
FILE SYSTEM ISOLATION FORUNTRUSTED APPLICATIONS

by

Fareha Shafique

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2008 by Fareha Shafique

Abstract

File System Isolation for Untrusted Applications

Fareha Shafique

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2008

When computer systems are compromised by an attack, it is difficult to determine the precise

extent of the damage because the state changes made by an attacker and those made by regular

users can be closely intertwined. In particular, the file system provides a single namespace that,

when compromised, can have cascading effects on the entire system, making intrusion analysis

and recovery a difficult process.

This thesis proposes using a copy-on-write file system, called Isolation File System (IFS),

to provide a transparent, restricted privilege sandboxingenvironment for running untrusted

applications. The goal of IFS is to limit propagation of attacks by confining each application to

its own complete namespace. If a sandboxed application is exploited, a coarse-grained recovery

method allows completely removing the footprint of the software. Our approach supports

existing applications by providing mechanisms for explicit sharing across IFS environments.

Our evaluation shows that IFS is fairly easy to configure.

ii

Acknowledgements

I would first like to thank Dr. Ashvin Goel for his thoughtful guidance, continuous encourage-

ment and financial support. Many thanks to Shvetank Jain and Vladan Djeric who worked with

me on different parts of this project and who made my experience at graduate school very en-

joyable. I am grateful to the University of Toronto as well asthe Department of Electrical and

Computer Engineering for their financial support. I would also like to thank Dr. Angela Demke

Brown, Dr. David Lie and Dr. Shahrokh Valaee for accepting tobe on my defense committee.

Finally, I would like to thank my husband for supporting me and having confidence in me at

all times.

iii

Contents

1 Introduction 1

1.1 Research Approach .2

1.2 Contributions .4

1.3 Thesis Structure .. 5

2 Related Work 6

2.1 Sandboxing and Virtualization Techniques 7

2.2 Access Control . 9

2.3 Capability Systems and Restricted Privilege Systems 11

2.4 File Systems . 14

3 An Overview of the Solitude System 16

3.1 IFS Isolation Environment 16

3.2 Sharing Policies .. 17

3.3 Taint Propagation and Recovery 17

3.4 Usage Model . 18

4 Isolation File System 20

4.1 Copy-on-Write File System 21

4.2 Chroot Isolation Model .. . 22

4.3 Capability Model .23

iv

4.4 Structure of Policy Files 25

4.5 IPC Discussion . 26

5 Implementation of IFS Isolation Environment 28

5.1 Implementation of Copy-on-Write File System 28

5.2 Implementation of Chroot Isolation Model 34

5.3 Implementation of Capability Model 35

5.4 Specifying Capabilities 36

6 Evaluation 38

6.1 Policy Files . 38

6.1.1 Web Server: Apache2 and Apache2 + Gallery 39

6.1.2 MTA and MDA: Postfix and Procmail 41

6.1.3 IMAP Server: Dovecot . 41

6.1.4 FTP Server: vsftpd . 43

6.1.5 DHCP Server: dhcpd3 . 43

6.1.6 Printer Server: Cupsd .44

6.1.7 SVN Server: Svnserve . 44

6.1.8 Discussion . 45

6.2 Performance Overhead .. 46

7 Conclusion 48

7.1 Future Work . 49

v

List of Tables

3.1 IFS sharing modes . 18

4.1 IFS capability model .. 24

5.1 Summary of IFS databases .. 33

vi

List of Figures

3.1 The Solitude architecture 16

4.1 Example policy for Apache2 web server 25

5.1 IFS Copy-on-Write .30

6.1 Policy for the Apache2 web server 39

6.2 Policy for Gallery running on Apache2 40

6.3 Policy for the Postfix MTA .. 40

6.4 Policy for Dovecot IMAP server 42

6.5 Policy for vsftpd FTP server 42

6.6 Policy for dhcpd3 DHCP server .. . 43

6.7 Policy for cupsd printer server 44

6.8 Policy for svnserve SVN server 44

6.9 Performance Overhead of IFS .. . 47

vii

Chapter 1

Introduction

Several research efforts in recent years have focused on analysis and recovery of compromised

systems [39, 25, 32]. This problem is both very real and hard:once a system is compromised,

it is incredibly difficult to untangle the state changes madeby an attacker, for instance the

replacement of system binaries, from those made by normal users or administrators. While

attempting recovery, an administrator is generally left with the choice of either confidently

removing all attacker modifications or preserving all validuser activity, but not both.

Implicit sharing that exists in modern operating systems isa major cause of this problem.

For example, all users and processes share a single common namespace. Compromises that

manage to make unauthorized updates to this namespace, for instance by replacing the com-

monly used UNIXps command, can have cascading effects across the entire system. While

operating systems provide separate address spaces to protect physical memory, comparable

protection is limited for persistent state.

This implicit file-system sharing problem is exacerbated asusers increasingly download

and install software from untrusted sources on the Internet. Users are faced with the choice

of either not downloading and running the application, or they risk compromising the integrity

and the stability of the system. For instance, a downloaded media player application can have

serious vulnerabilities that can allow attackers to attachmalicious code and infect computers

1

CHAPTER 1. INTRODUCTION 2

without the user’s knowledge. Additionally, audio and video streams and downloads can be

used to hijack or corrupt computers [76].

This thesis focuses on confining untrusted applications into separate isolation environ-

ments. Within each environment, an application is bound to its own complete file-system

namespace, similar to process address spaces, via a copy-on-write file system that we have de-

signed, called Isolation File System (IFS). The benefit of namespace isolation is that malicious

changes made by one application cannot inadvertently effect the operation of other applica-

tions. In our design, each untrusted application within IFSis run in a sandboxed environment

with restricted privileges. As a result, even if the application is compromised, escaping the

sandbox is difficult and any damage that can be done to the system is limited because all-

powerful super-user capabilities are disallowed within IFS.

IFS allows unshared persistent states to diverge freely across isolation environments under

the presumption that file sharing across applications is rare. The challenge with such an en-

vironment is that since applications cannot share data across the isolation environments, they

may not work correctly. Therefore, sharing across environments must be supported, and IFS

provides explicit sharing mechanisms for this purpose. However, the detailed description of

these mechanisms and the specific sharing policies needed tosupport IFS applications is the

focus of another thesis [36].

1.1 Research Approach

The goal of IFS is to limit the propagation of attacks by running each untrusted application in a

separate sandbox that confines it to its own complete file system. IFS offers a transparent view

into the base (or regular) file system for reading operations, but any modifications made by the

untrusted process or its children processes are confined to the separate namespace. If at any

point the user decides that the software is malicious or undesirable, the entire IFS environment

can be discarded without concern for the integrity of the base file system.

CHAPTER 1. INTRODUCTION 3

A typical usage scenario of this system may involve running apeer-to-peer (P2P) client

program within an IFS. For example, a user may download and install a photo editing applica-

tion using the P2P client. The user knows that files on P2P networks are sometimes modified

to include malicious components and thus installs the application in an IFS. This may be the

same IFS as the P2P program or a new IFS, but in both cases, no changes are made to the base

file system. If the application exhibits unexpected or suspicious behaviour, the user can remove

the program and its changes by discarding its IFS.

The basic IFS isolation model enhanceschroot isolation with copy-on-write from the base

file system. As with any isolation environment, there is a trade-off involved between the secu-

rity provided by the IFS isolation environment, application-level functionality and ease-of-use.

We rely on two mechanisms to resolve these concerns: supportfor restricted privileges for

running server applications, and support for explicit file sharing policies. Running applications

with restricted privileges provides increased security while supporting full application func-

tionality. Similarly explicit file sharing, although not assecure as complete isolation, allows

us to fully supportexisting applications that are based on the current access control model in

Linux. Each of these mechanisms is discussed below.

There are many well-known techniques for escaping chroot jails. Several precautionary

measures and rules can be followed to alleviate this problem. The most important rule is to

disallow superuser capabilities in a jail which makes it significantly harder to escape the jail.

Running programs with restricted privileges in IFS inhibits the spread and effectiveness of mal-

ware such as spyware, rootkits and memory-resident virusesthat attempt privileged operations

(e.g., loading kernel modules), and makes it harder to compromise the isolation mechanism.

IFS restricts the privileges of root or setuid applicationsby enhancing the capability system

available in Linux [43]. Each IFS environment can specify the capabilities that should be en-

abled in an associated policy file. For example, a web server IFS environment would allow

opening privileged ports.

Support for file sharing policies enables rich system functionality and helps with ease of

CHAPTER 1. INTRODUCTION 4

use. Although by default the IFS copy-on-write mechanism shares reads with the base file

system and isolates all writes, write sharing policies can be specified in the same policy file

as the capabilities linked with an IFS environment. These simple, yet flexible sharing policies

allow 1) reads to be isolated (directed to a snapshot of the base file) or denied, and 2) writes

to be denied or shared (either immediately or at a later time). Our isolation environment is

implemented as part of the Solitude application-level isolation and recovery system. Solitude

consists of three major components: the IFS isolation environment, the explicit file sharing

policies, and the taint propagation, logging and recovery system. IFS was briefly described

above and will be discussed in more detail later in the thesis. Solitude requires that any sharing

of persistent data be performed explicitly through its file sharing policies, which are supported

by IFS. Finally, the recovery component allows two options:1) coarse recovery by discarding a

complete IFS environment, or 2) fine taint-based analysis and recovery derived from Taser [25].

1.2 Contributions

This thesis explores the use of separate copy-on-write based file-system namespaces for run-

ning untrusted networked applications, similar to addressspace separation via copy-on-write

memory. Network applications pose security risks since they are increasingly being used to

download and install data and code from untrusted sources. For example, audio and video

downloads are often incorrectly labelled and can contain viruses that can corrupt comput-

ers [76]. If these files were downloaded in an isolated namespace and used within a restricted-

privilege sandbox environment, computer systems could be protected from extensive damage.

We implement a prototype of IFS and propose running each networked application within

a separate IFS environment. Our implementation provides a file-system based restricted-

privilege isolation environment that is reasonably easy tospecify and can be used for both

client- and server-side applications. IFS enhances the Linux capability model to run each pro-

cess with the minimum set of privileges required and replaces the Linux coarse-grained file

CHAPTER 1. INTRODUCTION 5

access capabilities with finer-grained per-file or directory capabilities. These capabilities are

specified in a policy file associated with each IFS.

IFS limits attack propagation in a system by isolating all writes and ensures ease of con-

figuration by sharing all reads with the base. This model provides a simple recovery solution

that consists of discarding an entire compromised IFS environment without affecting the rest

of the system. IFS also provides mechanisms that allow explicit file sharing to support existing

applications that may require communication across IFS environments.

Our detailed evaluation based on running several server applications shows that capability

specifications in policy files are short, intuitive and reasonably easy to specify. IFS, although

usable on its own, is most beneficial when used with Solitude,and as such, we provide a

performance evaluation of Solitude in addition to that of IFS.

1.3 Thesis Structure

The rest of the thesis describes the IFS in more detail. Chapter 2 discusses related work in this

area. IFS is designed to be used as part of Solitude, a system that provides explicit file sharing

mechanisms and recovery facilities in addition to the isolation properties of IFS. Chapter 3

provides an overview of Solitude. Chapter 4 presents a detailed design of the IFS isolation

model and Chapter 5 describes its implementation. Chapter 6provides an evaluation of IFS in

terms of ease of configuration and performance. Finally, Chapter 7 concludes the thesis and

highlights directions for future work.

