets
have progressively fewer small files. All file sets have a total size of 16 GB. For the copy converter,
we run tar -aR at the root of the SSD partition and save the tar file on a separate local disk. We
then reformat the SSD partition and extract the file set back into the partition.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:34 K. Sun et al.

Table 12. Conversion Time from Ext4 to

F2FS for Different Number of Files

files Copy Converter Manual Conv. Spiffy Conv.
20,000 188.2 ± 3.7s 6.6 ± 0.5s 7.0 ± 0.2s
1,000 192.7 ± 2.3s 3.3 ± 0.1s 3.8 ± 0.0s
100 195.1 ± 0.2s 3.3 ± 0.1s 3.7 ± 0.1s

The copy converter requires transferring two full copies of the file set, and so it takes 30× to 50×
longer than using the conversion tools, which only need to move data blocks out of F2FS’s static
metadata area and then create the corresponding F2FS metadata. Both conversion tools take more
time with larger file sets since they need to handle the conversion of more file-system metadata.
The library-assisted conversion tool performs reasonably compared to its manually written coun-
terpart, with at most a 16.7% overhead for the added type-safety protection that the library offers.

7.5 Prioritized Cache Performance

We measure the performance of our prioritized block layer cache (see Section 5.2.1), and compare
it against LRU caching with one or two instances of the same workload.

Our experimental setup includes a client machine connected to a storage server over a 10 Gb
Ethernet using the iSCSI protocol. The storage server runs Linux 3.11.2 and has four Intel Processor
E7-4830 CPUs for a total of 32 cores, 256 GB of memory, and a software RAID-6 volume consisting
of 13 Hitachi HDS721010 SATA2 7200 RPM disks. The client machine runs Linux 4.4.0 with Intel
Processor E5-2650, and an Intel 510 Series SATA SSD that is used for client-side caching. To mimic
the memory-to-cache ratio of real-world storage servers, we limit the memory on the client to 4 GB
and use 8 GB of the SSD for write-back caching. The RAID partition is formatted with either the
Ext4 or Btrfs file system and is used as the primary storage device. To avoid any scheduling-related
effects, the NOOP I/O scheduler is used in all cases for both the caching and primary device.

We use a pair of identical Filebench fileserver workloads to simulate a shared hosting scenario
with two users where one requires higher storage performance than the other. We generate a total
file set size of 8 GB with an average file size of 128 KB, for each workload. The fileserver person-
ality performs a series of create, write, append, read, and delete of random files throughout the
experiment. Filebench reports performance metrics every 60 seconds over a period of 90 minutes.
Performance initially fluctuates as the cache fills, therefore we present the average throughput
over the last 60 minutes of the experiment, after performance stabilizes.

Figure 23 shows the average throughput for each of the experiments in operations per second.
The error bars show 95% confidence intervals. First, we establish the baseline performance of a sin-
gle fileserver instance running alone, which has a cache hit ratio of 64% and 54% for Ext4 and Btrfs,
respectively. Next, we run two instances of fileserver to observe the effect of cache contention. We
see a drastic reduction in cache hit ratio to 23% and 24% for Ext4 and Btrfs, respectively. Both file-
servers have similar performance, which is between 2.3× and 2.7× less than when running alone.
When we apply preferential caching to the files used by fileserver A, however, its throughput im-
proves by 60% over non-prioritized LRU caching when running concurrently with fileserver B,
with the overall cache hit ratio improving to 46% and 53% for Ext4 and Btrfs, respectively. Priori-
tized caching also improves the aggregate throughput of the system by 14% to 22%. Giving priority
to one of the two jobs implicitly reduces cache contention. These results show that storage appli-
cations using our generated library can provide reasonable performance improvements without
changing the file-system code.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:35

Fig. 23. Throughput of prioritized caching over LRU caching with one or two file servers for Ext4 and Btrfs.

Fig. 24. Throughput of various Filebench workloads without Recon (base), with Spiffy-based Recon imple-

mentation (Spiffy), and manually written Recon implementation (Manual), for Ext4, Btrfs, and F2FS.

