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When computer systems are compromised by an attack, itfisutifto determine the precise
extent of the damage because the state changes made bycaeradtad those made by regular
users can be closely intertwined. In particular, the filéesysprovides a single namespace that,
when compromised, can have cascading effects on the eysiiens, making intrusion analysis
and recovery a difficult process.

This thesis proposes using a copy-on-write file systemedd#folation File System (IFS),
to provide a transparent, restricted privilege sandboxingronment for running untrusted
applications. The goal of IFS is to limit propagation of aksby confining each application to
its own complete namespace. If a sandboxed applicatiompisiad, a coarse-grained recovery
method allows completely removing the footprint of the w@ite. Our approach supports
existing applications by providing mechanisms for explatiaring across IFS environments.

Our evaluation shows that IFS is fairly easy to configure.
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Chapter 1

Introduction

Several research efforts in recent years have focused ¢ysenand recovery of compromised
systems [39, 25, 32]. This problem is both very real and hande a system is compromised,
it is incredibly difficult to untangle the state changes magean attacker, for instance the
replacement of system binaries, from those made by norneais s administrators. While
attempting recovery, an administrator is generally lefthvihe choice of either confidently

removing all attacker modifications or preserving all valgkr activity, but not both.

Implicit sharing that exists in modern operating systens iisajor cause of this problem.
For example, all users and processes share a single commuwspace. Compromises that
manage to make unauthorized updates to this namespacasfance by replacing the com-
monly used UNIXps command, can have cascading effects across the entirersygtéile
operating systems provide separate address spaces totbtesical memory, comparable

protection is limited for persistent state.

This implicit file-system sharing problem is exacerbatedisars increasingly download
and install software from untrusted sources on the Interblsers are faced with the choice
of either not downloading and running the application, @ythisk compromising the integrity
and the stability of the system. For instance, a downloadediarplayer application can have

serious vulnerabilities that can allow attackers to attaeticious code and infect computers
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without the user’s knowledge. Additionally, audio and addreams and downloads can be
used to hijack or corrupt computers [76].

This thesis focuses on confining untrusted applications &&parate isolation environ-
ments. Within each environment, an application is bounddmwn complete file-system
namespace, similar to process address spaces, via a cepiitetile system that we have de-
signed, called Isolation File System (IFS). The benefit ohespace isolation is that malicious
changes made by one application cannot inadvertentlytetfiecoperation of other applica-
tions. In our design, each untrusted application within i$-8in in a sandboxed environment
with restricted privileges. As a result, even if the apgdima is compromised, escaping the
sandbox is difficult and any damage that can be done to theryst limited because all-
powerful super-user capabilities are disallowed withi8.IF

IFS allows unshared persistent states to diverge freefysadsolation environments under
the presumption that file sharing across applications . rdihe challenge with such an en-
vironment is that since applications cannot share datssadhe isolation environments, they
may not work correctly. Therefore, sharing across envirem® must be supported, and IFS
provides explicit sharing mechanisms for this purpose. éi@s, the detailed description of
these mechanisms and the specific sharing policies needegppmrt IFS applications is the

focus of another thesis [36].

1.1 Research Approach

The goal of IFS is to limit the propagation of attacks by rungneach untrusted application in a
separate sandbox that confines it to its own complete filesydf-S offers a transparent view
into the base (or regular) file system for reading operatibusany modifications made by the
untrusted process or its children processes are confindtteepparate namespace. If at any
point the user decides that the software is malicious or sirelde, the entire IFS environment

can be discarded without concern for the integrity of theeldds system.
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A typical usage scenario of this system may involve runninear-to-peer (P2P) client
program within an IFS. For example, a user may download astdlira photo editing applica-
tion using the P2P client. The user knows that files on P2Par&srare sometimes modified
to include malicious components and thus installs the egtin in an IFS. This may be the
same IFS as the P2P program or a new IFS, but in both casesangeshare made to the base
file system. If the application exhibits unexpected or stispis behaviour, the user can remove

the program and its changes by discarding its IFS.

The basic IFS isolation model enhane&soot isolation with copy-on-write from the base
file system. As with any isolation environment, there is déraff involved between the secu-
rity provided by the IFS isolation environment, applicati@vel functionality and ease-of-use.
We rely on two mechanisms to resolve these concerns: sufipomestricted privileges for
running server applications, and support for explicit fiaisng policies. Running applications
with restricted privileges provides increased securitylevBupporting full application func-
tionality. Similarly explicit file sharing, although not agcure as complete isolation, allows
us to fully supporexisting applications that are based on the current access contiglnmo

Linux. Each of these mechanisms is discussed below.

There are many well-known techniques for escaping chralst j&everal precautionary
measures and rules can be followed to alleviate this problEn@ most important rule is to
disallow superuser capabilities in a jail which makes ingigantly harder to escape the jail.
Running programs with restricted privileges in IFS inlslitie spread and effectiveness of mal-
ware such as spyware, rootkits and memory-resident viths¢sttempt privileged operations
(e.q., loading kernel modules), and makes it harder to comje the isolation mechanism.
IFS restricts the privileges of root or setuid applicatitmysenhancing the capability system
available in Linux [43]. Each IFS environment can specify tapabilities that should be en-
abled in an associated policy file. For example, a web seR&renvironment would allow

opening privileged ports.

Support for file sharing policies enables rich system fumality and helps with ease of
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use. Although by default the IFS copy-on-write mechanis@ra$ reads with the base file
system and isolates all writes, write sharing policies carsjpecified in the same policy file
as the capabilities linked with an IFS environment. Thesg#, yet flexible sharing policies

allow 1) reads to be isolated (directed to a snapshot of tee bie) or denied, and 2) writes
to be denied or shared (either immediately or at a later tin@)r isolation environment is

implemented as part of the Solitude application-levelagoh and recovery system. Solitude
consists of three major components: the IFS isolation enwirent, the explicit file sharing

policies, and the taint propagation, logging and recovgstesn. IFS was briefly described
above and will be discussed in more detail later in the th&n$tude requires that any sharing
of persistent data be performed explicitly through its fharéng policies, which are supported
by IFS. Finally, the recovery component allows two optichiscoarse recovery by discarding a

complete IFS environment, or 2) fine taint-based analysisecovery derived from Taser [25].

1.2 Contributions

This thesis explores the use of separate copy-on-writedbi@isesystem namespaces for run-
ning untrusted networked applications, similar to addsgssce separation via copy-on-write
memory. Network applications pose security risks sincg #re increasingly being used to
download and install data and code from untrusted sources.eXample, audio and video
downloads are often incorrectly labelled and can containses that can corrupt comput-
ers [76]. If these files were downloaded in an isolated naamspnd used within a restricted-
privilege sandbox environment, computer systems couldtegted from extensive damage.
We implement a prototype of IFS and propose running eacharied application within
a separate IFS environment. Our implementation provideteaystem based restricted-
privilege isolation environment that is reasonably easggecify and can be used for both
client- and server-side applications. IFS enhances thex.éapability model to run each pro-

cess with the minimum set of privileges required and regdbe Linux coarse-grained file
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access capabilities with finer-grained per-file or directcapabilities. These capabilities are
specified in a policy file associated with each IFS.

IFS limits attack propagation in a system by isolating aliteg and ensures ease of con-
figuration by sharing all reads with the base. This model igiexa simple recovery solution
that consists of discarding an entire compromised IFS enmient without affecting the rest
of the system. IFS also provides mechanisms that allow@xkfile sharing to support existing
applications that may require communication across IFg@mnents.

Our detailed evaluation based on running several servéicapipns shows that capability
specifications in policy files are short, intuitive and reesay easy to specify. IFS, although
usable on its own, is most beneficial when used with Solitiahel as such, we provide a

performance evaluation of Solitude in addition to that &IF

1.3 Thesis Structure

The rest of the thesis describes the IFS in more detail. @nh2adiscusses related work in this
area. IFS is designed to be used as part of Solitude, a syst&mrovides explicit file sharing
mechanisms and recovery facilities in addition to the isomaproperties of IFS. Chapter 3
provides an overview of Solitude. Chapter 4 presents alddtdiesign of the IFS isolation
model and Chapter 5 describes its implementation. Chapgter\édes an evaluation of IFS in
terms of ease of configuration and performance. Finally,p@&has concludes the thesis and

highlights directions for future work.



Chapter 2

Related Work

In current operating systems, by default, all users sharesdme file system. For instance, in
most Unix systems, any user or application can write to tlaeesty tmp directory. This file
sharing is regulated with the help of access controls. Uafately, with a single file-system
namespace, an error in the access control configuration Hoay @n attacker to compromise
the entire system. Now consider memory in modern operatisgms. By default, memory is
not shared by different processes even when the processesnaby the same user. Memory
sharing is allowed only explicitly, for example, via shareémory. We propose a file system
model similar to the memory model, whereby files are isolatgwss applications by default

and can be shared only explicitly.