Chapter 2

Related Work

In current operating systems, by default, all users share the same file system. For instance, in

most Unix systems, any user or application can write to the shared/tmp directory. This file

sharing is regulated with the help of access controls. Unfortunately, with a single file-system

namespace, an error in the access control configuration may allow an attacker to compromise

the entire system. Now consider memory in modern operating systems. By default, memory is

not shared by different processes even when the processes are run by the same user. Memory

sharing is allowed only explicitly, for example, via sharedmemory. We propose a file system

model similar to the memory model, whereby files are isolatedacross applications by default

and can be shared only explicitly.

The goal of this research project is twofold: to limit the effects of attacks, and to sim-

plify post-intrusion analysis and recovery. Attack propagation is limited through namespace

isolation using a copy-on-write file system and restricted privileged execution of applications.

Analysis and recovery is made easier by requiring explicit sharing of persistent data. In this

chapter, we first describe related work in the area of sandboxing and virtualization. Then we

describe related research in access control and file systems. Finally, we discuss work on re-

stricting privileges of applications.

6

CHAPTER 2. RELATED WORK 7

2.1 Sandboxing and Virtualization Techniques

Hypervisor-based virtualization machines (VMs), such as those based on full virtualization

approaches like VMWare [33, 17] and para-virtualization approaches like Xen [6] and De-

nali [79], provide strong isolation guarantees. They have been used to protect trusted and pri-

vate data from applications as well as to protect applications from one another [16, 9, 74, 23].

However, it is incredibly difficult to configure sharing in these VM environments. For example,

a virtual machine can be used to run multiple versions of the Office word processor, but each

machine has a separate unsynchronized desktop that leads toa confusing and error-prone user

experience.

A second virtualization approach that trades security for efficiency is to use operating

system-level virtualization [67]. Linux-Vservers [45], Virtuozzo [72], FreeBSD Jails [37] and

Solaris Zones in Solaris10 [54] make use of this approach. This approach, while similar to

our isolation environment, is still designed primarily forisolating applications run by untrusted

users and thus focuses on avoiding denial-of-service attacks and provides limited sharing. For

instance, in university or small corporate environments, asingle machine is often able to run

several server applications such as web server, mail server, print server etc. on behalf of the

same set of users. With OS virtualization, by default, each of these servers would have its own

list of users and user directories.

WindowBox [5] provides virtual desktops inside Windows 2000 and allows explicit sharing

of data through direct point-and-click commands or warningdialogue boxes. However, the

system is not very usable because users are expected to configure each desktop for a particular

task and switch between the desktops as they work.

System call interposition has been used extensively for restricting a program’s access to

the operating system [26, 1, 55, 35, 64]. These sandboxing techniques have not been widely

deployed because they are hard to configure. Janus [26] is difficult to configure because it re-

quires per system call policies for each application. MAPBox [1] attempts to group application

behaviour into classes based on the expected functionality, and then it applies the same system

CHAPTER 2. RELATED WORK 8

call policies to all applications in a single class. If an application has not been classified, it

fails to run. Systrace [55] automatically generates policies via training runs to determine the

resources used by an application under normal circumstances. All these approaches confine the

damage an untrusted application can cause on the system but they do not isolate applications

from one another.

In Alcatraz [42], Sekar et. al. provide file system isolationthrough system call interposi-

tion in addition to restricting OS access. In their later work on One-Way Isolation [70], they

improve the file system isolation by intercepting file operations at the Virtual File System layer

rather than at the system call level. In both these approaches, untrusted processes observe the

environment of their host system, but the effects of these processes are isolated from other

applications. Once the code is trusted, all changes made by it can be committed to the host

system. While these works propose using one-way isolation for testing and debugging, we

propose to limit sharing by running applications in the longterm in an isolation environment.

A consequence of our approach is the need to correctly securethe isolation environment when

executing privileged applications and provide support forlimited file sharing. In addition, our

overall goal with Solitude is to provide a specification thatallows explicit sharing, the capabil-

ity to commit selectively and perform recovery even after data is committed.

We envision using isolation environments for different applications run by the same user or

within the same administrative domain (same set of users) and thus aim to provide better sup-

port for sharing. Since our primary focus is on limiting attack propagation to simplify analysis

and recovery of persistent data, our isolation environmentuses application-level virtualization.

Microsoft has recently released its Softgrid/SystemGuardtechnology for virtualizing applica-

tions [13]. Softgrid uses a single OS, but uses the SystemGuard virtual application environment

to keep application dependencies (DLLs, registry entries,fonts, etc.) separate from the rest of

the system, which allows streaming and running multiple versions of an application such as

Office within the same OS. SystemGuard uses a copy-on-write file system but does not allow

users to explicitly share configurations or applications with the base. Greenborder is another

CHAPTER 2. RELATED WORK 9

application virtualization technology that provides copy-on-write protection, but is tailored to

provide protection for specific applications such as web browsers [31]. In Windows Vista, Mi-

crosoft has introduced a Protected Mode for Internet Explorer 7 [50, 14]. When running in this

mode, the browser runs in a low integrity level with restricted privileges. This prevents hackers

from taking over the browser and installing new software. Italso disables write access to most

of the file system including the registry. In this mode, IE is given its own low integrity copy of

the cache, TEMP folder, Cookies and History, but it shares the Favorites with IE running in the

high integrity level. Protected mode provides predefined isolation and sharing policies that are

not easily reconfigurable.

2.2 Access Control

Access control policies restrict access to a system and its objects based on a set of discretionary,

role-based or mandatory policies. Discretionary policies, specified by object owners, involve

setting file permissions and ownership. They allow implicitfile sharing through the creation

of user groups and across independent applications run by the same user. Role-based policies

are common in corporate settings where system administrators create roles according to job

functions in the organization, configure permissions for these roles and then assign employees

to the roles based on their job responsibilities [18, 19, 59]. Mandatory policies enforce explicit

sharing and are specified by an administrator based on the principle of least privilege. For

example, SELinux [46] provides a powerful mandatory accesscontrol model, but it is com-

monly acknowledged that designing SELinux policies is a complicated process [34]. Similar

to SELinux, the RSBAC framework [52] and the Medusa DS9 security system [48] also pro-

vide flexible mandatory policies allowing system administrators to enforce any security model.

These systems, like SELinux, are also complex to configure.

Domain and Type Enforcement (DTE) is also designed to provide mandatory access control

to protect a system from subverted super-user processes [29, 4, 3, 78]. DTE systems partition

CHAPTER 2. RELATED WORK 10

processes into access control domains, and read policies atboot time that define how to enter

each domain, transfer between domains and what informationeach domain can access. Once

again this allows enforcement of strong security policies for information protection, but at the

cost of configuration complexity.

Access control lists, or ACLs, are also a common mechanism used to restrict access to a

system. ACLs can be either discretionary or mandatory depending on whether they are deter-

mined by a user for protection of her own data or by a system administrator to be enforced

system-wide. Patches implementing discretionary ACLs forthe Linux kernel provide more

fine-grained control over sharing compared to the default 9-bit DAC permissions [27]. A user

can associate an ACL with each object that defines exactly howparticular users and groups

can access the object. The Multics operating system also focused on providing improved se-

curity by disallowing access to files by default and defining all access through ACLs [60]. The

Windows operating system uses ACLs as its main access control mechanism and has tried to

improve its model over the years [71].

Mandatory ACLs define how each program, rather than user, on asystem can access files.

LIDS [82] associates an ACL, implemented at the VFS layer, with each file or directory speci-

fying default accessibility and allowing exceptions to this default for particular executables. It

also implements capability ACLs discussed in Section 2.3. Similarly, PACL [80] keeps ACLs

for each file containing a list of programs that can access it.Later approaches associate ACLs

with programs, rather than with files, to define the list of files that a program can access. Sev-

eral of the systems discussed in sandboxing above use this approach along with system call

interposition to restrict access to the system and its objects [26, 1, 55, 63, 15, 7]. Janus [26],

MAPBox [1] and Systrace [55] all use policies (equivalent toACLs) to determine if each sys-

tem call succeeds or fails. SubDomain [15] and TRON [7] only intercept file system calls and

theexecve call to control file access including whether a file can be executed. In his work on

execution controls, Gamble [22] takes access control listsfurther and uses them to define a user

and program combination that can access a particular file. The main problem with ACLs is that

CHAPTER 2. RELATED WORK 11

the approach does not scale as the number of users, files and programs on a system increases

because a list must be created for each file, listing all the users and programs that can access it,

or for each program, listing all the files it can access.

The UMIP model, similar to Solitude, aims to preserve systemintegrity in the face of

network-based attacks [41]. This model leverages information available in existing discre-

tionary access control (DAC) policies to derive file labels for mandatory integrity protection.

The basic UMIP policy partitions processes into low and highintegrity. When a process per-

forms an operation that potentially contaminates it, such as via reading from a network socket

or communicating with another low integrity process, it drops integrity and cannot perform

sensitive operations. The basic UMIP policy is enhanced with capability exceptions to support

server applications. Our capability model was developed concurrently and has many similari-

ties with UMIP capabilities. The primary difference is thatin our default copy-on-write policy,

reads are shared with the base file system and not denied, and hence our policy files are easier

to specify because they typically do not need exceptions forreading files. More importantly,

UMIP does not provide isolation to client-side applications run by thesame user because it uses

DAC policies to configure its policies. Since UMIP is an access control mechanism, it shares

the limitation with SELinux that the policies must be correctly specified when files are updated.

In contrast, our copy-on-write approach allows files to be inboth low and high integrity states.

We provide a simpler, but more coarse-grained isolation model as compared to the access

control approaches discussed above, in which policies are primarily needed for file sharing.

However, more importantly, the above access control approaches require correct policies at

updates, while with our copy-on-write policy, errors can behandled until a later time.

2.3 Capability Systems and Restricted Privilege Systems

The main goal of using restricted privileges or capabilities in a system is to enforce the prin-

ciple of least privilege and provide better security guarantees. Several approaches have been

CHAPTER 2. RELATED WORK 12

proposed over the years. This section discusses some of these approaches starting with clas-

sical capability systems, followed by limited authority inWindowsNT, and then describing

systems based on the POSIX capability model that we use in IFS. Finally, privilege separation

is discussed as another approach for enforcing the least privilege principle.

Traditionally, a capability is just a token used by a processto prove that it is allowed to

perform an operation on an object. For instance, a file descriptor is a capability allowing

either read, write, or both read and write on a file. In classical capability systems, a process

carried with itself a set of access rights to particular objects. For example, in the EROS micro-

kernel [66], each process has capabilities and can only perform operations that are authorized

by its capabilities. Some of the systems discussed in Sections 2.1 and 2.2 also provide a form of

capabilities. For example, the system call interposition systems [26, 1, 55] restrict the success

of a program’s system calls according to a policy linked to the program.

WindowsNT uses restricted contexts by creating a limited version of a user that can access

only a subset of objects, and running programs as this user [71]. However, it has been shown

that most Windows users run with administrator privileges all the time and this increases the

vulnerability of the system [10].