7.6 Runtime Checker Performance

We measure the performance of three file systems on four Filebench workloads to compare the
overhead of our Spiffy-based runtime checker (see Section 5.2.2) against manually written runtime
checkers. We use the client machine described in Section 7.5. The experiments are run on the Intel
510 Series SATA SSD and main memory is limited to 5 GB. We replicate the workloads used in
[11], excluding msnfs, which did not work with our version of Filebench. Since we only want to
evaluate parts of the checker that can be written generically using Spiffy, we disabled invariant
checking in all the experiments.

Figure 24 shows native performance versus the performance of running different versions of the
Recon runtime file-system checkers for each file system, in megabytes per second. In general, we

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:36 K. Sun et al.

observe that the Spiffy-based implementation performs similarly to the manually written versions,
showing negligible overhead across all workloads on both Ext4 and Btrfs.

Spiffy-Recon performs well on the read-mostly webserver workload (10:1 read-to-write ratio),
with an overhead of 5.2%, 7.2%, and 3.5% for Ext4, Btrfs, and F2FS, respectively, against baseline.
However, for the webproxy workload, which is also read-mostly (5:1 read-to-write ratio), the over-
head increases to 27.7%, 18.7%, and 19.5%, respectively. Webproxy uses a very large flat directory,
with millions of files, and so the overhead increases since we need to use set differencing for di-
rectory entries. For varmail, a sync-heavy workload, the overhead is between 18.6% and 28.5%.
This result is expected since committing transactions creates additional work for Recon. Lastly,
for fileserver, we notice an overhead of 7.2% to 11.5% despite the workload being write-heavy,
which suggests that Recon has higher overheads when there is more metadata that needs to be
processed through set differencing, or when the file system performs frequent commits.

8 RELATED WORK

A large body of work has focused on storage-layer applications that perform file-system-specific
processing for improving performance or reliability. Semantically smart disks [32] used probing
to gather detailed knowledge of file-system behavior, allowing functionality or performance to be
enhanced transparently at the block layer. The probing was designed for Ext4-like file systems and
would likely require changes for copy-on-write and log-structured file systems. Spiffy annotations
avoid the need for probing, helping provide accurate block type information based on runtime
interpretation.

I/O shepherding [16] improves reliability by using file structure information to implement
checksumming and replication. Block type information is provided to the storage layer I/O shep-
herd by modifying the file system and the buffer-cache code. Our approach enables I/O shepherd-
ing without requiring these changes. Also, unlike I/O shepherding, Spiffy allows interpreting block
contents, enabling more powerful policies, such as caching the files of specific users.

A type-safe disk extends the disk interface by exposing primitives for block allocation and
pointer relationships [30], which helps enforce invariants such as preventing access to unallocated
blocks, but this interface requires extensive file-system modifications. We believe that our runtime
interpretation approach allows enforcing such type-safety invariants on existing file systems.

Serialization of structured data has been explored through interface languages such as
ASN.1 [33] and Protocol Buffers [41], which allow programmers to define their data structures
so that marshaling routines can be generated for them. However, the binary serialization format
for the structures is specified by the protocol and not under the control of the programmer. As a
result, these languages cannot be used to interpret the existing binary format of a file system.

Data description languages such as Hammer [27] and PADS [10] allow fine-grained byte-level
data formats to be specified. However, they have limited support for non-sequential processing,
and thus their parsers cannot interpret file-system I/O, where a graph traversal is required rather
than a sequential scan. Furthermore, with online interpretation, this traversal is performed on a
small part of the graph, and not on the entire data.

Nail [3] shares many goals with our work. Its grammar provides the ability to specify arbitrarily
computed fields. It also supports non-linear parsing, but its scope is limited to a single packet or
file, and so it does not support references to external objects. Our annotation language overcomes
this limitation by explicitly annotating pointers, which defines how file-system metadata reference
each other. We also provide support for address spaces, so that address values can be mapped to
user-specified physical locations on disk.