The goal of this research project is twofold: to limit theeeffs of attacks, and to sim-
plify post-intrusion analysis and recovery. Attack progton is limited through namespace
isolation using a copy-on-write file system and restrictadilpged execution of applications.
Analysis and recovery is made easier by requiring explitatrsg of persistent data. In this
chapter, we first describe related work in the area of sandgand virtualization. Then we
describe related research in access control and file systemally, we discuss work on re-

stricting privileges of applications.
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2.1 Sandboxing and Virtualization Techniques

Hypervisor-based virtualization machines (VMs), suchhassé based on full virtualization
approaches like VMWare [33, 17] and para-virtualizatiopraaches like Xen [6] and De-
nali [79], provide strong isolation guarantees. They haaenbused to protect trusted and pri-
vate data from applications as well as to protect applioatioom one another [16, 9, 74, 23].
However, itis incredibly difficult to configure sharing ingbe VM environments. For example,
a virtual machine can be used to run multiple versions of tfie@®word processor, but each
machine has a separate unsynchronized desktop that lead®tdusing and error-prone user
experience.

A second virtualization approach that trades security féciency is to use operating
system-level virtualization [67]. Linux-Vservers [45]irWiozzo [72], FreeBSD Jails [37] and
Solaris Zones in Solaris10 [54] make use of this approachs approach, while similar to
our isolation environment, is still designed primarily feolating applications run by untrusted
users and thus focuses on avoiding denial-of-servicelati@ed provides limited sharing. For
instance, in university or small corporate environmentsingle machine is often able to run
several server applications such as web server, mail sgmpst server etc. on behalf of the
same set of users. With OS virtualization, by default, ed¢hese servers would have its own
list of users and user directories.

WindowBox [5] provides virtual desktops inside Windows RGhd allows explicit sharing
of data through direct point-and-click commands or warrdijogue boxes. However, the
system is not very usable because users are expected towerdarh desktop for a particular
task and switch between the desktops as they work.

System call interposition has been used extensively fdricdag a program’s access to
the operating system [26, 1, 55, 35, 64]. These sandboxoimigues have not been widely
deployed because they are hard to configure. Janus [26Fisuttito configure because it re-
quires per system call policies for each application. MARBQ attempts to group application

behaviour into classes based on the expected functioyetitithen it applies the same system
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call policies to all applications in a single class. If an lation has not been classified, it
fails to run. Systrace [55] automatically generates pesiaiia training runs to determine the
resources used by an application under normal circumstaAdidhese approaches confine the
damage an untrusted application can cause on the systeimegyutid not isolate applications

from one another.

In Alcatraz [42], Sekar et. al. provide file system isolattbrough system call interposi-
tion in addition to restricting OS access. In their later kvon One-Way Isolation [70], they
improve the file system isolation by intercepting file opienag at the Virtual File System layer
rather than at the system call level. In both these appreacimrusted processes observe the
environment of their host system, but the effects of thesegsses are isolated from other
applications. Once the code is trusted, all changes madedanibe committed to the host
system. While these works propose using one-way isolatonefsting and debugging, we
propose to limit sharing by running applications in the ldéegn in an isolation environment.
A consequence of our approach is the need to correctly sdoeiisolation environment when
executing privileged applications and provide supportifaited file sharing. In addition, our
overall goal with Solitude is to provide a specification thdws explicit sharing, the capabil-

ity to commit selectively and perform recovery even aftedada committed.

We envision using isolation environments for differentlagggions run by the same user or
within the same administrative domain (same set of useibjtars aim to provide better sup-
port for sharing. Since our primary focus is on limiting akgropagation to simplify analysis
and recovery of persistent data, our isolation environmsas application-level virtualization.
Microsoft has recently released its Softgrid/SystemGueectinology for virtualizing applica-
tions [13]. Softgrid uses a single OS, but uses the Systemu&irdual application environment
to keep application dependencies (DLLs, registry entfads, etc.) separate from the rest of
the system, which allows streaming and running multiplesiogrs of an application such as
Office within the same OS. SystemGuard uses a copy-on-wleteyfstem but does not allow

users to explicitly share configurations or applicationthwine base. Greenborder is another



CHAPTER 2. RELATED WORK 9

application virtualization technology that provides cepy-write protection, but is tailored to
provide protection for specific applications such as welwkers [31]. In Windows Vista, Mi-
crosoft has introduced a Protected Mode for Internet Explé{50, 14]. When running in this
mode, the browser runs in a low integrity level with resetprivileges. This prevents hackers
from taking over the browser and installing new softwareldb disables write access to most
of the file system including the registry. In this mode, IEi\geg its own low integrity copy of
the cache, TEMP folder, Cookies and History, but it shareg-#wvorites with IE running in the
high integrity level. Protected mode provides predefinethison and sharing policies that are

not easily reconfigurable.

2.2 Access Control

Access control policies restrict access to a system andjests based on a set of discretionary,
role-based or mandatory policies. Discretionary policsggecified by object owners, involve
setting file permissions and ownership. They allow impliié sharing through the creation
of user groups and across independent applications runebyaiime user. Role-based policies
are common in corporate settings where system administrateate roles according to job
functions in the organization, configure permissions festhroles and then assign employees
to the roles based on their job responsibilities [18, 19, M¥ndatory policies enforce explicit
sharing and are specified by an administrator based on theipe of least privilege. For
example, SELinux [46] provides a powerful mandatory acoesdrol model, but it is com-
monly acknowledged that designing SELinux policies is a glicated process [34]. Similar
to SELinux, the RSBAC framework [52] and the Medusa DS9 sgcaystem [48] also pro-
vide flexible mandatory policies allowing system admiragirs to enforce any security model.
These systems, like SELinux, are also complex to configure.

Domain and Type Enforcement (DTE) is also designed to peowidndatory access control

to protect a system from subverted super-user processged,[2978]. DTE systems partition
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processes into access control domains, and read policiEoatime that define how to enter
each domain, transfer between domains and what informatich domain can access. Once
again this allows enforcement of strong security polic@sriformation protection, but at the

cost of configuration complexity.

Access control lists, or ACLs, are also a common mechanised ts restrict access to a
system. ACLs can be either discretionary or mandatory déipgron whether they are deter-
mined by a user for protection of her own data or by a systemiradirator to be enforced
system-wide. Patches implementing discretionary ACLstlier Linux kernel provide more
fine-grained control over sharing compared to the defabit ®AC permissions [27]. A user
can associate an ACL with each object that defines exactly geticular users and groups
can access the object. The Multics operating system alsséacon providing improved se-
curity by disallowing access to files by default and definihgecess through ACLs [60]. The
Windows operating system uses ACLs as its main access tomdchanism and has tried to

improve its model over the years [71].

Mandatory ACLs define how each program, rather than user,systeam can access files.
LIDS [82] associates an ACL, implemented at the VFS layett wach file or directory speci-
fying default accessibility and allowing exceptions tcstdefault for particular executables. It
also implements capability ACLs discussed in Section 2idil&rly, PACL [80] keeps ACLs
for each file containing a list of programs that can accedsaiter approaches associate ACLs
with programs, rather than with files, to define the list ofsfiteat a program can access. Sev-
eral of the systems discussed in sandboxing above use thieagh along with system call
interposition to restrict access to the system and its tbj@6, 1, 55, 63, 15, 7]. Janus [26],
MAPBox [1] and Systrace [55] all use policies (equivalenAoLs) to determine if each sys-
tem call succeeds or fails. SubDomain [15] and TRON [7] ontgiicept file system calls and
theexecve call to control file access including whether a file can be etext. In his work on
execution controls, Gamble [22] takes access controlflistser and uses them to define a user

and program combination that can access a particular file nfdn problem with ACLs is that
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the approach does not scale as the number of users, files @agédmrs on a system increases
because a list must be created for each file, listing all teestsnd programs that can access it,
or for each program, listing all the files it can access.

The UMIP model, similar to Solitude, aims to preserve sysietegrity in the face of
network-based attacks [41]. This model leverages infaomatvailable in existing discre-
tionary access control (DAC) policies to derive file labals inandatory integrity protection.
The basic UMIP policy partitions processes into low and higbgrity. When a process per-
forms an operation that potentially contaminates it, suchia reading from a network socket
or communicating with another low integrity process, itgsadntegrity and cannot perform
sensitive operations. The basic UMIP policy is enhancel wapability exceptions to support
server applications. Our capability model was developedteoently and has many similari-
ties with UMIP capabilities. The primary difference is tiabur default copy-on-write policy,
reads are shared with the base file system and not deniedeand bur policy files are easier
to specify because they typically do not need exceptionsgfading files. More importantly,
UMIP does not provide isolation to client-side applicaoun by thesame user because it uses
DAC policies to configure its policies. Since UMIP is an ascesntrol mechanism, it shares
the limitation with SELinux that the policies must be cothgspecified when files are updated.
In contrast, our copy-on-write approach allows files to bleatin low and high integrity states.