The POSIX capability model was incorporated in the Linux kernel in version 2.2. It di-

vides traditional superuser privileges into 30 capabilities that a process can independently

enable or disable [43]. Several systems, including ours, make use of these POSIX capabili-

ties [37, 82, 45]. FreeBSD Jails [37] limit the privileges ofall processes running within the

jail by reducing the capabilities to a default set. Linux-Vserver [45], in addition to limiting the

capabilities within each context, extends the model to provide fine-grained capabilities. For ex-

ample, it divides thecap sys admin capability needed to mount, unmount, set hostname etc.,

into separate capabilities for each functionality. LIDS [82] uses ACLs to limit the capabilities

granted to a program. It also extends the default POSIX modeland implements a fine-grained

cap net bind service to ensure that an application can only bind to a particular port, rather

than any port less than 1024. SELinux [46] provides securitypolicies to control the use of

CHAPTER 2. RELATED WORK 13

Linux capabilities and also allows extensions to the current model, such as granting privileges

based on the subject attributes and object attributes. Thiscan be used, for example, to provide

dac override to a process for a particular set of files instead of the default system-wide over-

ride. IFS also uses Linux capabilities to run programs with least privileges. It ensures that even

applications running as root have only the capabilities they need. We also provide fine-grained

dac override through our file capabilities described in Section 4.3.

Unfortunately, today server applications still mostly execute as the root user rather than

use these process capabilities. In the future, the Linux kernel will introduce file capabilities

to make POSIX capabilities more usable [28]. With file capabilities, a process will not have

to enable or disable capabilities. Instead they can be assigned to executable files, similar to

setting permissions on files such as the setuid bit. Any time the executable runs, it will execute

with the capabilities assigned to it. Note that these file capabilities, expected to make the

mainline kernel by version 2.6.24, are different from our file capabilities, which we discuss in

Section 4.3. IFS file capabilities override per-file or directory permissions in the base system.

The IFS isolation environment makes use of process capabilities to provide, effectively, what

Linux POSIX file capabilities will allow in the future.

Privilege separation was proposed by Provos et. al. [56] to reduce the amount of code

that runs with special privileges and thus limit the scope ofprogramming bugs to a smaller

and more easily secured trust base. They demonstrated that this approach prevents security

vulnerabilities by separating the OpenSSH code into privileged and non-privileged code. Priv-

man [38] provides privilege separation through a library that supplies C functions for many

operations that traditionally need privileges. In addition to using this library, developers must

write a configuration file expressing the security policy. Privtrans [8] attempts to automatically

separate code into privileged and non-privileged programsbased on annotations in the source

code. Proxos [74] separates code such that system calls thataccess sensitive resources are

executed on a private VM and all other system calls execute ona commodity OS VM. The

separation is based on rules set by the developer. These approaches do not work with existing

CHAPTER 2. RELATED WORK 14

code, and they present a security approach orthogonal to ourrestricted privilege sandbox.

2.4 File Systems

Many file systems [61, 53, 49, 20, 51] have been developed for creating snapshots for ver-

sioning and recovery. Others [68, 57, 11] use check-pointing to provide backups for rollback

and recovery. UnionFS [81] virtually merges the view of different directories such that they

appear to be one tree. It can be used for snapshotting and copy-on-write by marking directories

as read-only. Then modifications are carried out in a separate directory, which is unified with

the original read-only directory. Self-securing storage [69] audits operations and keeps ver-

sions for some time for intrusion detection and recovery. RFS [84] also provides comprehen-

sive versioning along with dependency logging and dependency analysis for recovery. These

file systems typically implement versioning and/or check-pointing at the block level which is

simpler to implement and provides good performance. However, Solitude’s goal is to enable

limited sharing at the file-system level, which requires understanding the logical structure of

a file system. Hence IFS uses copy-on-write at the file-systemlevel. This method also fits

well with Solitude’s taint propagation and recovery model,which is performed at the level of

files and directories. User-level file systems developed in the past include Wayback [12] for

versioning and Ufo [2] for providing a file system that treatsremote files as if they were local.

Ufo uses system call interposition and Wayback uses FUSE [73]. Our IFS implementation also

uses FUSE, and we describe it in Section 5.1.

Transactional file systems, for example QuickSilver [30, 62] and Vista’s TxF (transactional

file system) [77], allow file system operations to be handled like transactions so that all the

changes within a transaction are committed to disk atomically and the intermediate states of

a transaction are not visible to other applications or transactions within the same application.

Both file systems require changes to applications to use a transactional interface to start, abort

or commit a transaction, and they use a pessimistic locking mechanism for ensuring consis-

CHAPTER 2. RELATED WORK 15

tency. Quicksilver holds read locks on files until the file is closed and write locks until the end

of a transaction. Directories are locked when they are modified, for example when a directory

is renamed, created or deleted. TxF’s locking mechanism is also very similar to QuickSilver.

However, a file can be read and written in two different transactions concurrently. In this case,

the reads do no see the modifications made by the other transaction. To provide this isolation,

TxF intercepts all file system operations and captures the state of the file or directory before

carrying out the operation. These file snapshots are also used for rollback when a transaction

fails or is aborted.

In contrast to QuickSilver and TxF, our IFS environment supports existing applications

without requiring any changes to these applications. It provides transactional semantics at the

IFS granularity and hence transactions can exist for long periods of time. To ensure availabil-

ity in the face of long-running transactions, IFS uses an optimistic concurrency control method

that allows the different IFS environments to concurrentlyaccess and modify files. IFS trans-

actions can either be rolled back by discarding the entire IFS environment or IFS allows using

resolution policies when conflicts occur during a commit [40, 58, 75].

Chapter 3

An Overview of the Solitude System

Solitude provides a copy-on-write, file-system based sandbox environment for running un-

trusted applications, and it uses an explicit file sharing mechanism that limits attack prop-

agation without compromising system functionality. The Solitude architecture is shown in

Figure 3.1. It consists of three main components, the IFS isolation environment, the sharing

policies, and the taint propagation, logging and recovery system. We describe these compo-

nents below.

3.1 IFS Isolation Environment

Solitude allows running an untrusted application in an isolation environment called IFS that

provides the application with a transparent view of the basefile system, but restricts any file-

����������	
����

����������������

��������	
���� ��������	
����

�������

����
���

��	� ��	� ��	�

	������

��������

���������� �����������

Figure 3.1: The Solitude architecture

16

CHAPTER 3. AN OVERVIEW OF THE SOLITUDE SYSTEM 17

system changes with a copy-on-write policy. In other words,an application running inside

an IFS has the illusion that it is running inside the base file system, but in reality, the base

file system is oblivious to its existence unless the user has configured explicit sharing policies

that allow synchronizing the base file system with the IFS. Anapplication running in an IFS

executes with restricted privileges. This makes it difficult to escape the isolation environment

and also limits the adverse effects a malicious applicationcan have on the system if it escapes

the sandbox. The following chapters of this thesis describethe IFS in more detail.

3.2 Sharing Policies

Solitude isolates the persistent changes made by applications by using copy-on-write as its

basic isolation model, but it allows refining this model withpolicies that enable explicit sharing

of specific files and directories between an IFS and the base system. At the time of its creation,

each IFS can be associated with a policy file, stored outside the IFS in the base system, that

specifies the file sharing policies. The intended authors of these policy files are application

creators and system administrators although the policy language is simple and policies are

easy to write. For untrusted applications, it may be safer toobtain policy files from user

communities or to use the default policy.

The sharing policy language is designed for simplicity and intuitiveness. It specifies three

possible sharing modes for reading and three modes for writing, although a few combinations

are not meaningful. These modes are shown in Table 3.1. All the sharing modes apply to a file

or directory and are subject to the access control restrictions of the base.

3.3 Taint Propagation and Recovery

The sharing policies described above enable collaborationbetween applications running in an

IFS and base, or between different IFS contexts. Without such sharing, an increasing number of

CHAPTER 3. AN OVERVIEW OF THE SOLITUDE SYSTEM 18

Read/Write Mode Description

Rshare (default) Applications read from the base until they make an update

Rsnapshot IFS makes a snapshot of the base immediately at startup

Rdeny Hide the base file or directory from the IFS

Wdeny (default) Confine all writes to the IFS permanently

Wcommit Confine changes to the IFS, but allow delayed sharing with thebase

Wshare Immediately share writes from the IFS with the base

Table 3.1: IFS sharing modes

applications would be run in the same isolation environment, negating the benefits of isolating

the applications. However, the sharing policies could be poorly designed, potentially leading

to contamination of the base file system either via commit or write sharing of malicious data

or applications. Solitude addresses this issue by trackinghow other applications access files

that are committed or write shared and then using a taint propagation method to log their

resulting actions. If untrusted files reach the base, Solitude uses a modified version of the Taser

system [25] that helps with analysis and fine-grained recovery of the base system.

3.4 Usage Model

Based on the notion that intrusions start with a network connection and then cascade into

multiple system activities such as file accesses and outgoing connections, we envision that

Solitude will be useful for various networked applications. On the client-side consider instant

messaging applications to communicate and share data. The sharing policies can be used to

offer the user the option to preserve, say the chat logs, thatMSN writes to a certain directory in

the base. Similarly, with a mail client, the local mail directory and the mail-client configuration

files could be explicitly shared with the base system while any other persistent data would be

unshared.

CHAPTER 3. AN OVERVIEW OF THE SOLITUDE SYSTEM 19

On the server side, consider a web site that provides an on-line photo album service. The

web server can be run in an IFS environment while configuring only the users’ photo data to

be shared with the base system. In this way, the persistent data that is important to users can

be shared with the base system, such as for archival or file search, but any updates made by

the web server are unshared and cannot affect the rest of the site even if the web server is

compromised.

Chapter 4

Isolation File System

The main goal of the IFS isolation environment is to limit theeffects of attacks and simplify the

post-intrusion recovery process by supporting explicit sharing of persistent data. It is specifi-

cally targeted for client-side applications run by the sameuser and for server-side applications

running within the same administrative domain.

The IFS isolation environment allows running multiple applications within an isolation en-

vironment. For example, a user can download a file using a peer-to-peer application and save

it to a standard location. The user can then run a viewer application within the same session

or mark the standard download location as explicitly sharedand use the viewer in the base or

separate IFS environment. All other updates by the peer-to-peer application remain unshared

and could be easily discarded after session termination. Note that isolation environments are

persistent in the sense that the IFS state is preserved across multiple invocations of the appli-

cation.

Administrators can also choose to use IFS environments for certain low-privilege users. For

example, IFS can be used to isolate directories that are shared across users such as the Unix

/tmp directory that has been the source of several exploits, and to ensure that anonymous FTP

users cannot affect the base file system.

An isolation environment’s design space involves making trade-offs between security, application-

20

CHAPTER 4. ISOLATION FILE SYSTEM 21

level functionality and ease-of-configuration and use. Thedesign of our isolation model was

motivated by our objective to support better sharing and application-level functionality than

either hypervisor or system-level virtualization, and easier configuration than a Unix chroot

and BSD jail sandbox.

At a high-level, our IFS isolation model consists of runningapplications with restricted

privileges in a chroot copy-on-write file system. This approach isolates file modifications and

simplifies chroot configuration by sharing reads with the base system. This chapter will de-

scribe the copy-on-write file system (Section 4.1), chroot isolation (Section 4.2), and our ca-

pability model (Section 4.3). Section 4.4 explains the structure of the policy files that, among

other things, specify the capabilities. Finally, a short discussion on limiting IPC mechanisms

is also provided in Section 4.5.