Several projects have explored C extensions for expressing additional semantic information [25,
39, 46]. CCured [25] enables type and memory safety, and the Deputy Type System [46] prevents

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

Spiffy: Enabling File-System Aware Storage Applications 16:37

out-of-bound array errors. Both projects annotate source code, perform static analysis, and add
runtime checks, but they are designed for in-memory structures.

Formal specification approaches for file systems [1, 6] require building a new file system from
scratch, while our work focuses on building tools for existing file systems. Chen et al. [6] use
logical address spaces as abstractions for writing higher-level file-system specifications. This idea
inspired our use of an address space type for specifying pointers. Another method for specifying
pointers is by defining paths that enable traversing the metadata tree to locate a metadata object,
such as finding the inode structure from an inode number [14, 18]. These approaches focus on the
correctness of file-system operations at the virtual file-system layer, whereas our goal is to specify
the physical structures of file systems.

Our concept of identity is akin to a primary key in a relational database [9, 13]. A primary key
is a special column whose value is designated to uniquely identify each row or record in the table.

In markup languages such as HTML [19] and LaTeX [20], identity is used to reference a specific
element in the document. Spiffy, in contrast, requires file-system developers to specify an expres-
sion so that all instances of a type can be uniquely identified when the expression is evaluated at
runtime.

In distributed systems, specifying identifiers correctly helps reconstruct execution flow, which
is vital for debugging and performance analysis. In order to unambiguously identify an object,
the identifers must include the entire causal chain. For example, to uniquely identify a thread, one
must specify its process identifier (pid) and the host name. Stitch [45] depends on the above princi-
ple to recreate execution flow from unmodified log statements. ÜberTrace [7] adds unique request
identifiers to events and propagates them through Facebook’s system components to allow infer-
ence of causal relationship between events. Similarly, to specify identity for file-system metadata,
we often require references to parent structures along the path of pointers leading to the object.

9 CONCLUSION

Spiffy is an annotation language for specifying the format of on-disk file-system data structures.
File-system developers annotate their data structures using Spiffy, which enables generating a
library that allows parsing and traversing file-system data structures correctly.

We have shown the generality of our approach by annotating three vastly different file systems.
The annotated file-system code serves as detailed documentation for the metadata structures and
the relationships between them. File-system aware storage applications can use the Spiffy libraries
to improve their resilience against parsing bugs, and to reduce the overall programming effort
needed for supporting file-system-specific logic in these applications. Our evaluation suggests that
applications using the generated libraries perform reasonably well. We believe our approach will
enable interesting applications that require an understanding of storage structures.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, André Brinkmann, for their valuable feed-
back. We specially thank Michael Stumm, Ding Yuan, Mike Qin, and Peter Goodman for their
insightful suggestions.

REFERENCES

[1] Sidney Amani, Leonid Ryzhyk, and Toby Murray. 2012. Towards a fully verified file system. EuroSys Doctoral Work-

shop 2012.

[2] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawa, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,

and Michael M. Swift. 2008. Analyzing the effects of disk-pointer corruption. In Proceedings of the 2008 IEEE Interna-

tional Conference on Dependable Systems and Networks With FTCS and DCC (DSN’08). IEEE, 502–511.

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

16:38 K. Sun et al.

[3] Julian Bangert and Nickolai Zeldovich. 2014. Nail: A practical tool for parsing and generating data formats. In 11th

USENIX Symposium on Operating Systems Design and Implementation (OSDI’14). 615–628.

[4] David Beazley. 2013. PLY (Python Lex-Yacc). Retrieved on June 26, 2020 from http://www.dabeaz.com/ply/.

[5] Brian Buckeye and Kevin Liston. 2006. Recovering Deleted Files in Linux. Retrieved on June 26, 2020 from http:

//citeseerx.ist.psu.edu/viewdoc/download?.

[6] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using

Crash Hoare logic for certifying the FSCQ file system. In Proceedings of the 25th Symposium on Operating Systems

Principles. ACM, 18–37.