We provide a simpler, but more coarse-grained isolationehasl compared to the access
control approaches discussed above, in which policies riameagly needed for file sharing.
However, more importantly, the above access control agpesarequire correct policies at

updates, while with our copy-on-write policy, errors carhiaedled until a later time.

2.3 Capability Systems and Restricted Privilege Systems

The main goal of using restricted privileges or capabdiiie a system is to enforce the prin-

ciple of least privilege and provide better security guteas. Several approaches have been
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proposed over the years. This section discusses some efdpgsoaches starting with clas-
sical capability systems, followed by limited authority WiindowsNT, and then describing
systems based on the POSIX capability model that we use irHiIR&Ily, privilege separation

is discussed as another approach for enforcing the leasliege principle.

Traditionally, a capability is just a token used by a prodesprove that it is allowed to
perform an operation on an object. For instance, a file daseris a capability allowing
either read, write, or both read and write on a file. In cladstapability systems, a process
carried with itself a set of access rights to particular otgeFor example, in the EROS micro-
kernel [66], each process has capabilities and can onlpperbperations that are authorized
by its capabilities. Some of the systems discussed in Sec#id and 2.2 also provide a form of
capabilities. For example, the system call interpositistems [26, 1, 55] restrict the success

of a program’s system calls according to a policy linked ®phogram.

WindowsNT uses restricted contexts by creating a limitegioa of a user that can access
only a subset of objects, and running programs as this ud¢r [However, it has been shown
that most Windows users run with administrator privilegikshee time and this increases the

vulnerability of the system [10].

The POSIX capability model was incorporated in the Linuxnerin version 2.2. It di-
vides traditional superuser privileges into 30 capakdgitthat a process can independently
enable or disable [43]. Several systems, including ourkemse of these POSIX capabili-
ties [37, 82, 45]. FreeBSD Jails [37] limit the privilegesaif processes running within the
jail by reducing the capabilities to a default set. Linuxe¥Ager [45], in addition to limiting the
capabilities within each context, extends the model to jdfine-grained capabilities. For ex-
ample, it divides theap_sys_admin capability needed to mount, unmount, set hostname etc.,
into separate capabilities for each functionality. LID@][8ses ACLs to limit the capabilities
granted to a program. It also extends the default POSIX maa@&implements a fine-grained
cap_net_bind service to ensure that an application can only bind to a particulat, pather

than any port less than 1024. SELinux [46] provides secymiticies to control the use of
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Linux capabilities and also allows extensions to the cumeodel, such as granting privileges
based on the subject attributes and object attributes.cHmde used, for example, to provide
dac_override to a process for a particular set of files instead of the desystem-wide over-

ride. IFS also uses Linux capabilities to run programs vetst privileges. It ensures that even
applications running as root have only the capabilitieyg tieed. We also provide fine-grained

dac_override through our file capabilities described in Section 4.3.

Unfortunately, today server applications still mostly exte as the root user rather than
use these process capabilities. In the future, the Linuretewill introduce file capabilities
to make POSIX capabilities more usable [28]. With file cajiadss, a process will not have
to enable or disable capabilities. Instead they can be rasg3itp executable files, similar to
setting permissions on files such as the setuid bit. Any threeskecutable runs, it will execute
with the capabilities assigned to it. Note that these fileabdjies, expected to make the
mainline kernel by version 2.6.24, are different from owr tihpabilities, which we discuss in
Section 4.3. IFS file capabilities override per-file or dicgg permissions in the base system.
The IFS isolation environment makes use of process capebitd provide, effectively, what

Linux POSIX file capabilities will allow in the future.

Privilege separation was proposed by Provos et. al. [S6gtluee the amount of code
that runs with special privileges and thus limit the scop@migramming bugs to a smaller
and more easily secured trust base. They demonstratechtbatproach prevents security
vulnerabilities by separating the OpenSSH code into @ied and non-privileged code. Priv-
man [38] provides privilege separation through a libramgttbupplies C functions for many
operations that traditionally need privileges. In additio using this library, developers must
write a configuration file expressing the security policyvPans [8] attempts to automatically
separate code into privileged and non-privileged prograased on annotations in the source
code. Proxos [74] separates code such that system calladbass sensitive resources are
executed on a private VM and all other system calls executa commodity OS VM. The

separation is based on rules set by the developer. Theseaapyes do not work with existing
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code, and they present a security approach orthogonal teestiicted privilege sandbox.

2.4 File Systems

Many file systems [61, 53, 49, 20, 51] have been developedré&atiog snapshots for ver-
sioning and recovery. Others [68, 57, 11] use check-pajrtinprovide backups for rollback
and recovery. UnionFS [81] virtually merges the view of éi#int directories such that they
appear to be one tree. It can be used for snapshotting aneorepyite by marking directories
as read-only. Then modifications are carried out in a sepaliegctory, which is unified with
the original read-only directory. Self-securing stora§®][audits operations and keeps ver-
sions for some time for intrusion detection and recoverySKR¥] also provides comprehen-
sive versioning along with dependency logging and deperydanalysis for recovery. These
file systems typically implement versioning and/or checkafing at the block level which is
simpler to implement and provides good performance. How&a@itude’s goal is to enable
limited sharing at the file-system level, which requires ensthnding the logical structure of
a file system. Hence IFS uses copy-on-write at the file-syséeal. This method also fits
well with Solitude’s taint propagation and recovery moddhich is performed at the level of
files and directories. User-level file systems developethénpiast include Wayback [12] for
versioning and Ufo [2] for providing a file system that treggmote files as if they were local.
Ufo uses system call interposition and Wayback uses FUSE® IFS implementation also
uses FUSE, and we describe it in Section 5.1.

Transactional file systems, for example QuickSilver [3Q,&® Vista’s TxF (transactional
file system) [77], allow file system operations to be handike fransactions so that all the
changes within a transaction are committed to disk atofyieald the intermediate states of
a transaction are not visible to other applications or @atiens within the same application.
Both file systems require changes to applications to usenadcéional interface to start, abort

or commit a transaction, and they use a pessimistic lockiaghanism for ensuring consis-
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tency. Quicksilver holds read locks on files until the filelissed and write locks until the end
of a transaction. Directories are locked when they are nmeatifor example when a directory
is renamed, created or deleted. TxF’s locking mechanisrsds\aery similar to QuickSilver.
However, a file can be read and written in two different tratisas concurrently. In this case,
the reads do no see the modifications made by the other tteorsato provide this isolation,
TXF intercepts all file system operations and captures tite siff the file or directory before
carrying out the operation. These file snapshots are alsbfoseollback when a transaction
fails or is aborted.

In contrast to QuickSilver and TxF, our IFS environment supg existing applications
without requiring any changes to these applications. Ivigkes transactional semantics at the
IFS granularity and hence transactions can exist for lomgpge of time. To ensure availabil-
ity in the face of long-running transactions, IFS uses amaptic concurrency control method
that allows the different IFS environments to concurreattgess and modify files. IFS trans-
actions can either be rolled back by discarding the enti&dfRvironment or IFS allows using

resolution policies when conflicts occur during a commit, [88, 75].



Chapter 3

An Overview of the Solitude System

Solitude provides a copy-on-write, file-system based saxdimvironment for running un-
trusted applications, and it uses an explicit file sharingimaism that limits attack prop-
agation without compromising system functionality. ThditBde architecture is shown in
Figure 3.1. It consists of three main components, the IF&tism environment, the sharing

policies, and the taint propagation, logging and recovgstesn. We describe these compo-

nents below.

3.1 IFS Isolation Environment

Solitude allows running an untrusted application in anasoh environment called IFS that

provides the application with a transparent view of the bésesystem, but restricts any file-

Isglation Environments
¥

IFS1 || IFS2 || IFS3 Recovery
Sharing il
policies —L _U I Analysis
Base File System i
Taint Propagation
Logging System ——> Backend System

Figure 3.1: The Solitude architecture
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system changes with a copy-on-write policy. In other wouds,application running inside
an IFS has the illusion that it is running inside the base ffiesn, but in reality, the base
file system is oblivious to its existence unless the user baBgured explicit sharing policies
that allow synchronizing the base file system with the IFS.afaplication running in an IFS
executes with restricted privileges. This makes it diffitalescape the isolation environment
and also limits the adverse effects a malicious applicateonhave on the system if it escapes

the sandbox. The following chapters of this thesis des¢hbdFS in more detail.

3.2 Sharing Policies

Solitude isolates the persistent changes made by applisaby using copy-on-write as its
basic isolation model, but it allows refining this model wakblicies that enable explicit sharing
of specific files and directories between an IFS and the bateray At the time of its creation,
each IFS can be associated with a policy file, stored outbigléRS in the base system, that
specifies the file sharing policies. The intended authorhede policy files are application
creators and system administrators although the policguage is simple and policies are
easy to write. For untrusted applications, it may be safeoltain policy files from user
communities or to use the default policy.