4.1 Copy-on-Write File System

The copy-on-write file system gives an application running inside an IFS environment the

impression that it is running in the base. The application can read files in the base, subject to

the discretionary access controls of the underlying operating system. By default, all changes

are redirected to the IFS layer. However, in the presence of explicit sharing policies, reads

and writes are directed by the copy-on-write file system to the appropriate layer, base or IFS,

depending on the specification.

There are several reasons that motivated a copy-on-write based isolation environment. First,

the basic file-system recovery method for unshared persistent data is simple: if at any point the

user decides that the software may be malicious, they can discard the entire IFS environment

without concern for the integrity of the base file system. Second, preventing implicit sharing of

file updates limits attack propagation that occurs as a result of persistent changes in the system

and hence reduces the effort involved in overall post-intrusion analysis and recovery. Third,

the explicit sharing mechanism is based on the hypothesis that write sharing of files across

CHAPTER 4. ISOLATION FILE SYSTEM 22

applications is rare [36]. Finally, copy-on-write enablesread sharing between the base and the

IFS, and we do not require explicit read sharing because suchoperations are far more common

and thus configuring them correctly would be challenging.

With copy-on-write isolation, any malware that attempts toconceal its presence by dis-

abling security software or by installing rootkits will fail because the isolation mechanism

safeguards the integrity of programs in the base system. Forexample, cryptoviral extortion,

a kind of denial of resources attack, does not pose a problem with copy-on-write. A cryp-

tovirus encrypts critical data on a machine making it inaccessible. The victim is compelled to

make ransom payments to the virus author in exchange for the public key needed to decrypt

the data [83]. Copy-on-write ensures the original data is not overwritten and the public key

is never needed. Copy-on-write can also help with malware detection: changes made to files

and directories inside an IFS are quickly spotted when a userexamines the list of changed

files within an IFS. Finally, copy-on-write isolation can also help stop the spread of worms

and viruses that propagate across mounted file systems and network shares because IFS makes

local copies of these files.

Our file system is mounted in a Linuxchroot environment to further reinforce application

isolation. The copy-on-write file system makes the configuration of our chroot jail much easier.

With shared reads, we do not require the libraries and program binaries needed by applications

to be copied into the chroot environment. Our chroot isolation is explained further in the

following section.

4.2 Chroot Isolation Model

The chroot sandbox ensures that application reads and writes do not by-pass our copy-on-

write file system and affect the base system. To strengthen the isolation mechanism, we have

incorporated the Vserver secure chroot barrier [65] in IFS.This barrier uses a special flag on the

parent directory of the isolation environment to prevent chroot escape (and allow nested chroot

CHAPTER 4. ISOLATION FILE SYSTEM 23

jails). However, even with this mechanism, techniques for escaping chroot jails are known and

have led to best practices for using them [21]. The most important of these rules is to disallow

all-powerful root privileges in a jail, which makes it significantly harder to escape the jail.

Unfortunately, this method limits functionality by disallowing setuid programs and server-side

applications that, for example, may require access to privileged ports. Setuid programs are

appealing targets for isolation. They are frequent targetsof attacks because they provide a

direct path to complete control over the system. Sendmail isa typical example of a setuid

application - it uses its root powers to temporarily impersonate other users to deliver mail to

their inboxes. Our capability model allows us to overcome this limitation and is described next.

4.3 Capability Model

In order to avoid using all-powerful superuser privileges,yet support setuid applications and

server applications in IFS, we restrict the privileges of root by enhancing the capability system

available in Linux [43]. Each IFS environment can specify capabilities that are then enabled in

the environment. For example, a web server IFS environment would allow opening privileged

ports. We chose Linux capabilities because they are relatively easy to specify. However, they

are coarse grained, and in particular, file related capabilities apply to the entire file system. For

instance, a program running with thecap dac override capability can overrideall file access

restrictions. Instead of allowing such powerful capabilities, IFS provides per-file or directory

capabilities. This approach may seem cumbersome, but our results show that in practice most

systems configure the discretionary file-access control permissions “almost” correctly, that is,

only a few permissions are incorrect. Hence privileged applications typically require few per-

file capabilities and can be run correctly without full root privileges. For example, consider

again the web server such as Apache2 running with restrictedprivileges in an IFS environment.

The application does not run as the root user and is only giventhe capability to bind to a

privileged port. As a result it does not have permission to access some files that are root

CHAPTER 4. ISOLATION FILE SYSTEM 24

Capability Parameters

Fcap FilePath [owner.group] [perm]

CAP [ExecPath] CAP SET

Table 4.1: IFS capability model

owned, such as the error log and access log. Therefore, it must be given per-file capabilities for

these files as shown in Figure 4.1.

Table 4.1 shows the specification of the IFS capability model. These capabilities are spec-

ified for each IFS environment in a policy file described in Section 4.4. TheFcap file capa-

bilities apply to all programs run within an IFS, and allow overriding the file ownership or

permissions on the file (or directory) specified byFilePath. Discretionary access controls

associate particular permissions with particular users onthe system, and theFcap capabilities

allow either changing the owner permissions or group permissions directly, or associating the

permissions with a new owner. With these two options ofFcap, we provide a fine-grained

cap dac override capability in order to support application functionality.TheCAP capabil-

ity applies only to the executable specified byExecPath, that is, it is per-program. When

ExecPath is not specified, it applies to the top-level application. This capability is enforced

when an application starts executing, e.g., on a Unixexecve system call, and the CAPSET

parameter is a list of capabilities provided to the application. IFS restricts certain capabilities

such as create or remove mount points and accesses to raw devices, that may allow applications

to escape its isolation environment.

When an application running within an IFS starts a new application by executing the

execve system call, theCAP capability of the new application isexactly the set specified by

CAP SET, and as a result, capabilities are not inherited and setuid applications have no addi-

tional privileges in IFS. When aCAP capability is specified for an application, IFS disallows

theFcap capability for theFilePath associated with the application. This is to ensure that a

vulnerable IFS application is not hijacked into executing aprivileged application that has been

CHAPTER 4. ISOLATION FILE SYSTEM 25

Application /usr/sbin/apache2 www-data.www-data

Fcap /var/run/apache2.pid www-data.www-data

Fcap /var/log/apache2/error.log www-data.www-data

Fcap /var/log/apache2/access.log www-data.www-data

CAP net bind service

Wcommit /var/log/apache2/error.log

Wcommit /var/log/apache2/access.log

Figure 4.1: Example policy for Apache2 web server

modified. Similarly, IFS ensures that files that have been copied into the IFS via copy-on-write

do not run with any IFS capabilities. Furthermore, each capability is specified for a given IFS

and is not system wide.

We always ensure that applications in the IFS environment execute with privileges more

restricted than if the same applications were run in the baseenvironment. For example, if an IFS

environment is started by a regular user, then the environment will have no capabilities. This

is not a limitation, since client-side applications generally do not require any IFS capabilities.

Section 5.3 describes how our implementation enforces these capabilities.

4.4 Structure of Policy Files

Each IFS environment can have a policy file associated with it. This file is saved outside IFS in

the base system and can specify 1) the principal the application should run as inside IFS, 2) the

capabilities described in the previous section, and 3) any of Solitude’s explicit sharing policies

shown in Table 3.1.

Figure 4.1 shows an example policy file for the Apache2 web server. Apache is run as the

www-data user in an IFS environment and the ownership of files with theFcap capability is

set towww-data in the IFS (not in the base) environment. This capability together with the

net bind service capability for accessing a privileged port allows running Apache in an IFS

CHAPTER 4. ISOLATION FILE SYSTEM 26

environment with no other additional privileges. The evaluation chapter shows examples of

policy files that use theExecPath argument.

The intended authors of policy files are application creators and system administrators. For

untrusted applications, it may be safer to obtain policy files from user communities or to use

the default policy. Section 6.1 shows that, for our targetedapplications, it is easy to specify the

capabilities in a policy file.

4.5 IPC Discussion

In addition to file sharing, inter-process communication mechanisms also allow implicit shar-

ing between applications. Our IFS environment must preventapplications from leaking infor-

mation into the base system via inter-process communication with base processes. Common

IPC mechanisms in Unix systems include 1) FIFO, 2) Unix domain sockets, 3) shared memory

and 4) local INET (TCP, UDP) sockets. The first three mechanisms have unnamed and named

counterparts. The unnamed mechanisms only work for relatedprograms in a process hierarchy

and are, therefore, allowed within an IFS but disallowed across IFS and base by default.

Our approach towards the remaining IPC mechanisms is based on the IPC study performed

on our cluster server and on my personal desktop machine [36]. The experiment has shown that

common applications do not typically use named shared memory communication, and a very

small set of applications use named FIFO and Unix domain sockets. In Linux, named FIFO

and Unix domain sockets are represented by special files. OurIFS copy-on-write file system

ensures that FIFO and Unix sockets can only be used for communication within the same IFS.

We disabled these IPC mechanisms across IFS and base and different IFS environments to

avoid implicit sharing.

For local INET sockets, the study showed no UDP based communication and just a small

number of local TCP connections, for example for the X-server, print server and ssh-server.

The X- and ssh server provide basic services (desktop and remote access) and would need to

CHAPTER 4. ISOLATION FILE SYSTEM 27

be shared with many different IFS environments. Hence, theywould be run in the base. These

results are promising because they indicate that it is feasible to disable IPC mechanisms and,

if needed, incorporate explicit specifications.

Chapter 5

Implementation of IFS Isolation

Environment

The IFS isolation environment consists of the copy-on-write file system, chroot isolation model,

and capability model explained in the previous chapter. Thefollowing sections describe the im-

plementation of these components. We have also implementeda tool to help determine the set

of capabilities that are needed by an application and must bespecified in the policy file. We

describe this tool in Section 5.4.

5.1 Implementation of Copy-on-Write File System

The basic isolation mechanism in IFS is a copy-on-write file system. For ease of implemen-

tation, we have developed a user-level prototype of this filesystem using FUSE [73] (version

2.6.0) running on the Linux kernel (version 2.6.15). FUSE (or File system in User SpacE) in-

tercepts operations at the virtual file system (VFS) layer sothat applications do not have to be

modified to work with FUSE file systems. For each intercepted operation, FUSE makes calls to

wrapper functions in a user-level process that performs allfile system operations on behalf of

the applications running in each IFS environment. This process, which we call the IFS monitor

28

CHAPTER 5. IMPLEMENTATION OF IFS ISOLATION ENVIRONMENT 29

process, implements our copy-on-write file system by appropriately redirecting operations to

the base or IFS layer. This implementation runs on the Linuxext3 file system but is mostly

independent of the base file system .

IFS implements copy-on-write at the file-system level as shown in Figure 5.1. The im-

plementation for files is straight-forward – files are copiedfrom the base to the IFS whenever

file data or attributes are modified. An IFS directory is an overlay that only contains files or

sub-directories in IFS. It is created when 1) a base file or sub-directory within the directory is

modified, or 2) an IFS file or sub-directory within the directory needs to be created. For exam-

ple, when a base file is modified or a file is created, IFS directories are created for all ancestor

directories of the file. In our default configuration, the base layer is the root (/) directory and

the IFS overlay is in a special directory (/ ifs) but this configuration can be easily modified.

The wrapper functions in the IFS monitor process operate on VFS file system calls. Each

wrapper function starts by looking up the path argument in the call, with the exception of the

read and write functions that operate on file descriptors. Ateach level of the path, the lookup

checks for the file (or directory) in the IFS overlay and then,if the file or directory is not found

there, in the base system. If the file is found in the IFS or if itwill not be modified by the

operation, the monitor process executes the system call. Otherwise, the file is copied to the IFS

overlay before executing the system call.

An application running inside the IFS isolation environment sees a combined view of the

base and IFS. This is implemented in the wrapper function forthereaddir library call. The

IFS function returns all the directory entries from the IFS overlay and only those entries from

the base that have not been copied to IFS.

The implementation must handle three main issues. First, a create-delete ambiguity is

introduced when a file that was copied from base is removed in IFS. We must ensure that

future system calls do not access the file in the base system and re-copy it. Our implementation

ensures correct copy-on-write operation by creating an empty, zero-permission file of the same

name that has the sticky bit set. We can safely use this bit since it is ignored by the Linux

C
H

A
P

T
E

R
5

.
IM

P
L

E
M

E
N

T
A

T
IO

N
O

F
IF

S
IS

O
L

A
T

IO
N

E
N

V
IR

O
N

M
E

N
T

3
0

/home/fareha

Figure1-old.pdf ifs.c Policies Thesis thesis.lyx testsCourses

c) Combined

view as seen by

the application

(Note: it sees

the modified

ifs.c of the IFS

overlay) apache.pol svn.pol

outline.txt

server.c client.c

a) Example

directory tree in

base

/home/fareha

Figure1-old.pdf ifs.c Policies Thesis thesis.lyx testsCourses

/home/fareha

Thesis tests

apache.pol svn.pol

outline.txt

server.c client.c

b) IFS overlay when

ifs.c is modified, two

new files are created

in the 'Policies'

directory, one new

file in 'Thesis' and

two new files in 'test'

Policiesifs.c

postfix.pol

postfix.pol

Figure 5.1: IFS Copy-on-Write

CHAPTER 5. IMPLEMENTATION OF IFS ISOLATION ENVIRONMENT 31

kernel1. As a consequence, when a new file is created with the same pathname as a removed

file (that was copied from base), the implementation removesthe dummy file before attempting

to create the new one. We could have also used theRemovedInodeDB, described below, which

contains the inode and generation numbers of files copied from the base and removed in IFS.

However, we avoid a database lookup for efficiency purposes,and use the sticky bit instead.

Second, Solitude supports a sharing policy calledcommit sharing that allows a file in the

IFS overlay to be committed to the base file system. This commit may cause file conflicts when

a base file and the corresponding IFS file are modified concurrently. To detect such conflicts,

the implementation uses a database table,InodeDB, to record the time when a file is first created

in IFS along with a one-to-one mapping of the base inode and generation number to IFS inode

and generation number of the file. The inode and generation number uniquely identify files

in a Unix file system, and thusInodeDB helps correlate a file in the base to the corresponding

file in IFS during commit. The time-stamp is used to detect file-content conflicts, which occur

when this time is earlier than the base file modification time.This same information is also

stored in aRemovedInodeDB table, but for files that have been removed in IFS after being

copied from the base. When a file is removed from the IFS overlay, its record is moved from

InodeDB to RemovedInodeDB. This information is used during commit to detect if a file is

modified in the base but deleted in the IFS (i.e., a remove-update conflict). Note that when

an IFS application removes a base file, then the file has not been previously copied to the IFS

layer, and the creation time stored inRemovedInodeDB is the time of deletion. It is possible

to combine the two tables and use a single bit to indicate if the file exists or is removed, but

we keep two separate tables becauseInodeDB is needed for hardlinks, as explained below,

while RemovedInodeDB is not needed, and hence we wanted to keep two independent tables.

When files or directories are removed in the base, the tables can become inconsistent. These

consistency issues are handled at the time of commit. Also when a file is committed, Solitude’s

commit process updates the tables to remove records of thesefiles.

1On old Unix system, the sticky bit caused executable files to be hoarded in swap space [44].

CHAPTER 5. IMPLEMENTATION OF IFS ISOLATION ENVIRONMENT 32

Finally, hardlinks in Unix file systems, which allow a singlefile to have more than one

name, create several complications. For example, if a file ismodified and copied over to the IFS

layer, all future operations to this file must be directed to the file in IFS, even if the pathname

is different. The implementation uses two mapping tables for hardlinks. TheInodeDB table,

discussed above, stores the mapping from base inode (and generation number) of a file to the

corresponding IFS inode (and generation number). A second database table,ParentDB, stores

the mapping from IFS inode to the file name and the IFS inode of its parent. This latter database

can have a one-to-many mapping when an IFS inode has multiplenames. These two databases

allow mapping a pathname in the base to a pathname in the IFS. This mapping starts by using

the base inode to lookup the corresponding IFS inode fromInodeDB, and then performs a

reverse lookup usingParentDB to build the required pathname. Table 5.1 shows a summary

of the three databases and how they are used by the IFS implementation. The databases are

implemented using Berkeley DB4.

It is difficult to mimic the exact behaviour of the base file system in the presence of

hardlinks. It requires an appreciable amount of bookkeeping and introduces significant com-

plexity in the code. For example, a shortcoming of our implementation is that we do not track

link counts of files. In the base, when a file with several linksis removed, the link count is

reduced and the pathname is deleted but the file inode and contents remain until the link count

is zero. In the IFS implementation, we diverge from the expected behaviour only when a file

has more than one link in the base, but only one link has been copied to IFS. In this case, if

the file in IFS is deleted, we remove the file contents too. Now when another pathname of this

file, which has not been copied to the overlay, is accessed, itwill be copied from the base and

will not have the changes that were made to the first file. A possible solution is to track link

counts of a file in base. If the link count in the IFS reaches zero, but not in the base, the file

should not be deleted. To work correctly, this method requires tracking link counts in the base

of every file copied to IFS, garbage collecting files that are kept around due to hardlinks still

present in the base, and performing additional checks during lookup. Despite this shortcoming

CHAPTER 5. IMPLEMENTATION OF IFS ISOLATION ENVIRONMENT 33

Database Name Database Columns Commit Sharing Hardlinks

InodeDB

(one-to-one

mapping)

base inode, base

generation→IFS

inode, IFS

generation, time

of copy

Base inode, base

generation, IFS

inode and IFS

generation for

mapping base file

to IFS file. Time

of copy to detect

conflicts.

Base inode, base

generation,

IFS inode and

IFS generation

for mapping one

pathname in base

to a corresponding

pathname in IFS.

RemovedInodeDB

(one-to-one

mapping)

base inode, base

generation→IFS

inode, IFS

generation, time

of copy

Base inode, base

generation, IFS

inode and IFS

generation for

mapping base file

to IFS file. Time

of copy to detect

conflicts.

N/A

ParentDB

(one-to-many

mapping)

IFS inode→IFS

filename, IFS

parent inode

N/A IFS inode, IFS

file name and IFS

parent inode to

form a full path

by reverse lookup.

Table 5.1: Summary of IFS databases

CHAPTER 5. IMPLEMENTATION OF IFS ISOLATION ENVIRONMENT 34

in our implementation, all the applications we tested work as expected. As a result, in the

future we plan to analyze the necessity and benefits of hardlinks compared to the complexity

and overhead they introduce in systems.

5.2 Implementation of Chroot Isolation Model

Our isolation model consists of the copy-on-write file system reinforced with a Linux chroot

jail. We set up an IFS isolation environment by creating a mount point in the base file system,

as required by the FUSE implementation to mount the copy-on-write file system. By default,

we create this mount point in the/tmp directory. Then we start the target application(s) within

a hardened chroot jail [65]. Setting up the hardened jail consists of performing a regular chroot

system call on the mount point directory, followed by anioctl system call to set the special

chroot barrier flag on this directory. This has been implemented on the Linuxext3 file system

and should be trivial to port to most Unix file systems.

By default, the top-level IFS application assumes the ID of the user invoking the IFS en-

vironment. However, if a user is specified in the policy file (e.g., see the first line of the Web

server policy file shown in Figure 6.1), this user ID is used only if the invoker is either root

or the same as the specified user and the file is owned by user root and not writable by others.

Similarly, applications can only acquire the capabilitiesshown in Table 4.1 if the correspond-

ing policy file is root owned and non-world writable. This makes it difficult for normal system

users to tamper with policy files and damage our isolation environment. For example, if a user

can easily modify a policy, she can cause the Apache2 web server to run with her own user ID.

Consequently, when a system administrator attempts to start the server it would not be able to

bind to port 80 and would fail to run.

CHAPTER 5. IMPLEMENTATION OF IFS ISOLATION ENVIRONMENT 35

5.3 Implementation of Capability Model

The capabilities in Table 4.1 are implemented using two methods: theFcap capability is en-

forced by the IFS monitor process, while the per-application CAP capability is implemented

by modifying Forensix [24], a kernel-level system-call interception facility. However, the IFS

monitor process must also deal with certainCAP capabilities because it executes file system

calls on behalf of the application running in the IFS and may need some file related capabilities

to execute the calls successfully. This section first describes the implementation of theFcap

capability and then theCAP capability.

TheFcap capability applies to all programs running inside an IFS andmust be enforced

before the execution of any program. Therefore, this capability is implemented by the IFS

monitor process during the initialization of the IFS environment. Since the IFS monitor pro-

cess is setuid root, it has all powerful root privileges at start-up. Most importantly, it has the

dac override capability that allows the IFS monitor process to copy the file paths specified

with Fcap capabilities to the IFS layer and change the ownership or permissions according to

the policy file.

After handling theFcap capability, the IFS monitor process drops all its privileges unless

certain selectedCAP capabilities are specified in the policy file associated withthe IFS. Since

the IFS monitor process acts on behalf of applications running in the isolation environment,

as described in Section 5.1, it may require some capabilities that are given to programs in

the IFS. These include thesetuid, setgid, chown, andmknod capabilities. For example, an

application that needs thecap setuid andcap setgid changes the id with which it runs.

For the monitor process to accurately execute file system calls on behalf of this application,

it needs to change its id to match that of the calling process.Additionally, in this case, the

monitor process needs thechown capability to set the ownership of files and directories during

copy-on-write to ensure that the application is subject to the same access control permissions

in IFS as if it was running in the base, even when it changes itsid. Similarly, if an application

requires thechown capability, such as the FTP server, with the policy shown in Figure 6.5, the

CHAPTER 5. IMPLEMENTATION OF IFS ISOLATION ENVIRONMENT 36

monitor process must also have the capability to execute thechown on behalf of the application.

TheCAP capability is implemented in the kernel for two reasons. First, the default Linux

kernel build does not allow one user-level process to set thecapabilities of another process

for security reasons. Second, the available versions of theLinux kernel clear all capabilities

across theexecve system call and theCAP capability is per executable. Therefore, to support

current applications without modification, our implementation must enforce theCAP capability

in the kernel. The capability is passed to the kernel at IFS start-up and stored in a per-IFS

kernel data structure consisting of the application paths and corresponding Linux capabilities.

During theexecve system call, the path parameter is compared to the stored application paths.