[7] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch. 2014. The mystery machine: End-to-

end performance analysis of large-scale internet services. In Proceedings of the 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’14). USENIX Association, 217–231. https://www.usenix.org/conference/

osdi14/technical-sessions/presentation/chow.

[8] Al Danial. 2009. Cloc–count lines of code. Open Source (2009). Retrieved June 26, 2020 from http://cloc.sourceforge.

net/.

[9] Ramez Elmasri and Shamkant B. Navathe. 2011. Database Systems. Vol. 9. Pearson Education, Boston, MA.

[10] Kathleen Fisher and David Walker. 2011. The PADS project: An overview. In Proceedings of the 14th International

Conference on Database Theory. ACM, 11–17.

[11] Daniel Fryer, Kuei Sun, Rahat Mahmood, Tinghao Cheng, Shaun Benjamin, Ashvin Goel, and Angela Demke Brown.

2012. Recon: Verifying file system consistency at runtime. ACM Transactions on Storage 8, 4 (Dec. 2012), Article 15,

29 pages.

[12] Erich Gamma. 1995. Design Patterns: Elements of Reusable Object-Oriented Software. Pearson Education, India.

[13] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2000. Database System Implementation. Vol. 672. Pren-

tice Hall: Upper Saddle River, NJ.

[14] Philippa Gardner, Gian Ntzik, and Adam Wright. 2014. Local reasoning for the POSIX file system. In European Sym-

posium on Programming Languages and Systems. Springer, 169–188.

[15] Curtis Gedak. 2012. Manage Partitions with GParted How-to. Packt Publishing Ltd.

[16] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. 2007. Improving file system reliability with I/O shepherding. In Proceedings of the Symposium on

Operating Systems Principles (SOSP’07). 293–306.

[17] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2008. SQCK: A

declarative file system checker. In Proceedings of the USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI).

[18] Wim H. Hesselink and Muhammad Ikram Lali. 2009. Formalizing a hierarchical file system. Electronic Notes in Theo-

retical Computer Science 259 (2009), 67–85.

[19] Ian Hickson and David Hyatt. 2011. Html5. W3C Working Draft WD-html5-20110525, May (2011).

[20] Leslie Lamport. 1994. LATEX: A Document Preparation System: User’s Guide and Reference Manual. Addison-Wesley.

[21] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. 2015. F2FS: A new file system for flash storage.

In Proceedings of the 13th USENIX Conference on File and Storage Technologies (FAST’15). 273–286.

[22] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. 2014. A study of Linux file system

evolution. ACM Transactions on Storage (TOS) 10, 1 (2014), 3.

[23] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2013. ffsck: The fast file system

checker. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’13).

[24] Michael Mesnier, Feng Chen, Tian Luo, and Jason B. Akers. 2011. Differentiated storage services. In Proceedings of

the Symposium on Operating Systems Principles (SOSP’11). 57–70.

[25] George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured: Type-safe retrofitting of legacy code. In Pro-

ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’02). ACM,

New York, NY, 128–139. DOI:https://doi.org/10.1145/503272.503286

[26] Kent Overstreet. 2016. Linux Bcache. Retrieved on June 26, 2020 from https://bcache.evilpiepirate.org/.

[27] Meredith Patterson and Dan Hirsch. [n.d.]. Hammer Parser Generator (March 2014). Retrieved on June 26, 2020 from

https://github.com/UpstandingHackers/hammer.

[28] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-tree filesystem. ACM Transactions on Storage

9, 39 (Aug. 2013), Article, 32 pages. DOI:https://doi.org/10.1145/2501620.2501623

[29] Armin Ronacher. 2011. Jinja2 Documentation.

[30] Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok. 2006. Type-safe disks. In Proceedings of the USENIX

Symposium on Operating Systems Design and Implementation (OSDI’06). 15–28.

[31] Muthian Sivathanu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Somesh Jha. 2005. A logic of file

systems. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’05).