The sharing policy language is designed for simplicity amditiveness. It specifies three
possible sharing modes for reading and three modes fomgriéilthough a few combinations
are not meaningful. These modes are shown in Table 3.1. &ktlaring modes apply to a file

or directory and are subject to the access control restristof the base.

3.3 Taint Propagation and Recovery

The sharing policies described above enable collaborégtween applications running in an

IFS and base, or between different IFS contexts. Without sharing, an increasing number of
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Read/Write Mode Description
Rshare (default) Applications read from the base until they make an update
Rsnapshot IFS makes a snapshot of the base immediately at startup
Rdeny Hide the base file or directory from the IFS
Wdeny (default) Confine all writes to the IFS permanently
Wcommit Confine changes to the IFS, but allow delayed sharing witlh#se
Wshare Immediately share writes from the IFS with the base

Table 3.1: IFS sharing modes

applications would be run in the same isolation environpeedating the benefits of isolating
the applications. However, the sharing policies could berlgalesigned, potentially leading
to contamination of the base file system either via commit wtevgharing of malicious data
or applications. Solitude addresses this issue by tradkavg other applications access files
that are committed or write shared and then using a taintggafion method to log their
resulting actions. If untrusted files reach the base, Stdittses a modified version of the Taser

system [25] that helps with analysis and fine-grained regovtthe base system.

3.4 Usage Model

Based on the notion that intrusions start with a network ection and then cascade into
multiple system activities such as file accesses and owgmnnections, we envision that
Solitude will be useful for various networked applicatio@n the client-side consider instant
messaging applications to communicate and share data. HEnmg policies can be used to
offer the user the option to preserve, say the chat logsMBa writes to a certain directory in

the base. Similarly, with a mail client, the local mail ditety and the mail-client configuration

files could be explicitly shared with the base system while @her persistent data would be

unshared.
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On the server side, consider a web site that provides amerphoto album service. The
web server can be run in an IFS environment while configurimy the users’ photo data to
be shared with the base system. In this way, the persistéatluat is important to users can
be shared with the base system, such as for archival or firelsdaut any updates made by
the web server are unshared and cannot affect the rest ofttheven if the web server is

compromised.



Chapter 4

Isolation File System

The main goal of the IFS isolation environment is to limit #ffects of attacks and simplify the
post-intrusion recovery process by supporting explicitrgty of persistent data. It is specifi-
cally targeted for client-side applications run by the sarser and for server-side applications

running within the same administrative domain.

The IFS isolation environment allows running multiple apglions within an isolation en-
vironment. For example, a user can download a file using atpegeer application and save
it to a standard location. The user can then run a viewer egijin within the same session
or mark the standard download location as explicitly shamed use the viewer in the base or
separate IFS environment. All other updates by the pepeé&r-application remain unshared
and could be easily discarded after session terminatione M@t isolation environments are
persistent in the sense that the IFS state is preservedsanrdsiple invocations of the appli-

cation.

Administrators can also choose to use IFS environmentsftaio low-privilege users. For
example, IFS can be used to isolate directories that aredlzaross users such as the Unix
/tmp directory that has been the source of several exploits,@adgure that anonymous FTP

users cannot affect the base file system.

An isolation environment’s design space involves makiadéroffs between security, application-

20
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level functionality and ease-of-configuration and use. désign of our isolation model was
motivated by our objective to support better sharing andiegmon-level functionality than
either hypervisor or system-level virtualization, andieasonfiguration than a Unix chroot
and BSD jail sandbox.

At a high-level, our IFS isolation model consists of runnegplications with restricted
privileges in a chroot copy-on-write file system. This agmio isolates file modifications and
simplifies chroot configuration by sharing reads with theebsgstem. This chapter will de-
scribe the copy-on-write file system (Section 4.1), chrgotation (Section 4.2), and our ca-
pability model (Section 4.3). Section 4.4 explains thedtre of the policy files that, among
other things, specify the capabilities. Finally, a shoscdission on limiting IPC mechanisms

is also provided in Section 4.5.

4.1 Copy-on-Write File System

The copy-on-write file system gives an application runningide an IFS environment the
impression that it is running in the base. The applicatianread files in the base, subject to
the discretionary access controls of the underlying opeyatystem. By default, all changes
are redirected to the IFS layer. However, in the presencefoit sharing policies, reads

and writes are directed by the copy-on-write file system &appropriate layer, base or IFS,
depending on the specification.

There are several reasons that motivated a copy-on-wsgkiaolation environment. First,
the basic file-system recovery method for unshared pensidéta is simple: if at any point the
user decides that the software may be malicious, they caardishe entire IFS environment
without concern for the integrity of the base file system.d®el; preventing implicit sharing of
file updates limits attack propagation that occurs as atregpkrsistent changes in the system
and hence reduces the effort involved in overall post-gitma analysis and recovery. Third,

the explicit sharing mechanism is based on the hypotheatswhte sharing of files across
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applications is rare [36]. Finally, copy-on-write enablead sharing between the base and the
IFS, and we do not require explicit read sharing because @petations are far more common
and thus configuring them correctly would be challenging.

With copy-on-write isolation, any malware that attemptstmceal its presence by dis-
abling security software or by installing rootkits will fdbecause the isolation mechanism
safeguards the integrity of programs in the base systemeXample, cryptoviral extortion,
a kind of denial of resources attack, does not pose a problgmoepy-on-write. A cryp-
tovirus encrypts critical data on a machine making it inasdde. The victim is compelled to
make ransom payments to the virus author in exchange foruhkcgkey needed to decrypt
the data [83]. Copy-on-write ensures the original data isaverwritten and the public key
is never needed. Copy-on-write can also help with malwateatien: changes made to files
and directories inside an IFS are quickly spotted when a esamines the list of changed
files within an IFS. Finally, copy-on-write isolation carsalhelp stop the spread of worms
and viruses that propagate across mounted file systems tmorkeshares because IFS makes
local copies of these files.

Our file system is mounted in a Linwhroot environment to further reinforce application
isolation. The copy-on-write file system makes the configansof our chroot jail much easier.
With shared reads, we do not require the libraries and prnofiaaries needed by applications
to be copied into the chroot environment. Our chroot isoflais explained further in the

following section.

4.2 Chroot Isolation Model

The chroot sandbox ensures that application reads andswddenot by-pass our copy-on-
write file system and affect the base system. To strengtheisthation mechanism, we have
incorporated the Vserver secure chroot barrier [65] in [H8s barrier uses a special flag on the

parent directory of the isolation environment to prevembolhescape (and allow nested chroot
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jails). However, even with this mechanism, techniques $oaping chroot jails are known and
have led to best practices for using them [21]. The most itabof these rules is to disallow
all-powerful root privileges in a jail, which makes it siioantly harder to escape the jail.
Unfortunately, this method limits functionality by disalling setuid programs and server-side
applications that, for example, may require access tolpged ports. Setuid programs are
appealing targets for isolation. They are frequent targé@ttacks because they provide a
direct path to complete control over the system. Sendmail tigpical example of a setuid
application - it uses its root powers to temporarily impeese other users to deliver mail to

their inboxes. Our capability model allows us to overcomelimitation and is described next.

4.3 Capability Model

In order to avoid using all-powerful superuser privileggst support setuid applications and
server applications in IFS, we restrict the privileges aftioy enhancing the capability system
available in Linux [43]. Each IFS environment can specifgaailities that are then enabled in
the environment. For example, a web server IFS environmeuntdiallow opening privileged
ports. We chose Linux capabilities because they are relgteasy to specify. However, they
are coarse grained, and in particular, file related capegsi@pply to the entire file system. For
instance, a program running with thep_dac_override capability can overridall file access
restrictions. Instead of allowing such powerful capaieisit IFS provides per-file or directory
capabilities. This approach may seem cumbersome, but sultseshow that in practice most
systems configure the discretionary file-access controhigsions “almost” correctly, that is,
only a few permissions are incorrect. Hence privilegediappbns typically require few per-
file capabilities and can be run correctly without full rosivileges. For example, consider
again the web server such as Apache2 running with resticteiteges in an IFS environment.
The application does not run as the root user and is only dgivercapability to bind to a

privileged port. As a result it does not have permission toeas some files that are root
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Capability Parameters
Fcap FilePath [owner.group] [perm]
CAP [ExecPath] CAP_SET

Table 4.1: IFS capability model

owned, such as the error log and access log. Therefore, tthawgven per-file capabilities for

these files as shown in Figure 4.1.

Table 4.1 shows the specification of the IFS capability mo@eese capabilities are spec-
ified for each IFS environment in a policy file described int®ec4.4. TheFcap file capa-
bilities apply to all programs run within an IFS, and alloweonding the file ownership or
permissions on the file (or directory) specified bylePath. Discretionary access controls
associate particular permissions with particular userthersystem, and thiecap capabilities
allow either changing the owner permissions or group pesions directly, or associating the
permissions with a new owner. With these two option&adp, we provide a fine-grained
cap_dac_override capability in order to support application functionalifijhe CAP capabil-
ity applies only to the executable specified EsecPath, that is, it is per-program. When
ExecPath is not specified, it applies to the top-level application.isTtapability is enforced
when an application starts executing, e.g., on a Umixcve system call, and the CABET
parameter is a list of capabilities provided to the appiatIFS restricts certain capabilities
such as create or remove mount points and accesses to raxgslghiat may allow applications

to escape its isolation environment.

When an application running within an IFS starts a new appibo by executing the
execve system call, theAP capability of the new application ixactly the set specified by
CAP_SET, and as a result, capabilities are not inherited and sepptications have no addi-
tional privileges in IFS. When @AP capability is specified for an application, IFS disallows
theFcap capability for theFilePath associated with the application. This is to ensure that a

vulnerable IFS application is not hijacked into executirgigileged application that has been
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Application /usr/sbin/apache2 www-data.www-data
Fcap /var/run/apache2.pid www-data.www-data

Fcap /var/log/apache2/error.log www-data.www-data
Fcap /var/log/apache2/access.log www-data.www-data
CAP net_bind_service

Wcommit /var/log/apache2/error.log

Wcommit /var/log/apache2/access.log

Figure 4.1: Example policy for Apache2 web server

modified. Similarly, IFS ensures that files that have beemetbipto the IFS via copy-on-write
do not run with any IFS capabilities. Furthermore, each baipais specified for a given IFS
and is not system wide.

We always ensure that applications in the IFS environmeatue with privileges more
restricted than if the same applications were run in the bageonment. For example, ifan IFS
environment is started by a regular user, then the envirobhm#l have no capabilities. This
is not a limitation, since client-side applications geligrdo not require any IFS capabilities.

Section 5.3 describes how our implementation enforce®tbasabilities.

4.4  Structure of Policy Files

Each IFS environment can have a policy file associated wifhiis file is saved outside IFS in
the base system and can specify 1) the principal the applicsihould run as inside IFS, 2) the
capabilities described in the previous section, and 3) &I8obtude’s explicit sharing policies
shown in Table 3.1.

Figure 4.1 shows an example policy file for the Apache2 webeseApache is run as the
www-data user in an IFS environment and the ownership of files withFibwp capability is
set towww-data in the IFS (not in the base) environment. This capabilityetbgr with the

net_bind service capability for accessing a privileged port allows runninggghe in an IFS
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environment with no other additional privileges. The eadilon chapter shows examples of
policy files that use thBxecPath argument.

The intended authors of policy files are application cressémd system administrators. For
untrusted applications, it may be safer to obtain policysfflem user communities or to use
the default policy. Section 6.1 shows that, for our targeggolications, it is easy to specify the

capabilities in a policy file.

4.5 |PC Discussion

In addition to file sharing, inter-process communicatiorchanisms also allow implicit shar-
ing between applications. Our IFS environment must preapptications from leaking infor-
mation into the base system via inter-process communitatith base processes. Common
IPC mechanisms in Unix systems include 1) FIFO, 2) Unix densaickets, 3) shared memory
and 4) local INET (TCP, UDP) sockets. The first three mechmasisave unnamed and named
counterparts. The unnamed mechanisms only work for refategkams in a process hierarchy
and are, therefore, allowed within an IFS but disalloweds€iFS and base by default.

Our approach towards the remaining IPC mechanisms is basind ®PC study performed
on our cluster server and on my personal desktop machineTB@]experiment has shown that
common applications do not typically use named shared mggwnmunication, and a very
small set of applications use named FIFO and Unix domaineteckn Linux, named FIFO
and Unix domain sockets are represented by special files|F3ucopy-on-write file system
ensures that FIFO and Unix sockets can only be used for comsation within the same IFS.
We disabled these IPC mechanisms across IFS and base am@miffFS environments to
avoid implicit sharing.

For local INET sockets, the study showed no UDP based conuation and just a small
number of local TCP connections, for example for the X-sempent server and ssh-server.

The X- and ssh server provide basic services (desktop andteemecess) and would need to
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be shared with many different IFS environments. Hence, Wayld be run in the base. These
results are promising because they indicate that it isté&sd disable IPC mechanisms and,

if needed, incorporate explicit specifications.



Chapter 5

Implementation of IFS Isolation

Environment

The IFS isolation environment consists of the copy-onenfiie system, chroot isolation model,
and capability model explained in the previous chapter.fohewing sections describe the im-
plementation of these components. We have also implemerttsal to help determine the set
of capabilities that are needed by an application and muspbeified in the policy file. We

describe this tool in Section 5.4.

5.1 Implementation of Copy-on-Write File System

The basic isolation mechanism in IFS is a copy-on-write filstem. For ease of implemen-
tation, we have developed a user-level prototype of thisfigem using FUSE [73] (version
2.6.0) running on the Linux kernel (version 2.6.15). FUSERite system in User SpackE) in-
tercepts operations at the virtual file system (VFS) layethabapplications do not have to be
modified to work with FUSE file systems. For each interceptaeration, FUSE makes calls to
wrapper functions in a user-level process that performglalsystem operations on behalf of

the applications running in each IFS environment. This @sscwhich we call the IFS monitor
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process, implements our copy-on-write file system by apjetgly redirecting operations to
the base or IFS layer. This implementation runs on the Liwea file system but is mostly

independent of the base file system .

IFS implements copy-on-write at the file-system level asashn Figure 5.1. The im-
plementation for files is straight-forward — files are copfienn the base to the IFS whenever
file data or attributes are modified. An IFS directory is anrtayethat only contains files or
sub-directories in IFS. It is created when 1) a base file orditdrtory within the directory is
modified, or 2) an IFS file or sub-directory within the diregtoeeds to be created. For exam-
ple, when a base file is modified or a file is created, IFS direat@re created for all ancestor
directories of the file. In our default configuration, the éd&syer is the root/) directory and

the IFS overlay is in a special directorf_(ifs) but this configuration can be easily modified.

The wrapper functions in the IFS monitor process operate [68 fe system calls. Each
wrapper function starts by looking up the path argument enddll, with the exception of the
read and write functions that operate on file descriptorseakh level of the path, the lookup
checks for the file (or directory) in the IFS overlay and théthe file or directory is not found
there, in the base system. If the file is found in the IFS or Wiit not be modified by the
operation, the monitor process executes the system célér®ise, the file is copied to the IFS

overlay before executing the system call.

An application running inside the IFS isolation environmsees a combined view of the
base and IFS. This is implemented in the wrapper functionhfetreaddir library call. The
IFS function returns all the directory entries from the IR&iday and only those entries from

the base that have not been copied to IFS.

The implementation must handle three main issues. Firsteatezdelete ambiguity is
introduced when a file that was copied from base is removeé#$ We must ensure that
future system calls do not access the file in the base systémeasopy it. Our implementation
ensures correct copy-on-write operation by creating antgmero-permission file of the same

name that has the sticky bit set. We can safely use this kiegins ignored by the Linux
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kernel. As a consequence, when a new file is created with the samegpathas a removed
file (that was copied from base), the implementation remtvedummy file before attempting
to create the new one. We could have also use@dhevedInodeDB, described below, which

contains the inode and generation numbers of files copied fr@ base and removed in IFS.

However, we avoid a database lookup for efficiency purpases use the sticky bit instead.

Second, Solitude supports a sharing policy catleimit sharing that allows a file in the
IFS overlay to be committed to the base file system. This cammay cause file conflicts when
a base file and the corresponding IFS file are modified conutlyrelo detect such conflicts,
the implementation uses a database tahledeDB, to record the time when afile is first created
in IFS along with a one-to-one mapping of the base inode andrgéion number to IFS inode
and generation number of the file. The inode and generatiatbeu uniquely identify files
in a Unix file system, and thuknodeDB helps correlate a file in the base to the corresponding
file in IFS during commit. The time-stamp is used to detectddatent conflicts, which occur
when this time is earlier than the base file modification tifiis same information is also
stored in aRemovedInodeDB table, but for files that have been removed in IFS after being
copied from the base. When a file is removed from the IFS oygtkarecord is moved from
InodeDB to RemovedInodeDB. This information is used during commit to detect if a file is
modified in the base but deleted in the IFS (i.e., a removexigpdonflict). Note that when
an IFS application removes a base file, then the file has not lr@¥iously copied to the IFS
layer, and the creation time storedRamovedInodeDB is the time of deletion. It is possible
to combine the two tables and use a single bit to indicatesgiffile exists or is removed, but
we keep two separate tables becalsedeDB is needed for hardlinks, as explained below,
while RemovedInodeDB is not needed, and hence we wanted to keep two independészd.tab
When files or directories are removed in the base, the tabledecome inconsistent. These
consistency issues are handled at the time of commit. Alsnatfile is committed, Solitude’s

commit process updates the tables to remove records of fitese

10n old Unix system, the sticky bit caused executable filestbdarded in swap space [44].
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Finally, hardlinks in Unix file systems, which allow a sindle to have more than one
name, create several complications. For example, if a fiteodified and copied over to the IFS
layer, all future operations to this file must be directedhtfile in IFS, even if the pathname
is different. The implementation uses two mapping tablesérdlinks. ThelnodeDB table,
discussed above, stores the mapping from base inode (aedagjen number) of a file to the
corresponding IFS inode (and generation number). A secatabdse tabl®arentDB, stores
the mapping from IFS inode to the file name and the IFS inodis plarent. This latter database
can have a one-to-many mapping when an IFS inode has mulaphes. These two databases
allow mapping a pathname in the base to a pathname in the S miapping starts by using
the base inode to lookup the corresponding IFS inode fianieDB, and then performs a
reverse lookup usingarentDB to build the required pathname. Table 5.1 shows a summary
of the three databases and how they are used by the IFS immigioa. The databases are

implemented using Berkeley DBA4.

It is difficult to mimic the exact behaviour of the base file teys in the presence of
hardlinks. It requires an appreciable amount of bookkegepimd introduces significant com-
plexity in the code. For example, a shortcoming of our impatation is that we do not track
link counts of files. In the base, when a file with several lilksemoved, the link count is
reduced and the pathname is deleted but the file inode andrdememain until the link count
is zero. In the IFS implementation, we diverge from the eigebbehaviour only when a file
has more than one link in the base, but only one link has bepieddo IFS. In this case, if
the file in IFS is deleted, we remove the file contents too. Ndwmanother pathname of this
file, which has not been copied to the overlay, is accessedl) ive copied from the base and
will not have the changes that were made to the first file. Aiptessolution is to track link
counts of a file in base. If the link count in the IFS reache® zekut not in the base, the file
should not be deleted. To work correctly, this method rexguiracking link counts in the base
of every file copied to IFS, garbage collecting files that aptkaround due to hardlinks still

present in the base, and performing additional checks glowkup. Despite this shortcoming
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Database Name

Database Columns

Commit Sharing

Hardlinks

InodeDB

base inode, base

Base inode, base

Base inode, base

(one-to-many

mapping)

filename, IFS

parent inode

(one-to-one generation—IFS generation, IFS generation,
mapping) inode, IFS inode and IFS IFS inode and
generation, time generation for IFS generation
of copy mapping base file for mapping one
to IFS file. Time | pathname in base
of copy to detect to a corresponding
conflicts. pathname in IFS.
RemovedInodeDB base inode, base Base inode, base N/A
(one-to-one generation—IFS generation, IFS
mapping) inode, IFS inode and IFS
generation, time generation for
of copy mapping base file
to IFS file. Time
of copy to detect
conflicts.
ParentDB IFS inode—IFS N/A IFS inode, IFS

file name and IFS
parent inode to
form a full path

by reverse lookup.

Table 5.1: Summary of IFS databases
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in our implementation, all the applications we tested waske&pected. As a result, in the
future we plan to analyze the necessity and benefits of megitompared to the complexity

and overhead they introduce in systems.

5.2 Implementation of Chroot Isolation Model

Our isolation model consists of the copy-on-write file sgsteinforced with a Linux chroot
jail. We set up an IFS isolation environment by creating a mi@oint in the base file system,
as required by the FUSE implementation to mount the copywote file system. By default,
we create this mount point in thiemp directory. Then we start the target application(s) within
a hardened chroot jail [65]. Setting up the hardened jaissts of performing a regular chroot
system call on the mount point directory, followed byiarrtl system call to set the special
chroot barrier flag on this directory. This has been implei®@ion the Linuxext3 file system

and should be trivial to port to most Unix file systems.

By default, the top-level IFS application assumes the IDhefdiser invoking the IFS en-
vironment. However, if a user is specified in the policy fileg(esee the first line of the Web
server policy file shown in Figure 6.1), this user ID is usetiyohthe invoker is either root
or the same as the specified user and the file is owned by ugeanmdmot writable by others.
Similarly, applications can only acquire the capabilis&é®wn in Table 4.1 if the correspond-
ing policy file is root owned and non-world writable. This neakit difficult for normal system
users to tamper with policy files and damage our isolatioreninent. For example, if a user
can easily modify a policy, she can cause the Apache2 welrservun with her own user ID.
Consequently, when a system administrator attempts tbte&server it would not be able to

bind to port 80 and would fail to run.
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5.3 Implementation of Capability Model

The capabilities in Table 4.1 are implemented using two weth theFcap capability is en-
forced by the IFS monitor process, while the per-applicatiaP capability is implemented
by modifying Forensix [24], a kernel-level system-callardeption facility. However, the IFS
monitor process must also deal with cert@ikP capabilities because it executes file system
calls on behalf of the application running in the IFS and megdchsome file related capabilities
to execute the calls successfully. This section first deesrthe implementation of th&ap
capability and then theAP capability.

The Fcap capability applies to all programs running inside an IFS angt be enforced
before the execution of any program. Therefore, this cdipals implemented by the IFS
monitor process during the initialization of the IFS enwimeent. Since the IFS monitor pro-
cess is setuid root, it has all powerful root privileges attstip. Most importantly, it has the
dac_override capability that allows the IFS monitor process to copy the ihths specified
with Fcap capabilities to the IFS layer and change the ownership anigsions according to
the policy file.

After handling theFcap capability, the IFS monitor process drops all its privilegmless
certain selectedAP capabilities are specified in the policy file associated withIFS. Since
the IFS monitor process acts on behalf of applications ngim the isolation environment,
as described in Section 5.1, it may require some capabiliiat are given to programs in
the IFS. These include thestuid, setgid, chown, andmknod capabilities. For example, an
application that needs theap_setuid and cap_setgid changes the id with which it runs.
For the monitor process to accurately execute file systeta aalbehalf of this application,
it needs to change its id to match that of the calling procdsditionally, in this case, the
monitor process needs thieown capability to set the ownership of files and directoriesmiyiri
copy-on-write to ensure that the application is subjechtodame access control permissions
in IFS as if it was running in the base, even when it changad.itSimilarly, if an application

requires thehown capability, such as the FTP server, with the policy shownigufe 6.5, the
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monitor process must also have the capability to executeiitsen on behalf of the application.
The CAP capability is implemented in the kernel for two reasonsstrithe default Linux
kernel build does not allow one user-level process to set#pabilities of another process
for security reasons. Second, the available versions ofithex kernel clear all capabilities
across thexecve system call and theAP capability is per executable. Therefore, to support
current applications without modification, our implemeiaia must enforce theAP capability
in the kernel. The capability is passed to the kernel at Ié&-sip and stored in a per-IFS
kernel data structure consisting of the application patfis@rresponding Linux capabilities.
During theexecve system call, the path parameter is compared to the stordidaign paths.
If a match is found, the capabilities are set to exactly thsiseed in the data structure. In
the absence of a matching path, all capabilities are cledvatike the current Linux security
model in which applications that require any capabilitiesrain with all capabilities (as root),
our implementation ensures that only the capabilities eédxy any application are given to
it, thereby restricting the Linux security model. Sectiofh & our evaluation shows examples

that illustrate the use @fcap andCAP capabilities

5.4 Specifying Capabilities

It is important for policy file authors to specify only the nmmum set of capabilities neces-
sary to run a privileged application. If necessary captdsliare omitted from the policy file,
the program may fail mysteriously or behave incorrectlyduse most applications are writ-
ten using an all-or-nothing model of root privileges. If @xteous capabilities are allowed in
the policy file, an attacker will have more tools at his disggahould a program ever be sub-
verted. Since a process can hold any combination of 30 diFi@®SIX capabilities, the task
of determining the minimum set of capabilities can be cimgjieg.

To simplify this task, we wrote a simple tool that helps withitilmg policy files. It uses

ptrace functionality to profile an application’s systemlgacross all of its processes. This
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cap_profile tool starts by running an application with no privileges @hnein uses the error
values in system call return codes, in particular the “pssion denied” error, to re-run the
application with one new capability added at a time. If theliddn of the new capability
results in fewer permission errors or a different set ofrigilsystem calls, the new capability
is added to the set of necessary capabilities. This prosespeated until the application’s
system calls no longer produce any permission errors.

Of course, some applications will fail with permission daherrors even if they are fully
privileged. For example, this may occur when the applicatitempts to access a resource
whose authentication is handled by remote systems. Thagkentinto account by running the
application once with full privileges and white-listingyapermission-denied errors. Addition-
ally, not all permission errors are encountered during tae-sip of an insufficiently privileged
application. For example, a Samba server needs the SETUege only after a client con-
nects and authenticates herself as a non-root user. Heaquerafile allows user interaction
during each test run to exercise the application’s funetibnand reveal the full set of re-
quired privileges. This process works well because modicgtipns require few capabilities
and typically at the beginning of the run. Section 6.1 shdvesdapabilities determined by the

tool.



Chapter 6

Evaluation

We evaluate the IFS isolation environments using two gatel) the effort involved in config-
uring the capabilities for server-side applications ruthwilFS environments to determine the
usability of the system and 2) the performance overhead ®fd$well as the entire Solitude

system because IFS is most useful when used with Solitude.

6.1 Policy Files

In this section, we discuss the usability of our system bycdiesg examples of capability
policies for various classes of server-side applicatianted for IFS environments. We wrote
and tested policies for server applications like a web sénpeche?2), a web server with a php-
based photo applicatiot{11ery), a mail serverKostfix andProcmail), an IMAP server
(Dovecot), an ftp server{sftpd), a DHCP serverdhcpd3), a print serverGupsd), and an
SVN server §vnserve) based on some of the services running on our cluster se36gr\\Ve
used ourcap_profile tool to derive the policies for these applications. The pdlicy files
with the explicit sharing policies are shown for completnebut this thesis focuses on the

capability specifications only.

38
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Application /usr/sbin/apache2 www-data.www-data
Fcap /var/run/apache2.pid www-data.www-data

Fcap /var/log/apache2/error.log www-data.www-data
Fcap /var/log/apache2/access.log www-data.www-data
CAP net_bind_service

Wcommit /var/log/apache2/error.log

Wcommit /var/log/apache2/access.log

Figure 6.1: Policy for the Apache2 web server

6.1.1 Web Server: Apache2 and Apache2 + Gallery

The basic web server policy, first shown in Figure 4.1, is atpe in Figure 6.1 for clarity.
This policy will allow Apache2 to run only if the policy file is root owned and will ensure
thatApache?2 is run with the user id and group id of www-data. The three filgh the Fcap
capability are copied to the IFS layer and the ownershipgedifrom root to www-data. These
capabilities are needed so the web server can access tlessglfile running as the www-data
user rather than root. (Note that the files are owned, readatd write-able only by the root
user in the base environment). However, we observed thae theeApache?2 files that are
accessed only bypache2, and thus there is no real need for them to be root owned. The
net_bind_service capability is needed at the beginning of execution to binthégprivileged

port 80.

We also downloaded and ran thellery application [47] within the web server running
in an IFS. We tested adding and removing users, pictureslaantha, and found thatpache?2
does not require any additional capabilities comparedeatpabilities shown in Figure 6.2.
With the IFS copy-on-write file system we observed tGatlery stores albums, pictures,

album users, etc. in thérar/www/albums directory.
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Application /usr/sbin/apache2 www-data.www-data
Fcap /var/run/apache2.pid www-data.www-data

Fcap /var/log/apache2/error.log www-data.www-data
Fcap /var/log/apache2/access.log www-data.www—-data
CAP net_bind_service

Wcommit /var/log/apache2/error.log

Wcommit /var/log/apache2/access.log

Wcommit /var/www/albums

Figure 6.2: Policy for Gallery running on Apache?2

Application /usr/sbin/postfix root.root

Wshare /home/fareha/Maildir

Fcap /var/spool/postfix/pid/ root.root

Fcap /var/spool/postfix/private perm=00750

CAP /usr/lib/postfix/master net_bind service setgid setuid
CAP /usr/lib/postfix/pickup setgid setuid

CAP /usr/lib/postfix/qmgr setgid setuid

CAP /usr/lib/postfix/smtpd setgid setuid

CAP /usr/lib/postfix/trivial-rewrite setgid setuid
CAP /usr/lib/postfix/local setgid setuid

CAP /usr/lib/postfix/cleanup setgid setuid

CAP /usr/lib/postfix/proxymap setgid setuid

Figure 6.3: Policy for the Postfix MTA
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6.1.2 MTA and MDA: Postfix and Procmail

ThePostfix policy is shown in Figure 6.3. By default, tlRestfix server runs itsaster
process as the root user but it also has various processasguas the postfix user. The root
process switches ids from root to postfix and back severadiriVe also run the server with
the user id of root to ensure correct behaviour.

Some of the filePostfix uses are owned, readable and writable only by the postfix user
in the base. However, these files are accessed by the ro@gstoSince the root user has no
special privileges in IFS, in particular Rac_override capability, it needs file capabilities to
access these files. For examplear/spool/postfix/pid is a directory owned and writable
only by the postfix user in the base. Interestingly, all thesfivithin this directory are root
owned, and changingédr/spool/postfix/pid to be root owned in IFS solves the access
permission problems. Similarlyyar/spool/postfix/private is a directory that is owned
by the postfix user and the root group in the base. Only thdipaster has read, write and
execute permissions, but the process running as root usen@s to test for the existence of
a file in this directory. Giving the group execute permissionlFS enables the file existence
test to succeed.

Themaster process oPostfix needsnet_bind_service to bind to privileged port 25
when it starts, andetuid andsetgid to switch to the postfix user id and back to the root
user id. All the other processes are forked byiheter process and thus start execution as
the root user. They requigstuid andsetgid to later switch to the postfix user. The delivery

processlocal) also needs to change its identity to each user that receiads

6.1.3 IMAP Server: Dovecot

Figure 6.4 shows the policy file for ti»vecot IMAP server. Dovecot’s main process and
authorization process need to run as the root user to adees®nfiguration files. Each user

has animap-login process associated with it that runs as the dovecot usemnaintp process
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Application /usr/sbin/dovecot root.root

Wshare /home/fareha/Maildir

CAP /usr/sbin/dovecot net_bind_service setuid setgid chown
CAP /usr/lib/dovecot/imap-login setgid setuid sys_chroot

CAP /usr/lib/dovecot/imap setgid setuid

Figure 6.4: Policy for Dovecot IMAP server

Application /usr/sbin/vsftpd
Fcap /var/ftp/pub ftp.root

CAP net_bind_service chown setuid setgid sys_chroot

Figure 6.5: Policy for vsftpd FTP server

that runs with the effective id of the user that is viewingtineail. Thedovecot, imap-login

andimap processes need tRetuid andsetgid capabilities to switch to the necessary ids.

In the default configurationimap-login requires thesys_chroot capability to chroot
the login process t@gvar/run/dovecot/login, where all the UNIX sockets needed by this

process are created.

Finally, thecap net_bind_service is needed by the matibvecot process to bind to port

993 for IMAP with SSL and port 143 without SSL.

As mentioned in the Introduction, IFS provides mechanisonsekplicit sharing to sup-
port existing applications that may require sharing acté& environments.Postfix and
Dovecot IMAP are examples of such applications. Because they batbsaca user’s mail-
box, this mailbox must be shared if the two servers are righmrseparate IFS environments.
For example, if the servers are configured to useMieldir mailbox format, each user’s
/home/<username>/Maildir must be shared and if using theox format the/var/mail

folder must be shared.
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Application /usr/sbin/dhcpd3

CAP net_bind_service net_raw

Figure 6.6: Policy for dhcpd3 DHCP server

6.1.4 FTP Server: vsftpd

Usingvsftpd requires some initial setup of the download and upload tiress before starting
the server. A typical configuration consists of creating wmload directory with absolutely
no write permissions for security purposes. An upload dimgg owned and write-able by user
ftp, is created inside the download directory. This directaerarchy initialization is usually
done in the base by the root user, who has no special capegilit IFS. Therefore, simple
copy-on-write does not work very well and the setup must beldleal as a file capability as

shown in the policy file in Figure 6.5.

Whenvsftpd starts, it performs a check to ensure that the main process ias the root
user, but it has various processes that run as the ftp udez aobody user. It needstuid and
setgid for switching to these users. On Debian-like machinestpd runs within in a chroot
environment and thus needs tigs_chroot capability. vsftpd requireschown capabilities
because it can be configured to change the ownership of aladptl files to a normal non-
system user for security purposes. Finatlyt_bind_service is needed to bind to ports 21

and 22 when the server starts.

6.1.5 DHCP Server: dhcpd3

The policy file for thedhcpd3 server is shown in Figure 6.6. The server requires two nétwor
capabilitiesnet _bind service to bind to port 67 for UDP communication, andt_raw to

use the packet interface on the device level as well as rakesoommunication for ICMP.
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Application /usr/sbin/cupsd cupsys.lp

CAP net_bind_service

Figure 6.7: Policy for cupsd printer server

Application /usr/bin/svnserve fareha.solitude

Wcommit /solitude/svn/testrep

Figure 6.8: Policy for svnserve SVN server

6.1.6 Printer Server: Cupsd

Figure 6.7 shows theupsd printer server policy file for client machines that accessraate
print server. When this server is run with a user id of cupsysagroup id of Ip, all the file
permissions in the base are correct. The only capabilityedby cupsd iset _bind service

to bind to ipp port 631 at start-up.

6.1.7 SVN Server: Svnserve

When setting up an SVN repository, all the users that will teeasing it are added to a group
usually created for work on the project. The repository s@awned by this group so that the
users have the necessary permissions to execute all SVN andsnAs seen from the policy
in Figure 6.8, an SVN server can run as a normal user, but it muasas the group that owns
the repository to give it correct access to all repositossfilTheSvnserve server binds to a

non-privileged port. To run several servegsnpserve can be configured to bind to different
port numbers. In this case, it is possible to associate ardift policy file with each server
running in a separate IFS. However, the standard IFS pathisd@verlay directory and mount
point will also need to be reconfigured to ensure that eaclesés running in isolation from

the other.
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6.1.8 Discussion

The example policy files in the previous section show thajpalicies are short (no longer that
15 lines) and intuitive. We found that tliaP capabilities needed by applications are easy to
configure because without the required privileges, apfiina fail due to denied permissions
and give meaningful error messages that help determineetingredCAP capabilities. Fur-
thermore, since they are usually needed at the beginningeafuéion, finding the necessary
capabilities typically takes just a few minutes to a few foudnly thevsftpd policy took a
few hours because the capability it required depended ostahiition-specific configuration
(vsftpd always runs in a chroot environment in Debian-like machirzesl also full testing
required uploading and downloading files. The challenge leto find theminimum set of
capabilities. Ourkap_profile tool, discussed in Section 5.4, makes use of the “permission
denied” error messages and simplifies this task.

File capabilities, on the other hand, are more time consgrardetermine. The first few
policy files we wrote, includingpache, vsftpd andPostfix, took up to a few weeks because
we were still developing the appropriate model for spentfyiile capabilities. After writing
thevsftpd andPostfix policies, we had a clear, well-defined model for specifying an-
plementing file capabilities. The later policies then jusik on the order of hours to write
correctly.

Unlike Linux capabilities, file capabilities may manifebetnselves as more subtle differ-
ences in behaviour well into the execution of the applicatiG-or example, although a file
system call may fail, no error is displayed and the actiomdpgierformed just fails silently.
Determining the file capabilities may then require lookih¢pag system call traces of the ap-
plication running inside and outside an IFS environmenglaained from the Linuxtrace
command, and finding differences and denied accesses tthidesay occur well before the
application output diverges from the expected. We plan terek ourcap_profile tool in
the future to aid in determining file capabilities. In pauter, any application requiring a file-

related Linux capability, such aap_dac_override should be further analyzed to find out the
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exact failure and the permission or ownership change thatdiox the problem.

6.2 Performance Overhead

We measured the overhead introduced by IFS and also Sobjudening a set of benchmarks
representing different client or server workloads. We rao tlient workloads within an IFS:
1) untar of a Linux kernel source tarball, representing adylstem-intensive workload, and 2)
kernel build of the Linux sources, which is mainly CPU boumd aetermines the overhead
imposed when running similar CPU bound applications in aleagdesktop environment. We
ran three server workloads in an IFS: 1) a large 230 MB file doaah, which stresses the
file-system read performance and represents a media strgaeriver, 2) a large 230 MB file
upload, which stresses the file-system write performancerapresents an FTP or a video
blogging site, and 3) thepache ab benchmark, which stresses a standgrakche web server
by issuing back-to-back requests with four concurrent@sses running 20 clients that request
files ranging from 1KB to 15KB, and is representative of a kxhderver environment.

We ran the tests on a Solitude-enabled Ubuntu Linux 6.06 meachith four Intel(R)
Xeon(TM) CPU 3.00GHz processors, 2GB of RAM and a loeat3 hard disk. The client
machine for the server experiments is connected to thettargehine with a Gigabit network.
We repeated each test at least 5 times and our results asgjadevver these tests.

Figure 6.9 shows the performance overhead of FUSE, IFS alitd@&ofor the five bench-
marks compared to a regular Linux system. The overhead &rinst of running time for the
first four experiments and in terms of network throughputtfee CPU-saturated web server
benchmark. Each segment of the bar shows the overheaduotddy the various components
of Solitude. We obtained these results by starting with @eld_inux system and then running
experiments that progressively added these componentg artene. The components include
1) the pass-through user-level file system built on FUSEh@Yasic copy-on-write IFS envi-

ronment, 3) IFS sharing and capability policy module, anthé)Solitude kernel-level tainting
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figures/ifs_performance.pdf

Figure 6.9: Performance Overhead of IFS

module. The tainting module is run with no tainted files orgasses to isolate the overhead
introduced by logging.

The Untar test creates a large number files and directotiesstng the IFS file system.
The FUSE overhead is largely a consequence of file systenatiges being redirected into
user-space code which then makes more system calls intethelkIn particular, eactreate
system called is translated intqzatattr, create, getattr by FUSE. As a result, the user-
level IFS code also incurs significant overhead. We expettt these overheads to decrease
dramatically with a kernel-level implementation. The 8ale overhead occurs almost en-
tirely due to hard links. Solitude, in addition to taintinggpvides a file generation number for
uniquely identifying files to the IFS code. As described iotg® 5.1, the code stores the inode
and generation number in a persistent mapping table foectlyrhandling the multiple names
of a file due to hard links. In the future, we plan to assess drdtardlinks are sufficiently
useful for IFS applications to justify the implementatiantplexity and overhead.

The Build and theApache benchmarks have smaller overhead than Untar in IFS because
they are comparatively less file system intensive. The UWplmenchmark stresses the FUSE
code in IFS since the large file is written in 4KB chunks due tiinatation in the FUSE
write implementation. The Download benchmark has no oathmecause it involves simply

opening the file and performing reads on the file handle.
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Conclusion

Current operating systems provide a single common namespatis shared by all users and
processes. This implicit file sharing can lead to attackshfeosingle application compromis-
ing the entire system. This problem is only becoming worsasass increasingly download
and install software from untrusted sources on the Inteifte IFS isolation environment ad-
dresses this shortcoming of modern operating systems. @hpribblem that this thesis solves
is to limit the effects of attacks on systems by providinge:§ystem based, restricted privilege
isolation environment, that is designed fisting applications. Applications are given their
own separate namespace through a chroot-ed copy-on-weisyfitem. The IFS capability re-
strictions ensure that even if malware compromises a tegit program running with certain
privileges in its isolation environment, then it would beable to embed itself deep into the
system (e.g. by loading a kernel module) because the ho$tatppn would likely possess

only a few capabilities.

We evaluated running several server-side applicationdgerair IFS isolation environment.
Our evaluation shows that while finding the Linux capal@btio be specified in a policy is
fairly easy, determining the file capabilities can be mamgetconsuming and requires careful
inspection ofstrace outputs. Our experience shows that file capabilities are aad would

be unnecessary if developers program with a restrictedgy® model in mind rather than the
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more common all-powerful root. We believe that typical netivapplications can and should
always be run inside an IFS isolation environment sinceavigies a good balance between

security and usability.

7.1 Future Work

There are several directions of future work related to thigget. We describe improvements
to IFS as well as ideas for future directions for IFS.

Our evaluation showed that finding file capabilities was thlwrardifficult part of writing
policy files. As future work, we plan to enhance aap_profile tool for determining Linux
capabilities to find file capabilities as well. This will allca policy file author to more accu-
rately and quickly write correct policies.

Currently an application running outside an IFS environheannot be switched automati-
cally and dynamically to run inside an IFS and also one IFSrenment cannot be embedded
inside another. We are exploring if these features arelilsaand beneficial in further limiting
the effect of attacks on the system. Furthermore, our cuusar-level prototype has poor per-
formance due to FUSE. We would like to investigate if a keteeél implementation would
be able to provide the dynamic switching, as well as offetdogterformance.

While auditing the IFS source code, and testing and evalgés implementation, we made
two important observations. First, although our hardlintd®l does not exactly mirror that of
Linux, all the applications we run in the IFS environmenté®eahas expected. As a result, we
believe that as future work we need to study the necessitypandfits of hardlinks versus the
complexity and performance overhead they cause in the mgaation of systems.

Second, all of the file capabilities specified in policy filees to be due to imperfect DAC
permissions on the files accessed by the application, or gererally, misconfiguration. We
plan to explore the use of the IFS infrastructure as a debgggivironment for configuration

management making use of the fact that IFS provides a vievowfdn application accesses
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and modifies every file. We believe this information can alsabed to, for example, analyze
malware that use various methods to deliver payloads thalifynexecutables, delete files,

install backdoors, Trojans or rootkits, and encrypt filesxtortion attacks, etc.
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