If a match is found, the capabilities are set to exactly thosestored in the data structure. In

the absence of a matching path, all capabilities are cleared. Unlike the current Linux security

model in which applications that require any capabilities are run with all capabilities (as root),

our implementation ensures that only the capabilities needed by any application are given to

it, thereby restricting the Linux security model. Section 6.1 in our evaluation shows examples

that illustrate the use ofFcap andCAP capabilities

5.4 Specifying Capabilities

It is important for policy file authors to specify only the minimum set of capabilities neces-

sary to run a privileged application. If necessary capabilities are omitted from the policy file,

the program may fail mysteriously or behave incorrectly because most applications are writ-

ten using an all-or-nothing model of root privileges. If extraneous capabilities are allowed in

the policy file, an attacker will have more tools at his disposal should a program ever be sub-

verted. Since a process can hold any combination of 30 distinct POSIX capabilities, the task

of determining the minimum set of capabilities can be challenging.

To simplify this task, we wrote a simple tool that helps with writing policy files. It uses

ptrace functionality to profile an application’s system calls across all of its processes. This

CHAPTER 5. IMPLEMENTATION OF IFS ISOLATION ENVIRONMENT 37

cap profile tool starts by running an application with no privileges andthen uses the error

values in system call return codes, in particular the “permission denied” error, to re-run the

application with one new capability added at a time. If the addition of the new capability

results in fewer permission errors or a different set of failing system calls, the new capability

is added to the set of necessary capabilities. This process is repeated until the application’s

system calls no longer produce any permission errors.

Of course, some applications will fail with permission denied errors even if they are fully

privileged. For example, this may occur when the application attempts to access a resource

whose authentication is handled by remote systems. This is taken into account by running the

application once with full privileges and white-listing any permission-denied errors. Addition-

ally, not all permission errors are encountered during the start-up of an insufficiently privileged

application. For example, a Samba server needs the SETUID privilege only after a client con-

nects and authenticates herself as a non-root user. Hence, cap profile allows user interaction

during each test run to exercise the application’s functionality and reveal the full set of re-

quired privileges. This process works well because most applications require few capabilities

and typically at the beginning of the run. Section 6.1 shows the capabilities determined by the

tool.

Chapter 6

Evaluation

We evaluate the IFS isolation environments using two criteria: 1) the effort involved in config-

uring the capabilities for server-side applications run within IFS environments to determine the

usability of the system and 2) the performance overhead of IFS as well as the entire Solitude

system because IFS is most useful when used with Solitude.

6.1 Policy Files

In this section, we discuss the usability of our system by describing examples of capability

policies for various classes of server-side applications suited for IFS environments. We wrote

and tested policies for server applications like a web server (Apache2), a web server with a php-

based photo application (Gallery), a mail server (Postfix andProcmail), an IMAP server

(Dovecot), an ftp server (vsftpd), a DHCP server (dhcpd3), a print server (Cupsd), and an

SVN server (Svnserve) based on some of the services running on our cluster server [36]. We

used ourcap profile tool to derive the policies for these applications. The fullpolicy files

with the explicit sharing policies are shown for completeness, but this thesis focuses on the

capability specifications only.

38

CHAPTER 6. EVALUATION 39

Application /usr/sbin/apache2 www-data.www-data

Fcap /var/run/apache2.pid www-data.www-data

Fcap /var/log/apache2/error.log www-data.www-data

Fcap /var/log/apache2/access.log www-data.www-data

CAP net bind service

Wcommit /var/log/apache2/error.log

Wcommit /var/log/apache2/access.log

Figure 6.1: Policy for the Apache2 web server

6.1.1 Web Server: Apache2 and Apache2 + Gallery

The basic web server policy, first shown in Figure 4.1, is repeated in Figure 6.1 for clarity.

This policy will allow Apache2 to run only if the policy file is root owned and will ensure

thatApache2 is run with the user id and group id of www-data. The three fileswith theFcap

capability are copied to the IFS layer and the ownership changed from root to www-data. These

capabilities are needed so the web server can access these files while running as the www-data

user rather than root. (Note that the files are owned, readable and write-able only by the root

user in the base environment). However, we observed that these areApache2 files that are

accessed only byApache2, and thus there is no real need for them to be root owned. The

net bind service capability is needed at the beginning of execution to bind tothe privileged

port 80.

We also downloaded and ran theGallery application [47] within the web server running

in an IFS. We tested adding and removing users, pictures and albums, and found thatApache2

does not require any additional capabilities compared to the capabilities shown in Figure 6.2.

With the IFS copy-on-write file system we observed thatGallery stores albums, pictures,

album users, etc. in the/var/www/albums directory.

CHAPTER 6. EVALUATION 40

Application /usr/sbin/apache2 www-data.www-data

Fcap /var/run/apache2.pid www-data.www-data

Fcap /var/log/apache2/error.log www-data.www-data

Fcap /var/log/apache2/access.log www-data.www-data

CAP net bind service

Wcommit /var/log/apache2/error.log

Wcommit /var/log/apache2/access.log

Wcommit /var/www/albums

Figure 6.2: Policy for Gallery running on Apache2

Application /usr/sbin/postfix root.root

Wshare /home/fareha/Maildir

Fcap /var/spool/postfix/pid/ root.root

Fcap /var/spool/postfix/private perm=00750

CAP /usr/lib/postfix/master net bind service setgid setuid

CAP /usr/lib/postfix/pickup setgid setuid

CAP /usr/lib/postfix/qmgr setgid setuid

CAP /usr/lib/postfix/smtpd setgid setuid

CAP /usr/lib/postfix/trivial-rewrite setgid setuid

CAP /usr/lib/postfix/local setgid setuid

CAP /usr/lib/postfix/cleanup setgid setuid

CAP /usr/lib/postfix/proxymap setgid setuid

Figure 6.3: Policy for the Postfix MTA

CHAPTER 6. EVALUATION 41

6.1.2 MTA and MDA: Postfix and Procmail

ThePostfix policy is shown in Figure 6.3. By default, thePostfix server runs itsmaster

process as the root user but it also has various processes running as the postfix user. The root

process switches ids from root to postfix and back several times. We also run the server with

the user id of root to ensure correct behaviour.

Some of the filesPostfix uses are owned, readable and writable only by the postfix user

in the base. However, these files are accessed by the root process. Since the root user has no

special privileges in IFS, in particular nodac override capability, it needs file capabilities to

access these files. For example,/var/spool/postfix/pid is a directory owned and writable

only by the postfix user in the base. Interestingly, all the files within this directory are root

owned, and changing /var/spool/postfix/pid to be root owned in IFS solves the access

permission problems. Similarly,/var/spool/postfix/private is a directory that is owned

by the postfix user and the root group in the base. Only the postfix user has read, write and

execute permissions, but the process running as root user attempts to test for the existence of

a file in this directory. Giving the group execute permissions in IFS enables the file existence

test to succeed.

The master process ofPostfix needsnet bind service to bind to privileged port 25

when it starts, andsetuid andsetgid to switch to the postfix user id and back to the root

user id. All the other processes are forked by themaster process and thus start execution as

the root user. They requiresetuid andsetgid to later switch to the postfix user. The delivery

process (local) also needs to change its identity to each user that receivesmail.

6.1.3 IMAP Server: Dovecot

Figure 6.4 shows the policy file for theDovecot IMAP server. Dovecot’s main process and

authorization process need to run as the root user to access the configuration files. Each user

has animap-login process associated with it that runs as the dovecot user and animap process

CHAPTER 6. EVALUATION 42

Application /usr/sbin/dovecot root.root

Wshare /home/fareha/Maildir

CAP /usr/sbin/dovecot net bind service setuid setgid chown

CAP /usr/lib/dovecot/imap-login setgid setuid sys chroot

CAP /usr/lib/dovecot/imap setgid setuid

Figure 6.4: Policy for Dovecot IMAP server

Application /usr/sbin/vsftpd

Fcap /var/ftp/pub ftp.root

CAP net bind service chown setuid setgid sys chroot

Figure 6.5: Policy for vsftpd FTP server

that runs with the effective id of the user that is viewing their mail. Thedovecot, imap-login

andimap processes need thesetuid andsetgid capabilities to switch to the necessary ids.

In the default configuration,imap-login requires thesys chroot capability to chroot

the login process to/var/run/dovecot/login, where all the UNIX sockets needed by this

process are created.

Finally, thecap net bind service is needed by the maindovecot process to bind to port

993 for IMAP with SSL and port 143 without SSL.

As mentioned in the Introduction, IFS provides mechanisms for explicit sharing to sup-

port existing applications that may require sharing acrossIFS environments.Postfix and

Dovecot IMAP are examples of such applications. Because they both access a user’s mail-

box, this mailbox must be shared if the two servers are running in separate IFS environments.

For example, if the servers are configured to use theMaildir mailbox format, each user’s

/home/<username>/Maildir must be shared and if using thembox format the/var/mail

folder must be shared.

CHAPTER 6. EVALUATION 43

Application /usr/sbin/dhcpd3

CAP net bind service net raw

Figure 6.6: Policy for dhcpd3 DHCP server

6.1.4 FTP Server: vsftpd

Usingvsftpd requires some initial setup of the download and upload directories before starting

the server. A typical configuration consists of creating a download directory with absolutely

no write permissions for security purposes. An upload directory, owned and write-able by user

ftp, is created inside the download directory. This directory hierarchy initialization is usually

done in the base by the root user, who has no special capabilities in IFS. Therefore, simple

copy-on-write does not work very well and the setup must be handled as a file capability as

shown in the policy file in Figure 6.5.

Whenvsftpd starts, it performs a check to ensure that the main process isrun as the root

user, but it has various processes that run as the ftp user or the nobody user. It needssetuid and

setgid for switching to these users. On Debian-like machines,vsftpd runs within in a chroot

environment and thus needs thesys chroot capability. vsftpd requireschown capabilities

because it can be configured to change the ownership of all uploaded files to a normal non-

system user for security purposes. Finally,net bind service is needed to bind to ports 21

and 22 when the server starts.

6.1.5 DHCP Server: dhcpd3

The policy file for thedhcpd3 server is shown in Figure 6.6. The server requires two network

capabilities,net bind service to bind to port 67 for UDP communication, andnet raw to

use the packet interface on the device level as well as raw socket communication for ICMP.

CHAPTER 6. EVALUATION 44

Application /usr/sbin/cupsd cupsys.lp

CAP net bind service

Figure 6.7: Policy for cupsd printer server

Application /usr/bin/svnserve fareha.solitude

Wcommit /solitude/svn/testrep

Figure 6.8: Policy for svnserve SVN server

6.1.6 Printer Server: Cupsd

Figure 6.7 shows theCupsd printer server policy file for client machines that access a remote

print server. When this server is run with a user id of cupsys and a group id of lp, all the file

permissions in the base are correct. The only capability needed by cupsd isnet bind service

to bind to ipp port 631 at start-up.

6.1.7 SVN Server: Svnserve

When setting up an SVN repository, all the users that will be accessing it are added to a group

usually created for work on the project. The repository is also owned by this group so that the

users have the necessary permissions to execute all SVN commands. As seen from the policy

in Figure 6.8, an SVN server can run as a normal user, but it must run as the group that owns

the repository to give it correct access to all repository files. TheSvnserve server binds to a

non-privileged port. To run several servers,Svnserve can be configured to bind to different

port numbers. In this case, it is possible to associate a different policy file with each server

running in a separate IFS. However, the standard IFS paths for the overlay directory and mount

point will also need to be reconfigured to ensure that each server is running in isolation from

the other.

CHAPTER 6. EVALUATION 45

6.1.8 Discussion

The example policy files in the previous section show that ourpolicies are short (no longer that

15 lines) and intuitive. We found that theCAP capabilities needed by applications are easy to

configure because without the required privileges, applications fail due to denied permissions

and give meaningful error messages that help determine the requiredCAP capabilities. Fur-

thermore, since they are usually needed at the beginning of execution, finding the necessary

capabilities typically takes just a few minutes to a few hours. Only thevsftpd policy took a

few hours because the capability it required depended on a distribution-specific configuration

(vsftpd always runs in a chroot environment in Debian-like machines) and also full testing

required uploading and downloading files. The challenge here is to find theminimum set of

capabilities. Ourcap profile tool, discussed in Section 5.4, makes use of the “permission

denied” error messages and simplifies this task.

File capabilities, on the other hand, are more time consuming to determine. The first few

policy files we wrote, includingApache, vsftpd andPostfix, took up to a few weeks because

we were still developing the appropriate model for specifying file capabilities. After writing

thevsftpd andPostfix policies, we had a clear, well-defined model for specifying and im-

plementing file capabilities. The later policies then just took on the order of hours to write

correctly.

Unlike Linux capabilities, file capabilities may manifest themselves as more subtle differ-

ences in behaviour well into the execution of the application. For example, although a file

system call may fail, no error is displayed and the action being performed just fails silently.

Determining the file capabilities may then require looking at long system call traces of the ap-

plication running inside and outside an IFS environment, asobtained from the Linuxstrace

command, and finding differences and denied accesses to filesthat may occur well before the

application output diverges from the expected. We plan to extend ourcap profile tool in

the future to aid in determining file capabilities. In particular, any application requiring a file-

related Linux capability, such ascap dac override should be further analyzed to find out the

CHAPTER 6. EVALUATION 46

exact failure and the permission or ownership change that would fix the problem.

6.2 Performance Overhead

We measured the overhead introduced by IFS and also Solitudeby running a set of benchmarks

representing different client or server workloads. We ran two client workloads within an IFS:

1) untar of a Linux kernel source tarball, representing a file-system-intensive workload, and 2)

kernel build of the Linux sources, which is mainly CPU bound and determines the overhead

imposed when running similar CPU bound applications in a regular desktop environment. We

ran three server workloads in an IFS: 1) a large 230 MB file download, which stresses the

file-system read performance and represents a media streaming server, 2) a large 230 MB file

upload, which stresses the file-system write performance and represents an FTP or a video

blogging site, and 3) theApache ab benchmark, which stresses a standardApache web server

by issuing back-to-back requests with four concurrent processes running 20 clients that request

files ranging from 1KB to 15KB, and is representative of a loaded server environment.

We ran the tests on a Solitude-enabled Ubuntu Linux 6.06 machine with four Intel(R)

Xeon(TM) CPU 3.00GHz processors, 2GB of RAM and a localext3 hard disk. The client

machine for the server experiments is connected to the target machine with a Gigabit network.

We repeated each test at least 5 times and our results are averaged over these tests.

Figure 6.9 shows the performance overhead of FUSE, IFS and Solitude for the five bench-

marks compared to a regular Linux system. The overhead is in terms of running time for the

first four experiments and in terms of network throughput forthe CPU-saturated web server

benchmark. Each segment of the bar shows the overhead introduced by the various components

of Solitude. We obtained these results by starting with the base Linux system and then running

experiments that progressively added these components oneat a time. The components include

1) the pass-through user-level file system built on FUSE, 2) the basic copy-on-write IFS envi-

ronment, 3) IFS sharing and capability policy module, and 4)the Solitude kernel-level tainting

CHAPTER 6. EVALUATION 47

figures/ifs_performance.pdf

Figure 6.9: Performance Overhead of IFS

module. The tainting module is run with no tainted files or processes to isolate the overhead

introduced by logging.

The Untar test creates a large number files and directories, stressing the IFS file system.

The FUSE overhead is largely a consequence of file system operations being redirected into

user-space code which then makes more system calls into the kernel. In particular, eachcreate

system called is translated into agetattr, create, getattr by FUSE. As a result, the user-

level IFS code also incurs significant overhead. We expect both these overheads to decrease

dramatically with a kernel-level implementation. The Solitude overhead occurs almost en-

tirely due to hard links. Solitude, in addition to tainting,provides a file generation number for

uniquely identifying files to the IFS code. As described in Section 5.1, the code stores the inode

and generation number in a persistent mapping table for correctly handling the multiple names

of a file due to hard links. In the future, we plan to assess whether hardlinks are sufficiently

useful for IFS applications to justify the implementation complexity and overhead.

The Build and theApache benchmarks have smaller overhead than Untar in IFS because

they are comparatively less file system intensive. The Upload benchmark stresses the FUSE

code in IFS since the large file is written in 4KB chunks due to alimitation in the FUSE

write implementation. The Download benchmark has no overhead because it involves simply

opening the file and performing reads on the file handle.

Chapter 7

Conclusion

Current operating systems provide a single common namespace that is shared by all users and

processes. This implicit file sharing can lead to attacks from a single application compromis-

ing the entire system. This problem is only becoming worse asusers increasingly download

and install software from untrusted sources on the Internet. The IFS isolation environment ad-

dresses this shortcoming of modern operating systems. The key problem that this thesis solves

is to limit the effects of attacks on systems by providing a file-system based, restricted privilege

isolation environment, that is designed forexisting applications. Applications are given their

own separate namespace through a chroot-ed copy-on-write file system. The IFS capability re-

strictions ensure that even if malware compromises a legitimate program running with certain

privileges in its isolation environment, then it would be unable to embed itself deep into the

system (e.g. by loading a kernel module) because the host application would likely possess

only a few capabilities.

We evaluated running several server-side applications inside our IFS isolation environment.

Our evaluation shows that while finding the Linux capabilities to be specified in a policy is

fairly easy, determining the file capabilities can be more time consuming and requires careful

inspection ofstrace outputs. Our experience shows that file capabilities are rare and would

be unnecessary if developers program with a restricted privilege model in mind rather than the

48

CHAPTER 7. CONCLUSION 49

more common all-powerful root. We believe that typical network applications can and should

always be run inside an IFS isolation environment since it provides a good balance between

security and usability.

7.1 Future Work

There are several directions of future work related to this project. We describe improvements

to IFS as well as ideas for future directions for IFS.

Our evaluation showed that finding file capabilities was the more difficult part of writing

policy files. As future work, we plan to enhance ourcap profile tool for determining Linux

capabilities to find file capabilities as well. This will allow a policy file author to more accu-

rately and quickly write correct policies.

Currently an application running outside an IFS environment cannot be switched automati-

cally and dynamically to run inside an IFS and also one IFS environment cannot be embedded

inside another. We are exploring if these features are feasible and beneficial in further limiting

the effect of attacks on the system. Furthermore, our current user-level prototype has poor per-

formance due to FUSE. We would like to investigate if a kernel-level implementation would

be able to provide the dynamic switching, as well as offer better performance.

While auditing the IFS source code, and testing and evaluating its implementation, we made

two important observations. First, although our hardlink model does not exactly mirror that of

Linux, all the applications we run in the IFS environment behave as expected. As a result, we

believe that as future work we need to study the necessity andbenefits of hardlinks versus the

complexity and performance overhead they cause in the implementation of systems.

Second, all of the file capabilities specified in policy files seem to be due to imperfect DAC

permissions on the files accessed by the application, or moregenerally, misconfiguration. We

plan to explore the use of the IFS infrastructure as a debugging environment for configuration

management making use of the fact that IFS provides a view of how an application accesses

CHAPTER 7. CONCLUSION 50

and modifies every file. We believe this information can also be used to, for example, analyze

malware that use various methods to deliver payloads that modify executables, delete files,

install backdoors, Trojans or rootkits, and encrypt files inextortion attacks, etc.

Bibliography

[1] Anurag Acharya and Mandar Raje. MAPbox: Using parameterized behaviour classes

to confine untrusted applications. InProceedings of the USENIX Security Symposium,

August 2000.

[2] Albert D. Alexandrov, Maximilan Ibel, Klaus E. Schauser, and Chris J. Scheiman. Ex-

tending the operating system at the user level: the Ufo global file system. InProceedings

of the USENIX Technical Conference, 1997.

[3] Lee Badger, Daniel F. Sterne, David L. Sherman, and Kenneth M. Walker. A domain and

type enforcement UNIX prototype.Computing Systems, 9(1):47–83, Winter 1996.

[4] Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and Sheila A.

Haghighat. Practical domain and type enforcement for UNIX.In Proceedings of the

IEEE Symposium on Security and Privacy, 1995.

[5] Dirk Balfanz and Daniel R. Simon. WindowBox: A simple security model for the con-

nected desktop. InProceedings of the USENIX Windows Systems Symposium, August

2000.

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art ofvirtualization. InPro-

ceedings of the Symposium on Operating Systems Principles (SOSP), pages 164–177,

October 2003.

51

BIBLIOGRAPHY 52

[7] A. Berman, V. Bourassa, and E. Selberg. TRON: Process-specific file protection for the

UNIX operating system. InProceedings of the USENIX Technical Conference, pages 165

–175, New Orleans, LA, USA, 1995.

[8] David Brumley and Dawn Song. Privtrans: Automatically partitioning programs for privi-

lege separation. InProceedings of the USENIX Security Symposium, pages 57–72, August

2004.

[9] Peter M. Chen and Brian D. Noble. When virtual is better than real. InProceedings of

the USENIX Workshop on Hot topics in Operating Systems, 2001.

[10] Shuo Chen, John Dunagan, Chad Verbowski, and Yi-Min Wang. A black-box tracing

technique to identify causes of least-privilege incompatibilities. In Proceedings of the

Network and Distributed System Security Symposium, 2005.

[11] Sailesh Chutani, Owen T. Anderson, Michael L. Kazar, Bruce W. Leverett, W. Anthony

Mason, and Robert N. Sidebotham. The Episode file system. InProceedings of the

USENIX Technical Conference, 1992.

[12] Brian Cornell, Peter Dinda, and Fabián Bustamante. Wayback: A user-level versioning

file system for linux. InProceedings of the USENIX Technical Conference, pages 19–28,

June 2004.

[13] Microsoft Corporatin. Microsoft softgrid.http://www.microsoft.com/windows/

products/windowsvista/enterprise/softgrid.mspx, 2007.

[14] Microsoft Corporatin. Windows Vista: Features explained: Internet Explorer pro-

tected mode.http://www.microsoft.com/systemcenter/softgrid/evaluation/

virtualization.mspx, 2007.

[15] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton Pu, Perry Wagle, and Vir-

BIBLIOGRAPHY 53

gil D. Gligor. SubDomain: Parsimonious server security. InProceedings of the USENIX

Large Installation Systems Administration Conference, pages 355 – 368, December 2000.

[16] Richard S. Cox, Jacob Gorm Hansen, Steven D. Gribble, and Henry M. Levy. A safety-

oriented platform for web applications. InProceedings of the IEEE Symposium on Secu-

rity and Privacy, May 2006.

[17] Scott W. Devine, Edouard Bugnion, and Mendel Rosenblum. Virtualization system in-

cluding a virtual machine monitor for a computer with a segmented architecture. US

patent, 6397242, October 1998.

[18] David Ferraiolo and Richard Kuhn. Role-based access control. In Proceedings of the

National Computer Security Conference, 1992.

[19] David F. Ferraiolo, Janet A. Cigini, and D. Richard Kuhn. Role-based access control

(RBAC): Features and motivations. InProceedings of the Annual Computer Security

Applications Conference, 1992.

[20] Michail D. Flouris and Angelos Bilas. Clotho: Transparent data versioning and the block

I/O level. InProceedings of the IEEE Symposium on Mass Storage Systems, April 2004.

[21] Steve Friedl. Best practices for UNIX chroot() operations.http://www.unixwiz.net/

techtips/chroot-practices.html, January 2002.

[22] Todd Gamble. Implementing execution controls in UNIX.In Proceedings of the 7th

System Administration Conference, 1993.

[23] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A

virtual machine-based platform for trusted computing. InProceedings of the Symposium

on Operating Systems Principles (SOSP), pages 193–206, October 2003.

BIBLIOGRAPHY 54

[24] Ashvin Goel, Wu chang Feng, Wu chi Feng, David Maier, andJim Snow. Automatic high-

performance reconstruction and recovery.Journal of Computer Networks, 51(5):1361–

1377, April 2007. Special issue on “From Intrusion Detection to Self-Protection”.

[25] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara. The Taser intru-

sion recovery system. InProceedings of the Symposium on Operating Systems Principles

(SOSP), pages 163–176, October 2005.

[26] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure environment

for untrusted helper applications. InProceedings of the USENIX Security Symposium,

1996.

[27] Andrew Grunbacher. Linux extended attributes and ACLs. http://acl.bestbits.at,

February 2005.

[28] Serge E. Hallyn. POSIX file capabilities: Parceling thepower of root. http://www.

ibm.com/developerworks/linux/library/l-posixcap.html, May 2007.

[29] Serge E. Hallyn and Phil Kearns. Domain and type enforcement for linux. InProceedings

of the Linux Showcase and Conference, October 2000.

[30] Roger Haskin, Yoni Malachi, Wayne Sawdon, and Gregory Chan. Recovery management

in QuickSilver.ACM Transactions on Computer Systems, 6(1):82 – 108, 1988.

[31] Matt Hines. Google buys into security, acquires GreenBorder.http://www.infoworld.

com/article/07/05/29/Google-buys-into-AV_1.html, May 2007.

[32] Francis Hsu, Hao Chen, Thomas Ristenpart, Jason Li, andZhendong Su. Back to the

future: A framework for automatic malware removal and system repair. InProceedings

of the Annual Computer Security Applications Conference, December 2006.

[33] VMWare Inc. VMware virtual machine technology.http://www.vmware.com/.

BIBLIOGRAPHY 55

[34] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. Analyzing integrity protection in the

SELinux example policy. InProceedings of the USENIX Security Symposium, pages

59–74, August 2003.

[35] K. Jain and R. Sekar. User-level infrastructure for system call interposition: A platform

for intrusion detection and confinement. InProceedings of the Network and Distributed

System Security Symposium, 2000.

[36] Shvetank Jain. A framework for application-level isolation and recovery. Master’s thesis,

University of Toronto, Toronto. In preparation.

[37] Poul-Henning Kamp and R.N.M. Watson. Jails: Confining the omnipotent root. InPro-

ceedings of the Second International SANE Conference, 2002.

[38] Douglas Kilpatrick. Privman: A library for partitioning applications. InProceedings of

the Freenix Track of USENIX Technical Conference, 2003.

[39] Samuel T. King and Peter M. Chen. Backtracking intrusions. In Proceedings of the

Symposium on Operating Systems Principles (SOSP), pages 223–236, October 2003.

[40] Puneet Kumar and Mahadev Satyanarayanan. Flexible andsafe resolution of file conflicts.

In Proceedings of the USENIX Technical Conference, pages 95–106. USENIX, January

1995.

[41] Ninghui Li, Ziqing Mao, and Hong Chen. Usable mandatoryintegrity protection for

operating systems. InProceedings of the IEEE Symposium on Security and Privacy,

pages 164–178, 2007.

[42] Zhenki Liang, V.N. Venkatakrishnan, and R. Sekar. Isolated program execution: An

application transparent approach for executing untrustedprograms. InProceedings of the

Annual Computer Security Applications Conference, 2003.

[43] Linux. Man capabilities(7) in Linux man page. Confirming to POSIX.1e.

BIBLIOGRAPHY 56

[44] Linux. Man chmod(1) in Linux man page. Confirming to POSIX.1e.

[45] Linux-VServer.http://www.linux-vserver.org, 2006.

[46] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies

into the linux operating system. InProceedings of the Freenix Track of USENIX Technical

Conference, June 2001.

[47] Bharat Mediratta. Gallery photo album organizer.http://gallery.menalto.com/,

2004.

[48] Medusa DS9 security system.http://medusa.terminus.sk, viewed in November

2007.

[49] Sun Microsystems. Zfs.http://opensolaris.org/os/community/zfs.

[50] Microsoft Corporation Mike Friedman. IEBlog: Protected mode in Vista IE7.http:

//blogs.msdn.com/ie/archive/2006/02/09/528963.aspx, September 2006.

[51] Kiran-Kumar Muniswamy-Reddy, Charles P. Wright, Andrew Himmer, and Erex Zadok.

A versatile and user-oriented versioning file system. InUSENIX Conference on File and

Storage Technologies, 2004.

[52] Amon Ott. Rule set based access control as proposed in the generalized framework for

access control approach in linux. Master’s thesis, University of Hamburg, November

1997.http://www.rsbac.org/papers.htm.

[53] Zachary N.J. Peterson and Randal Burns. Ext3cow: A time-shifting file system for regu-

latory compliance.ACM Transactions on Storage, 1(2):190–212, May 2005.

[54] Daniel Price and Andrew Tucker. Solaris zones: Operating system support for consoli-

dating commercial workloads. InProceedings of the USENIX Large Installation Systems

Administration Conference, 2004.

BIBLIOGRAPHY 57

[55] Neil Provos. Improving host security with system call policies. In Proceedings of the

USENIX Security Symposium, pages 257–272, August 2003.

[56] Neil Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escalation. In

Proceedings of the USENIX Security Symposium, pages 231 – 242, August 2003.

[57] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage. InProceed-

ings of the USENIX Conference on File and Storage Technologies, January 2002.

[58] Peter Reiher, John S. Heidemann, David Ratner, GregorySkinner, and Gerald J. Popek.

Resolving file conflicts in the Ficus file system. InUSENIX Technical Conference, pages

183–195. USENIX, June 1994.

[59] Ravi S. Sadhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based

access control models.IEEE Computer, 29(2):38–4, February 1993.

[60] Jerome H. Saltzer. Protection and the control of information in multics.Communications

of the ACM, 17(7):338 – 402, July 1974.

[61] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch, Ross W.

Carton, and Jacob Ofir. Deciding when to forget in the Elephant file system. InPro-

ceedings of the Symposium on Operating Systems Principles (SOSP), pages 110–123,

December 1999.

[62] Frank Schmuck and Jim Wylie. Experience with transactions in QuickSilver. InProceed-

ings of the Symposium on Operating Systems Principles (SOSP), pages 239–253, 1991.

[63] Fred B. Schneider. Enforceable security policies.ACM Transactions on Information

System Security (TISSEC), 3(1):30–50, 2000.

[64] Kevin Scott and Jack Davidson. Safe virtual execution using software dynamic transla-

tion. In Proceedings of the Annual Computer Security Applications Conference, pages

209–218, 2002.

BIBLIOGRAPHY 58

[65] Secure chroot barrier - Linux-Vserver.http://linux-vserver.org/Secure_chroot_

Barrier, viewed in Aug 2007.

[66] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast capability

system. InProceedings of the Symposium on Operating Systems Principles (SOSP), pages

170 –0185, 1999.

[67] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.

Container-based operating system virtualization: A scalable, high-performance alterna-

tive to hypervisors. InProceedings of the EuroSys conference, pages 275–287, 2007.

[68] Craig A. N. Soules, Garth R. Goodson, John D. Strunk, andGregory R. Ganger. Metadata

efficiency in versioning file systems. InProceedings of the USENIX Conference on File

and Storage Technologies, pages 43–58, 2003.

[69] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules, and

Gregory R. Ganger. Self-securing storage: Protecting datain compromised systems. In

Proceedings of the Operating Systems Design and Implementation (OSDI), pages 165–

180, 2000.

[70] Weiqing Sun, Zhenkai Liang, R. Sekar, and V.N. Venkatakrishnan. One-way Isolation:

An Effective Approach for Realizing Safe Execution Environments. InProceedings of

the Network and Distributed System Security Symposium, February 2005.

[71] Michael M. Swift, Peter Brundett, Cliff Van Dyke, Praerit Garg, Anne Hopkins, Shannon

Chan, Mario Goertzel, and Gregory Jensenworth. Improving the granularity of access

control in Windows NT. InACM Symposium on Access Control Models and Technologies,

May 2001.

[72] SWSoft. Virtuozzo linux virtualization.http://www.virtuozzo.com.

[73] Miklos Szeredi. File system in user space (FUSE).http://fuse.sourgeforge.net.

BIBLIOGRAPHY 59

[74] Richard Ta-Min, Lionel Litty, and David Lie. Splittinginterfaces: Making trust between

applications and operating systems configurable. InProceedings of the Operating Systems

Design and Implementation (OSDI), pages 279–292, November 2006.

[75] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer,

and Carl H. Hauser. Managing update conflicts in Bayou, a weakly connected replicated

storage system. InProceedings of the 15th Symposium on Operating Systems Principles

(SOSP), pages 172–183, December 1995.

[76] David Thiel. Exposing vulnerabilities in media software. Black Hat USA 2007,http://

www.blackhat.com/html/bh-usa-07/bh-usa-07-speakers.html#thiel, August

2007.

[77] Surendra Verma and Charles Torre. Vista transactionalfile system, December 2005.

http://channel9.msdn.com/Showpost.aspx?postid=142120.

[78] Kenneth M. Walker, Daniel F. Sterne, M. Lee Badger, Michael J. Petkac, David L. Sher-

man, and Karn A. Oostendorp. Confining root prorgrams with domain and type enforce-

ment. InProceedings of the USENIX Security Symposium, 1996.

[79] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble.Denali: Lightweight virtual

machines for distributed and networked applications. Technical report, University of

Washington, 2002. 02-02-01.

[80] D. R. Wichers, D. M. Cook, R. A. Olsson, J. Crossley, P. Kerchen, K. N. Levitt, and

R. Lo. PACL’s: An access control list approach to anti-viralsecurity. InProceedings of

the National Computer Security Conference, pages 340–349, October 1990.

[81] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan, David P. Quigley, Erez

Zadok, and Mohammad Nayyar Zubair. Versatility and unix semantics in namespace

unification.ACM Transactions on Storage, 2(1):74–105, March 2006.

BIBLIOGRAPHY 60

[82] Huagang Xie and et al. Linux intrusion detection system(LIDS) project. http://www.

lids.org/.

[83] Adam Young and Moti Yung. Cryptovirology: Extortion-based security threats and coun-

termeasures. InProceedings of the IEEE Symposium on Security and Privacy, May 1996.

[84] Ningning Zhu and Tzi-Cker Chiueh. Design, implementation, and evaluation of re-

pairable file service. InProceedings of the IEEE Dependable Systems and Networks,

pages 217–226, June 2003.