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

http://www.dabeaz.com/ply/
http://citeseerx.ist.psu.edu/viewdoc/download?
http://citeseerx.ist.psu.edu/viewdoc/download?
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow
http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
https://doi.org/10.1145/503272.503286
https://bcache.evilpiepirate.org/
https://github.com/UpstandingHackers/hammer
https://doi.org/10.1145/2501620.2501623

Spiffy: Enabling File-System Aware Storage Applications 16:39

[32] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E. Denehy, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2003. Semantically-smart disk systems. In Proceedings of the USENIX Conference on

File and Storage Technologies (FAST’03). 73–88.

[33] D. Steedman. 1993. Abstract Syntax Notation One (ASN. 1): The Tutorial and Reference. Technology appraisals.

[34] Ioan Stefanovici, Eno Thereska, Greg O’Shea, Bianca Schroeder, Hitesh Ballani, Thomas Karagiannis, Antony

Rowstron, and Tom Talpey. 2015. Software-defined caching: Managing caches in multi-tenant data centers. In Pro-

ceedings of the 6th ACM Symposium on Cloud Computing. ACM, 174–181.

[35] Kuei Sun, Matthew Lakier, Angela Demke Brown, and Ashvin Goel. 2018. Breaking apart the {VFS} for managing file

systems. In Proceedings of the 10th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’18).

[36] Kuei Jack Sun. 2013. Robust Consistency Checking for Modern Filesystems. Ph.D. Dissertation. University of Toronto.

[37] Microsoft TechNet. [n.d.]. How to Convert FAT Disks to NTFS. Retrieved on June 26, 2020 from https://technet.

microsoft.com/en-us/library/bb456984.aspx.

[38] Tom Warren. [n.d.]. Apple is upgrading millions of iOS devices to a new modern file system today. Retrieved March

27, 2017 from https://www.theverge.com/2017/3/27/15076244/apple-file-system-apfs-ios-10-3-features.

[39] Linus Torvalds, Josh Triplett, and Christopher Li. 2007. Sparse—A semantic parser for C. Retrieved on June 26, 2020

from http://sparse.wiki.kernel.org.

[40] Theodore Ts’o. 2017. E2fsprogs: Ext2/3/4 filesystem utilities. Retrieved on June 26, 2020 from http://e2fsprogs.

sourceforge.net/.

[41] Kenton Varda. 2008. Protocol buffers: Google’s data interchange format. Google Open Source Blog, available at least

as early as July. 2008.

[42] Andrew Wilson. 2008. The new and improved FileBench. In Proceedings of the 6th USENIX Conference on File and

Storage Technologies. https://github.com/filebench/filebench/.

[43] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. 2006. Using model checking to find serious

file system errors. ACM Transactions on Computer Systems (TOCS) 24, 4 (2006), 393–423.

[44] Michal Zalewski. 2016. American fuzzy lop. Retrieved on June 26, 2020 from http://lcamtuf.coredump.cx/afl/.

[45] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. 2016. Non-intrusive performance profiling for

entire software stacks based on the flow reconstruction principle. In Proceedings of the12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI’16). USENIX Association, 603–618. https://www.usenix.org/

conference/osdi16/technical-sessions/presentation/zhao.

[46] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren, G. Necula, and E. Brewer. 2006. SafeDrive: Safe and

recoverable extensions using language-based techniques. In Proceedings of the 7th Symposium on Operating Systems

Design and Implementation. USENIX Association, 45–60.

Received August 2019; revised January 2020; accepted March 2020

ACM Transactions on Storage, Vol. 16, No. 3, Article 16. Publication date: August 2020.

https://technet.microsoft.com/en-us/library/bb456984.aspx
https://technet.microsoft.com/en-us/library/bb456984.aspx
https://www.theverge.com/2017/3/27/15076244/apple-file-system-apfs-ios-10-3-features
http://sparse.wiki.kernel.org
http://e2fsprogs.sourceforge.net/
http://e2fsprogs.sourceforge.net/
https://github.com/filebench/filebench/
http://lcamtuf.coredump.cx/afl/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao

