
INTRUSION ANALYSIS AND RECOVERY

by

Kamran Farhadi

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2005 by Kamran Farhadi

Abstract

Intrusion Analysis and Recovery

Kamran Farhadi

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2005

When intrusions occur, two of the most costly, time-consuming, and human-intensive tasks are

the analysis and recovery of the compromised system. This thesis uses a complete log of all

system activities for post-facto analysis and recovery, and it shows how historical analysis tools

can be implemented easily and efficiently over this complete log. These tools allow detailed

analysis of real attacks.

This thesis also describes a framework for efficiently recovering file-system data after an in-

trusion occurs or after some damage is caused by system management error. Our approach uses

an efficient redo recovery approach and ensures that no legitimate data is lost after recovery by

using automated conflict resolution algorithms to isolate compromised objects that are needed

by legitimate operations. This framework is fully implemented and a detailed evaluation shows

that it can correctly recover file-system data from a wide range of incidents.

ii

Acknowledgements

I would like to express my deepest gratitude to my supervisor Ashvin Goel. The list of reasons

I need to thank him is longer than this thesis, but in particular I would like to thank him for his

friendship, guidance and high standards in research which taught me a lot.

I am thankful to graduate students Kai Yi Po, Zheng Li and Thomas Liu at the University of

Toronto who helped me with my research and most importantly provided their friendship. I

would also like to thank Professor Eyal de Lara for his valuable input and feedback on my

research.

Finally, I would like to thank the University of Toronto as well as the Department of Electrical

and Computer Engineering for their financial support.

iii

Contents

1 Introduction 1

1.1 Challenges . 3

1.2 Contributions . 4

1.3 Thesis Structure . 5

2 Forensix Auditing System 6

3 Intrusion Analysis Infrastructure 9

3.1 Motivation . 9

3.2 System State Reconstruction . 12

3.2.1 Interval Tables . 13

3.2.2 Queries with Interval Tables . 14

3.3 Implementation of Interval Tables . 17

4 Intrusion Analysis Tools 19

4.1 Directory Tracker . 20

4.2 File-Contents Constructor . 21

4.3 File-Access Tracker . 22

4.4 Shell-IO Tracker . 24

5 Intrusion Recovery 26

5.1 Overview of Taser . 26

iv

5.2 Recovery Model . 29

5.3 Recovery Algorithm . 31

5.3.1 Simple Redo Algorithm . 32

5.3.2 Selective Redo Algorithm . 32

5.4 Conflict Resolution . 35

5.4.1 Name Conflicts . 36

5.4.2 Content Conflicts . 38

5.4.3 Attribute Conflicts . 38

5.4.4 Global Conflict Resolution . 39

5.5 The Resolver Implementation . 39

5.5.1 Resolver Structure . 39

5.5.2 Name Recovery . 42

5.5.3 Content Recovery . 45

5.5.4 Attribute Recovery . 46

5.5.5 Global Conflict Resolver . 46

5.5.6 Recovery Script Generator . 47

6 Evaluation 48

6.1 General Setup . 48

6.2 Intrusion Analysis Evaluation . 49

6.2.1 Analysis of Ftpd Attack . 49

6.2.2 Analysis Results . 51

6.2.3 Performance Measurements . 52

6.3 Intrusion Recovery Evaluation . 54

7 Related Work 57

7.1 Intrusion Analysis . 57

7.2 Intrusion Recovery . 60

v

8 Conclusions and Future Work 63

8.1 Future Work . 64

8.1.1 Enhanced Intrusion Analysis . 64

8.1.2 Towards Automating Recovery . 65

vi

List of Tables

3.1 Interval tables . 13

5.1 Dependency rules between processes, files and sockets 28

5.2 The recovery model . 30

5.3 Types of conflicts caused by different legitimate and tainted operations 36

5.4 File-system operations . 41

6.1 Time taken for each intrusion analysis query. 51

6.2 Average daily backend statistics . 53

6.3 Recovery measurements for different scenarios 54

vii

List of Figures

2.1 The Forensix architecture . 7

3.1 SQL code for implementing the inode interval table. 18

5.1 The Resolver . 29

5.2 Separating content, name and attribute operations 34

5.3 Legitimate operations occur after tainted operations 36

5.4 Structure of the Resolver . 40

5.5 Name recovery code (Part 1) . 43

5.6 Name recovery code (Part 2) . 43

5.7 Content recovery code . 45

6.1 File-access tracker output for ftpd attack. 50

6.2 Attack activities before getting the interactive root shell 50

6.3 IO tracker output for the ftpd attack. 51

viii

Chapter 1

Introduction

The rapid increase in the number of security incidents reported in the last 15 years [5] and

the constant evolution of threats has led to development of several defenses against intrusions.

However, there are strong reasons to believe that even with these defense mechanisms, intru-

sions will still occur. For example, the best defense against intrusions, implementing fully

secure and vulnerability-free applications, is not practical because of the unknown nature of

new vulnerabilities and the amount of time, code and expense required to secure all existing

and new applications. The next line of defense is the use of intrusion detection systems (IDS)

that apply a variety of techniques to identify attack signatures or anomalous behaviour in a

system. Unfortunately, IDSs are not ideal and can miss detection of some intrusions.

When an intrusion occurs, the system administrator needs to analyze it to understand the na-

ture of the vulnerability that was exploited and the extent of damage that was caused. This post-

facto intrusion analysis process is time intensive and highly error prone, because it is performed

manually or with the help of rudimentary and hard-to-use tools. The Coroner’s Toolkit [9] and

the Sleuth Kit [4] are classic examples of intrusion analysis tools that sift through compromised

systems to gather information such as the list of current processes or connections, application-

or system-level log files, and unallocated blocks which contain deleted files. These tools are

insufficient for detailed intrusion analysis because the available information about past activ-

1

CHAPTER 1. INTRODUCTION 2

ity is incomplete and unstructured. For example, system log files are “lossy” and only track

events based on what the system administrators think are necessary to log. Vital information

about where a hacker connected from, how the hacker entered and what the hacker did after he

entered is not necessarily collected in the log files, or these files may have been tampered or

deleted by the hacker.

This thesis focuses on developing comprehensive, efficient and easy-to-write intrusion

analysis tools. Intrusion analysis seeks to answer questions such as “where did the attack

come from”, “what vulnerability was exploited”, and “what has been damaged or which files

did the attacker modify”. Our analysis approach consists of two components, complete audit-

ing and state reconstruction. We gather an accurate, high-resolution log of all system activities.

In particular, we use the Forensix auditing system to securely and accurately log all opera-

tions related to files, processes and sockets [12]. This complete audit log allows analysis of

known intrusions as well as intrusions that become known in the future since the log captures

all system activities rather than just those that are considered important today.

With the complete audit log, we designed and implemented a novel reconstruction tech-

nique that simplifies the implementation of historical intrusion analysis queries and allows

running these queries near real-time on large data sets. Our reconstruction approach consists

of storing the lifetimes of different objects and their attributes. Consider an analysis query that

requires finding all files owned by a malevolent user at a given time. For this historical query,

we create an owner lifetime interval table to store information about the different owners of

each file over time. Each row of this table contains the time interval (start and end time) dur-

ing which a certain file had a certain owner. With this table, which can be pre-generated, it is

straightforward to find all files with a certain owner at a given time since all such files should

have a row in the owner interval table with that owner and an interval which contains the spec-

ified time. We use this technique to implement various types of post-facto intrusion analysis

tools as well as implement a recovery framework described below.

The second focus of this thesis is intrusion recovery of compromised systems. Intrusion re-

CHAPTER 1. INTRODUCTION 3

covery typically involves many manual steps: installation of a new system image that includes

the operating system and all applications, installation of software patches that fix known vul-

nerabilities, and retrieval of uncorrupted user data. Today, snapshot-based file-systems [28, 34]

provide a well understood and commonly deployed recovery solution [39]. This method gets

rid of all corrupted data, but unfortunately, it also gets rid of useful data not related to the

intrusion, and then this data must be manually retrieved or recovered separately.

The goal of intrusion recovery is to preserve all legitimate data while reverting the effects of

attack-related (or tainted) file-system modification operations. Our recovery approach is based

on the separation of attack-related activities from other legitimate activities. This separation is

performed with an existing taint analysis method that uses the audit information to determine

tainted system objects and operations [13]. Then, we define a novel framework that recovers

only those parts of the file system that were affected by the attack and preserves the effects of

all legitimate activities.

The recovery framework reverts the effects of tainted operations by selectively replaying

legitimate operations on tainted file-system objects. However, legitimate operations that need

to be preserved may depend on tainted operations. For example, a legitimate file may have

been created in a tainted directory and simply removing the tainted directory conflicts with the

legitimate file that needs to be preserved. To ensure that legitimate operations are not reverted,

this thesis defines conflict resolution algorithms to isolate tainted operations. To do so, file-

system operations are separated into name, content and attribute operations. This approach

simplifies resolution, allows recovery actions that are suited for each type of operation, and

enables fully automatic name and attribute conflict resolution.

1.1 Challenges

In general, intrusion analysis and recovery raises three types of challenges. First, we need to

log all system activities. With the rapid and continuous decline in computing, networking, and

CHAPTER 1. INTRODUCTION 4

storage costs, this type of logging is now technically and economically feasible [35, 7, 19, 12].

The second challenge is that the audit log should allow efficient analysis queries and easy-

to-write analysis tools. The raw audit log raises two problems: 1) the large amount of log

generated can overwhelm traditional data analysis techniques and, 2) the raw audit log consists

of changes in system state, such as when a process is created or when a file name or attribute

is modified, while analysis often requires determining the state of the system at a given time

or a time interval such as just before or after an attack. To do so, one needs to reconstruct the

system state from the “state change” audit log. A simple method for recreating state consists of

sequentially processing all the log. Unfortunately, the large amount of data processing involved

can slow the queries which limits their usefulness since intrusion analysis is an inherently in-

teractive process. In addition, as shown later, implementing analysis queries with this approach

requires non-trivial effort.

Finally, with intrusion recovery, the challenge is to identify attack operations and revert

them only. The recovery process should be able to efficiently restore each tainted file-system

object to a clean state without losing legitimate data or violating file-system consistency. In

addition, legitimate objects or operations may depend on tainted objects. In this case, resolution

methods need to be defined so that legitimate objects can be preserved.

1.2 Contributions

This thesis shows that comprehensive, efficient and easy-to-write intrusion analysis tools can

be implemented using lifetime intervals (or interval tables) of different attributes of system

objects. Interval tables provide a powerful mechanism for recreating the historical state of a

system from the raw audit log. We define and implement several interval tables based on the

requirements of analysis tools and show how these interval tables simplify the implementation

and improve the performance of queries in the Forensix auditing system [12]. We use the

interval tables to implement a range of host-based analysis tools including, file-access tracker,

CHAPTER 1. INTRODUCTION 5

file-contents constructor and shell activities tracker. In essence, we show that using a complete

audit trail, it is possible to subsume several existing intrusion analysis tools. To prove the utility

of these tools, we apply them to real attacks, describe analysis results and show how one can

query and analyze large audit logs interactively.

As the second contribution, this thesis describes a framework for recovering file-system

data after an intrusion occurs or after some damage is caused by system management error. We

use an existing taint analysis method [13] to identify attack-related activities. Our approach

reverts the effects of the activities and ensures that no legitimate data is lost after recovery. We

provide automated conflict resolution algorithms to isolate tainted objects which cannot be re-

verted because they are needed by legitimate operations. This framework is fully implemented

and a detailed evaluation shows that it can correctly recover file-system data from a wide range

of intrusions as well as erroneous system management activities.

1.3 Thesis Structure

Chapter 2 briefly describes the Forensix auditing system used in this research. Chapter 3 de-

fines the infrastructure or lifetime intervals (interval tables) for intrusion analysis and Chapter 4

presents a number of tools on that basis. Chapter 5 defines the framework for intrusion recov-

ery and provides algorithms to resolve conflicts between tainted and legitimate file-system

operations. Chapter 6 evaluates the intrusion analysis tools and recovery algorithms in detail.

Chapter 7 presents the related work in intrusion analysis and intrusion recovery areas. Finally,

chapter 8 presents the conclusions and directions for future work.

Chapter 2

Forensix Auditing System

For intrusion analysis and recovery, we need to track the operations of three types of ker-

nel objects, processes, files and socket connections. To do so, this thesis uses the Forensix

system [12] that audits all kernel operations related to process management, file system and

networking. In particular, Forensix monitors and logs all the relevant system calls and all their

arguments.

Figure 2.1 shows the Forensix architecture. The target system, which provides services to

the public network, is potentially vulnerable. The Forensix kernel logger audits all process

management, file system and networking system calls on the target system and transmits the

audit log over a dedicated network to a secured backend system where the log is stored in

append-only files. Separating the backend from the target machine helps to ensure that logged

information cannot be destroyed easily. In the backend system, the audit log is batch-loaded

into a MySQL database periodically or on demand. Also, right before Forensix is started, a file-

system snapshot of the target system is taken manually and stored on the backend machine. The

audit database and the file-system snapshot are then used by our analysis and recovery tools

which operate entirely on the backend and leave evidence intact on the target.

We assume that the logging system on the target is not corrupted as a result of an attack.

Since Forensix runs in the kernel on the target system, this implies the assumption that the

6

CHAPTER 2. FORENSIX AUDITING SYSTEM 7

Application server

Public network

Private network Logging pinhole

Backend
system

Forensix database

Append-only files

Target
system

Forensix kernel logger

Operating system

Figure 2.1: The Forensix architecture

applications but not the kernel on the target can be vulnerable. To reduce the risk of kernel

intrusions, Forensix uses the Linux Intrusion Detection System (LIDS) [41], a kernel patch that

adds Mandatory Access Control (MAC) and other security enhancements to the Linux kernel.

Forensix uses LIDS particularly to disable 1) user-level writes to kernel memory, 2) user-level

writes via the raw disk interface, 3) writing to the kernel or Forensix binary files, and 4) the

loading of kernel modules. These simple measures make current root-kits ineffective [11, 29].

Forensix uses the Linux Security Modules facility [40] to capture information that helps

to unambiguously determine the identity of system objects such as files, sockets and processes

when they are accessed during system calls. This approach provides accurate ordering of events

and race-free auditing [10]. Although Forensix uses kernel-based logging, it could, in princi-

ple, use other auditing mechanisms such as VM-based auditing that can provide additional

resistance to attacks on the logging mechanism [7, 11].

To facilitate log data analysis, each kernel object of interest (sockets, processes and files)

must be assigned an identifier that remains unique over time. For sockets and processes, the

Forensix kernel logger attaches a creation time-stamp to the socket and the process id. To

track operations on a file object, Forensix uses an object identifier, which for Unix-based files

is the inode number. However, since inode numbers can be reused after an object is removed

and these numbers are not unique across devices, we should use the three tuple (device, inode,

CHAPTER 2. FORENSIX AUDITING SYSTEM 8

generation number) to uniquely identify file-system objects. This tuple is called the object id.

Note that the generation number is used to differentiate between an inode before and after it

has been deleted and reused.

The audit log captured from the target system is stored in the backend Forensix database.

This database consists of several tables each of which stores similar types of operations on

kernel objects. For example, all operations which modify the contents of files are stored in one

table, while the name of files that are executed are stored in another table. This separation of

operations allows efficient and easy access to the logged data since query-based accesses to

each table can be independently optimized using table-specific indexes.

Chapter 3

Intrusion Analysis Infrastructure

The Forensix system provides the auditing infrastructure for intrusion analysis. Our goal is

to use the audit data to develop efficient and easy-to-write intrusion analysis tools. Unfortu-

nately, the large amount of raw audit data generated by Forensix can overwhelm traditional

data analysis techniques. This chapter first motivates the problem associated with implement-

ing historical intrusion analysis queries and then describes a framework that allows speeding

up and simplifying the implementation of these queries. With this framework, we implement

several post-facto intrusion analysis tools (described in Chapter 4) and intrusion recovery tools

(described in Chapter 5).

3.1 Motivation

Raw audit data typically consists of changes in system state. For example, with Forensix, the

fork and wait events indicate the creation of a process and exit of a child process. Intrusion

analysis and recovery queries, on the other hand, require determining the state of the system at

a given time or a time interval. For example, one may wish to know the names of processes that

existed in the last hour. This query requires processing all the fork and wait audit events to

determine the lifetimes of processes. Below, several other scenarios are described to motivate

the problem of analyzing system state from raw audit data. These scenarios are chosen based

9

CHAPTER 3. INTRUSION ANALYSIS INFRASTRUCTURE 10

on our experiences with building intrusion analysis tools that are described later in Chapter 4.

Scenario 1: Find files with owner=O and permission=P at time=T. Suspecting that some-

one has used a ptrace execve race to create an unauthorized setuid root binary, an administrator

wishes to compare the setuid root binaries that currently exist on the system with those that

existed a few days earlier. A general query of this type requires processing four different sets

of events that occur before time T. These events are file creation (mkdir, mknod, create,

symlink), change ownership (chown*1), change permission (chmod*) and file deletion

(rmdir, unlink).

To find files that were owned by O at time T, we need to use the first two sets (file creation

and change ownership) and determine for each file2 the last event that occurred before time T

and that set the owner to O. In addition, we need to remove files that have been deleted before

time T. Similarly, to find files that had permission P at time T, we need to use the file creation,

change permission and file deletion sets. The final result is obtained by intersecting the two

sets (the and condition). This relatively simple query is difficult to write using the raw data and

it is inconvenient because the user has to query various different types of events. Furthermore,

the query is inefficient because all events of the four types must be examined even though only

the last event before time T is relevant for any given file.

Scenario 2: Find the contents of directory=D at time=T. Knowing that popular rootkit and

local root exploit tarballs unpack into directories named rkid and xpl, an administrator wishes

to find all directories that ever had these names as well as the contents of these directories.

The latter query requires processing all events that occur before time T and that create an entry

(mkdir, mknod, create, symlink, link), rename an entry (rename) or remove an entry

(rmdir, unlink) from directory D. This query is inefficient because it requires processing

1The asterisk after an event indicates that the event has multiple variants. For example, chown and fchown
perform similar operations.

2The queries described here work on file identifiers or inode numbers. Later, we describe queries that convert
inode numbers to file names.

CHAPTER 3. INTRUSION ANALYSIS INFRASTRUCTURE 11

or replaying all events related to directory D until time T to determine the contents of the

directory.

Scenario 3: Find the path name of a file whose inode=I at time=T. Suspecting that some-

one has modified /etc/passwd, an administrator wishes to find all accesses to the corresponding

inode as well as all names (hard links) and symbolic links associated with this file. The latter

query performs reverse name resolution from file identifiers (inode numbers) to path names.

To do so, first the file name of inode number I at time T must be determined by looking for the

last event before time T that either created (mkdir, mknod, create, symlink, link) or

updated (rename) a name for that inode. In addition, the inode number of the parent direc-

tory during that event must be known. This process of looking for the last event must then be

performed recursively for the parent directory’s inode number until the whole path is resolved.

This query has to examine many different events and determine the last events that are relevant.

Scenario 4: Find processes whose effective user id=E between Ts and Te. Having been

informed of a new exploit that allows the apache user to run a setuid root binary, an adminis-

trator wishes to find all such privilege escalations over the last two weeks. For this query, we

need to consider the fork*, execve, setuid* and wait* events. The first type of event

can be used to find the set of processes that were created with euid set to E. The second type of

event helps determine the set of processes that executed a setuid file whose owner was E, while

the third type of event shows the set of processes that successfully changed their effective user

id to E. The last type of event is used to filter processes that exit before time Ts. This query is

complicated because different processing is required for each set of events. Note that all the

relevant events until time Te must be processed. For example, a process that is created much

before time Ts with euid E and exits after Ts would match the query.

Scenarios 5: Find all processes whose lifetimes overlapped with the process whose name=N.

During the analysis of an attack, an administrator finds that the wget program was run to down-

CHAPTER 3. INTRUSION ANALYSIS INFRASTRUCTURE 12

load a “rk.jpg” binary. He wishes to find all server processes that were running at that time to

confirm his hypothesis that the ftp daemon was attacked. This query requires determining the

lifetimes of all processes, which requires processing all fork* and wait* events. In addition,

we need to find the lifetimes of processes whose name is N, which also requires processing all

execve events.

Scenario 6: Find root-owned setuid files that were executed by non-root processes. The

administrator wishes to create a daily privilege escalation report. This query is, roughly speak-

ing, a combination of the first and fourth queries and not described in more detail here. It has

constraints on both file and process attributes, which makes it more complex to write than any

of the previous queries.

Above examples show that analysis using the raw audit data is challenging, and most of the

times it requires processing large amounts of data.

3.2 System State Reconstruction

The previous section showed that analysis and recovery queries often require determining the

historical state of a system. While this state is not directly available from the raw audit data,

it can be easily derived once the lifetimes of different objects or their attributes is known. For

example, in Query 5 in the previous section, overlapping processes can be easily found once

the lifetimes of all processes is known. Knowing these lifetimes can simplify as well as speed

up the queries significantly.

We create this lifetime information by pre-processing the Forensix audit log and store this

information in auxiliary tables that are called interval tables. These tables store the lifetimes of

objects or their attributes, and we refer to the process of creating these tables as reconstruction

of system state. We will show later that while reconstructing this state involves some initial

cost, it enables running queries efficiently and it simplifies the implementation of these queries.

CHAPTER 3. INTRUSION ANALYSIS INFRASTRUCTURE 13

Interval table Table columns Events that update the table

inode table
inode+, file_name, parent_inode+, Ts,
Te

create*, mkdir, link, symlink,
mknod, rename, unlink, rmdir

connection table inode+, connection_tuple+, Ts, Te socketcall* (accept, connect, etc.)

file_owner table
inode+, owner, group, permission, Ts,
Te

create*, mkdir, symlink, mknod,
chown*, chmod*, unlink, rmdir

process table
pid+, inode+, file_name, par-
ent_inode+, Ts, Te

fork*, execve, wait*

process_owner ta-
ble

pid+, uid, euid, gid, egid, Ts, Te fork*, execve, wait*, setuid*

For each interval table, the second column shows the columns of the interval table. The last
column shows the events that update the interval table. The plus sign after inode, connec-
tion_tuple and pid shows that these system objects must be uniquely identified. The asterisk
sign after certain events indicates that there are several variants of these events.

Table 3.1: Interval tables

3.2.1 Interval Tables

We have identified several useful interval tables based on the requirements of our analysis tools.

These tables are shown in Table 3.1. The data in these tables is obtained from the Forensix event

data. Each row of an interval table maps a system object such as a file or connection or process

and (optionally) an attribute of this object to a lifetime, which consists of a start time Ts and an

end time Te.

The inode interval table correlates a file identifier (inode number) to the lifetime of its

names. For each row in this table, the start time is the time when the file name was initially

created and, similarly, the end time is when the file name was removed. For example, a new

row is created in this table when a new file or a file name (link) is created. The end time is

updated when the file name is removed. A file rename is considered equivalent to a file name

removal and a file name creation. In addition to the file name, this table contains the type of the

inode (e.g., file, directory, symbolic link, device node, etc.) and the inode number of the parent

directory. The connection interval table maps a connection to the lifetime of a connection.

The file_owner interval table correlates a file with its owner, group and permissions so that

each row represents a unique owner, group and permission for the file.

CHAPTER 3. INTRUSION ANALYSIS INFRASTRUCTURE 14

The process interval table correlates a process identifier with the lifetime of the process

name. A process identifier with multiple names (execve) creates multiple entries in this table.

The process_owner interval table maps a process identifier to the lifetime of the process

owner (user and group id).

The main requirement for constructing interval tables is that each system object should

have a unique identifier over time. For the tables in Table 3.1, we need to create unique process

identifiers (pid), file identifiers (inode number) and connection identifiers (connection_tuple).

To disambiguate processes, the kernel-level event logging subsystem shown in Figure 2.1 ap-

pends a process creation time-stamp to each pid. Files are uniquely identified with a device

number, inode number and a generation number that is stored on disk by most commonly avail-

able Unix file systems today. The generation number is incremented when an inode number

is reused. The connection tuple consists of source and destination addresses and ports. This

tuple together with the connection inode (used to determine reads and writes to a connection)

uniquely identifies a connection over time. To speed up queries, we create database indexes on

the unique identifiers in each interval table.

Section 3.3, provides a detailed example of how the interval tables are constructed from the

raw data.

3.2.2 Queries with Interval Tables

The interval tables described above greatly simplify analysis queries written for the Forensix

system. Below, we show how the queries described in Section 3.1 can be easily implemented

with the interval tables. These queries are used as building blocks for implementing the com-

prehensive set of intrusion analysis tools that are described later in Chapter 4.

The queries in our system are implemented using SQL code. Readers unfamiliar with SQL

can scan the rest of this section but should notice the simplicity of the code implementing these

complex queries.

CHAPTER 3. INTRUSION ANALYSIS INFRASTRUCTURE 15

Query 1: Find files with owner=O and permission=P at time=T. The following simple

SQL query provides the results for this query. The names of files can be derived from the inode

numbers returned by this query using Query 3 below. Note the use of time interval (ts, te)

here and in all the queries below to determine system state.

SELECT f.inode
FROM file_owner f
WHERE f.owner = O AND f.permission = P

AND T BETWEEN (f.ts, f.te)

Query 2: Find the contents of directory=D at time=T. This query, which lists the contents

of a directory at a given time, takes advantage of the parent_inode information available

in the inode interval table. It lists all file names that have the parent directory D at time T. If

the directory is specified by name, then the inode interval table can be used to first find the

directory’s inode number D.

SELECT i.file_name
FROM inode i
WHERE i.parent_inode = D

AND T BETWEEN (i.ts, i.te)

Query 3: Find the path name of a file whose inode=I at time=T. This query requires a

loop to find the path name one component at a time. The pseudo code is shown below.

INODE = I
do:

SELECT i.file_name, i.parent_inode
FROM inode i
WHERE i.inode = INODE
AND T BETWEEN (i.ts, i.te)

INODE = i.parent_inode
while INODE is not ’/’ # root inode

Query 4: Find processes whose effective user id=E between T1 and T2. The following

simple query operates on the process_owner interval table. Note that the last two condi-

tions search for overlapping time intervals.

CHAPTER 3. INTRUSION ANALYSIS INFRASTRUCTURE 16

SELECT p.pid
FROM process_owner p
WHERE p.euid = E

AND T1 < p.te
AND T2 > p.ts

Query 5: Find all processes whose lifetimes overlapped with the process whose name=N.

This query is a little more involved and requires a temporal join of the process interval table

with itself to find the overlapping intervals.

SELECT DISTINCT p2.pid
FROM process p1, process p2
WHERE p1.name = N

AND p1.pid != p2.pid # ignore self
overlapping interval

AND p2.ts <= p1.te
AND p2.te >= p1.ts

Query 6: Find root-owned setuid files that were executed by non-root processes. This

query is more complex than the previous queries because it has constraints on both file and

process attributes. In addition, it requires data about the execve event. The execve data is

stored in Forensix as a separate exec table. This table stores the event time-stamp, the process

id and the inode number of the file that was executed. The query below joins the data from

the file_owner interval table (for setuid files), the process_owner interval table (for

non-root processes) and the exec table to derive the query results.

SELECT e.inode
FROM file_owner f,

process_owner_table p, exec e
WHERE f.owner = ’root’

AND f.permissions has ’setuid’
non-root process

AND p.euid != ’root’
AND e.pid = p.pid

file that was executed
AND e.inode = f.inode
AND e.time BETWEEN (f.ts, f.te)
AND e.time BETWEEN (p.ts, p.te)

CHAPTER 3. INTRUSION ANALYSIS INFRASTRUCTURE 17

3.3 Implementation of Interval Tables

In this section, we describe the implementation of the interval tables which are used by our

analysis tools. The tools are described in Chapter 4. We construct interval tables using a small

number of SQL queries. For each table, at least two queries are needed, one for the start time

and another for the end time of an entry. The tables are updated whenever the audit log is

loaded in the background into the Forensix database.

As an example, Figure 3.1 shows the basic SQL code that populates the inode interval

table. Recall that each row of this table contains the time when a file name was initially created

(start time) and the time when the file name was removed (end time). The first query inserts

new entries into the table and sets the start time for these entries. It searches the Forensix

name_create_event table that stores all the events that create a new file name such as

creat, open, mkdir, link, rename, symlink and mknod.

The second and third queries update the end times of current entries in the inode interval

table based on the unlink, rename and rmdir calls available in the Forensix name_re-

move_event table (note that the rename event consists of a name creation as well as name

removal operation). To find the correct end time, we use a GROUP BY clause to match the

creation of each file name with the earliest removal of that name in the same directory since

other files with the same name may be created and removed in that directory at other times.

The object id (inode number), by itself, is not sufficient for tracking the names of an object

since file objects can have multiple names. To track names, the inode interval table maintains

a name id (not shown in the figure 3.1) for each name of the file that consists of the tuple

(object id, creation id). When a file object is created, it is assigned a starting creation id, and

when a new name for the file is created (e.g., with the link system call), this new name is

given a new creation id. The creation id does not change when a name is updated (e.g, with the

rename system call) while the removal of a name ends the lifetime of the name id associated

with that name. Our name id approach allows tracking name operations independently of file

object (content, attribute) operations.

CHAPTER 3. INTRUSION ANALYSIS INFRASTRUCTURE 18

Insert rows for newly created files
INSERT IGNORE INTO inode
SELECT e.inode, e.filename, e.parent_inode, e.time
FROM name_create_event e

WHERE e.returncode >= 0

Find end times for existing rows
CREATE TEMPORARY TABLE temp_end_time

SELECT i.id, min(e.time) AS end_time
FROM inode_table i, name_remove_event e
WHERE e.returncode >= 0

AND i.parent_inode = e.parent_inode
AND i.filename = e.filename
AND i.end_time is not set
AND e.time > i.start_time

GROUP BY i.id;

Update end times
UPDATE inode i, temp_end_time t
SET i.end_time = t.end_time
WHERE i.id = t.id;

The first query creates new rows and sets the start time of these rows in the inode interval
table. The second and third queries find and update the end times of existing rows.

Figure 3.1: SQL code for implementing the inode interval table.

Other interval tables are implemented using queries that are similar to the inode interval

table. Table 3.1 shows the set of events that are queried to update each interval table.

Chapter 4

Intrusion Analysis Tools

The previous chapter presented our approach of using interval tables to reconstruct historical

system state. This chapter describes how these tables can be used to build powerful and effi-

cient analysis tools that subsume many existing host-based intrusion analysis tools. A detailed

comparison with related approaches will be presented in the chapter on related work (Chap-

ter 7).

Below, we present four types of tools that allow analysis of intrusions that occur via system

call operations. In particular, these tools examine the operations performed by three types

of kernel objects, processes, files and network sockets, and the interactions between these

objects. The directory tracker lists the contents of directories, the file-contents constructor

recreates the contents of files, the file-access tracker shows files that have been accessed or

modified by a process or set of processes in a given time interval, and the shell-IO tracker

replays the IO performed by shell processes. The first two tools help analysis of operations on

files (and directories) while the latter two tools cover interactions between processes, files and

sockets. For example, the shell-IO tracker allows replaying the IO performed by a process over

a character device file or a socket.

Our evaluation in Chapter 6 shows that these tools are quite comprehensive and help anal-

ysis of real intrusions. While it is possible to implement other types of tools using the Forensix

19

CHAPTER 4. INTRUSION ANALYSIS TOOLS 20

audit data, the goal of this thesis is to show that the reconstruction of system state via interval

tables provides a methodology for creating historical analysis tools such as the ones we have

developed.

4.1 Directory Tracker

The directory tracker lists the contents of a directory at a given time. For example, the file-

access tracker (described next) might show a directory that was created by an attacker. The

directory tracker could show the contents of the directory after the attack even though the

directory may have been removed by the attacker later.

The basic directory tracker is shown below. It lists the contents of a directory with the

object id D at the given time T. The simplicity of the query results from using the inode

and the file_owner interval tables. The inode table provides the contents of the directory

while the file_owner table provides the meta-data information such as the owner of the

files.

SELECT i.file_name, o.owner, o.permission
FROM inode i, file_owner o
WHERE i.parent_inode = D

AND T BETWEEN (i.ts, i.te)

AND o.inode = i.inode
AND T BETWEEN (o.ts, o.te)

The input to the directory tracker is either an object id or a path name, and the time at which

the object/path name is to be analyzed. If the input is a path name, then we convert this path

name to an object id as described below and then use the object id in the query above.

Resolving path name to Object Id

A path name in the Unix file-system is hierarchical and starts with the root directory “/”, then

it may contain several components each of which can be a directory, a symbolic link, or may

CHAPTER 4. INTRUSION ANALYSIS TOOLS 21

have a special meaning such as “..”. Therefore, to obtain the object id of a path name at a given

time, we start from the root node and traverse and resolve each path component to an object id

until we reach the end of path name. The query below finds the object id of the path component

N which is in directory D (at the given time T). This query is performed repeatedly to derive

the object id of a path name.

SELECT i.inode
FROM inode i
WHERE i.parent_inode = D

AND i.file_name = N
AND T BETWEEN (i.ts, i.te)

Note that symbolic links in the path name are resolved to their target string. Also, special

meaning path components are resolved so that the path name is canonicalized at the end.

4.2 File-Contents Constructor

The file-content constructor allows recreating the contents of files at a given time. To do so, it

first derives the object id of the given file’s path name using the algorithm in section 4.1. Then

it replays all events before the given time which modified the contents of the file with the object

id. It uses the following simple query which retrieves data from the write table in Forensix

that stores the inode number, data, position and length of writes for write events and displays

it in time order.

SELECT data, position, length
FROM write
WHERE inode = I
ORDER BY time;

Files which exist before Forensix was started are obtained from a file-system snapshot taken

right before Forensix is started. This tool is used during file-system recovery (see Chapter 5)

because it is able to recreate any version of a given file at any given time.

CHAPTER 4. INTRUSION ANALYSIS TOOLS 22

One optimization to this tool is to replay only those file events after the last complete

truncation of the file. This simple optimization proves to be effective for several files that are

modified in non-appending mode and usually are completely truncated before their modified

content is written back to disk.

At this time, the main limitation of file contents constructor is that it does not recreate files

that have memory mapped writes. However, Snow et al [32] are currently working on a project

to modify Forensix to track memory-mapped files via page cache auditing.

4.3 File-Access Tracker

The file-access tracker in its simplest form displays the access or the modification times of files.

To do so, it considers all events that read, execute, create, modify or remove the contents or the

attributes of files. This data can be voluminous so the tracker provides several different types

of filters that limit the results. These filters can provide additional information also. These

filters are briefly described below.

Event type: This filter limits results based on the type of access. For example, it can show

only create events.

Time: Limits results by time interval.

Last access: This filter only shows the last access or modification time of a file.

File names: Used to filter results based on names of files as well as show the names of files.

For example, one may only be interested in files modified in the /bin directory. This

filter uses the inode interval table.

File attributes: Used to filter results based on file attributes such as type of file (file, directory,

symlink, etc.), owner, group or permissions. For example, one may only be interested in

root-owned files. This filter uses the file_owner interval table.

CHAPTER 4. INTRUSION ANALYSIS TOOLS 23

Process names: Filter results based on accesses performed by certain types of processes. This

filter can be either the process name or the process executable. This filter uses the

process interval table.

Process attributes: Filter results based on process attributes such as uid, euid, etc. This filter

uses the process_owner interval table.

The file-access tracker also allows grouping by any of the attributes above. For example, one

can view the frequency of file accesses in directories modified by a server program such as

the Apache web server and group this information both by directories and on a daily basis.

Since the behavior of server programs is relatively well characterized [22], such a view would

quickly show if a new directory was modified or if the directory access patterns had changed

considerably on a given day compared to previous days. The user could then look for more

detailed views for that day.

The implementation of these filters involves a database join between the interval tables and

the underlying Forensix tables. The Forensix tables contain the pid and the inode number for

the file access events. The interval tables contain either the pid or the inode number that is used

as the join condition. For example, Query 6 in Section 3.2.2, which determines root-owned

setuid files that were executed by non-root processes, is a specialized case of the file-access

tracker. In that query, the file_owner and the process_owner interval tables are joined

with the auxiliary exec table that contains the pid and the inode number of the file that was

executed. The join operation allows combining all or some of these filters to form powerful

queries.

The output of the filter are file object ids that need to be resolved to full path names. This

resolution is described below. After this resolution, the result is filtered based on path name

conditions, if there exist any such conditions.

CHAPTER 4. INTRUSION ANALYSIS TOOLS 24

Resolving Object Id to path name

Resolving an object id to a path name is similar but simpler to resolving a path name to an

object id. The difference is that the path name is created in reverse order. Using the query

below, the object id I is resolved to a name and parent directory at time T and the process is

repeated for the parent directory until we reach root (“/”). At this point, all the path components

are obtained and the full canonicalized path name can be created.

SELECT i.file_name, i.parent_inode
FROM inode i
WHERE i.inode = I

AND T BETWEEN (i.ts, i.te)

4.4 Shell-IO Tracker

The shell IO tracker replays the user IO performed (what the user typed and what the user

saw) in an interactive shell login process. The input to this tool is the pid of the process which

started a login shell. Processes of this type can be easily identified since they typically execute

a shell program such as /bin/sh and open a character device file such as /dev/pts/0 to send shell

output and to echo back a user’s typed character. To replay a user’s shell, first the process tree

of the main shell process should be generated so that the whole session is captured. Children of

a process PID can be found by the query below which is executed recursively until the whole

process tree is generated.

INSERT INTO tmp_pid
SELECT child_pid
FROM fork
WHERE pid = PID

Then, all the writes issued by any of the processes in tmp_pid to the shell’s character device

file (the device path name is resolved to object id I) are retrieved using the query below. We

also retrieve the time of these writes so that we can replay the shell output in time order and at

CHAPTER 4. INTRUSION ANALYSIS TOOLS 25

the same speed as the shell user’s interaction. This query replays all activity seen by a local or

remote intruder.

SELECT w.data, w.time
FROM write w, tmp_pid p
WHERE w.pid = p.pid

AND w.inode = I
ORDER BY w.time

The basic implementation of the shell-IO tracker applies to terminal emulators such as xterm

and remote-login programs such as sshd both of which use pseudo-terminal master and slave

files (ptmx and pts) to implement interactive shells. Other types of shells are slightly harder

to trace. For example, many remote shells and backdoors only use sockets to interact with

user and do not create a terminal or a pseudo-terminal on the local machine. Typically, at the

beginning, these shells duplicate the socket’s file descriptor three times with file descriptors 0,

1 and 2 which represent stdout, stdin and stderr respectively. The query below uses

this heuristic to identify the main shell processes and the inode of their communicating socket.

Shell IO can then be retrieved using the socket inode as the input to the same code described

above.

SELECT pid, inode
FROM dup_event
WHERE event = dup2

AND inode_type = socket
AND newfd IN (0,1,2)

Chapter 5

Intrusion Recovery

The second goal of this thesis is file-system recovery after an intrusion. Our recovery approach

reverts the effects of attack-related (tainted) file-system modification operations while preserv-

ing all legitimate data. This approach has been implemented as part of the Taser intrusion

recovery system [13]. Below, we provide an overview of Taser. Then we describe our file-

system recovery model and the recovery algorithm. As part of recovery, legitimate operations

may sometimes depend on tainted operations. To preserve the effects of such legitimate oper-

ations, we define conflict resolution procedures that isolate the tainted operations rather than

reverting them. Our recovery algorithms use the intrusion analysis infrastructure and some of

the analysis tools described in Chapters 3 and 4.

5.1 Overview of Taser

The Taser system recovers file-system data after an intrusion or management error by reverting

the file-system modification operations affected by a system compromise or a system manage-

ment error while preserving the modifications made by legitimate processes. From now on, we

use the term intrusion to mean a system compromise as well as a management error.

The Taser architecture consists of three main components: Auditor, Analyzer, and Resolver.

The Auditor consists of the Forensix auditing system described in Chapter 2, and it runs in the

26

CHAPTER 5. INTRUSION RECOVERY 27

background during normal system operation and creates an audit log of all system activities

including file-system operations. The Analyzer and Resolver are executed by an administrator

during the recovery process. Recovery is started after an intrusion has been detected externally

such as by an intrusion detection system (IDS) or by an administrator. The Analyzer uses the

audit log to determine the set of tainted file-system objects that were affected by the intrusion.

The Resolver uses this set of tainted objects and the audit log to revert file-system modifications

resulting from the intrusion. To revert operations, the Resolver selectively replays legitimate

file-system operations on the tainted objects. Below, we provide an overview of the Analyzer

and the Resolver.

The Analyzer component of Taser determines the set of tainted file-system objects by creat-

ing dependencies between sockets, processes and files based on entries in the audit log. Socket

connections form initiating points for remote attacks, processes issue operations that create

other dependent processes or files, and file accesses cause additional dependencies, and, in

addition, files are the persistent state of the system that need to be recovered.

A dependency is caused when information flows from one kernel object to another via a

system-call operation. For example, when a process writes to a file, the file becomes depen-

dent on the process. Similarly, a process becomes dependent on a file when it reads the file.

Table 5.1 shows the dependency rules between the kernel objects that are considered by the

Analyzer. These rules are used to taint a dependent object when the source object is tainted.

Each dependency, which always involves a process, is caused by the type of operations shown

in the corresponding row. The last column of Table 5.1 shows some of the key system call

operations that constitute each type of operation. For the details of each dependency rule, the

reader is referred to a more complete description of the Analyzer [13].

The Analyzer’s tainting algorithm derives the set of tainted objects using the Forensix audit

log, the dependency rules shown in Table 5.1 and an initial set of tainted objects, known as

detection points, that are provided by an intrusion detection system (IDS) or an administrator.

Detection points can either be the source of an attack (e.g., a malicious socket connection that

CHAPTER 5. INTRUSION RECOVERY 28

Dependency Rule Type of Operation Operation

Process→ Process
Fork
IPC, Signals

fork, vfork
pipe, kill, mmap

Process→ File

Write file content
Write file name

Write file attributes

creat, truncate, unlink, write
creat, link, symlink, re-
name, unlink
creat, unlink, chown,
chmod

File→ Process

Execute
Read file content
Read file name

Read file attributes

execve
read
open, truncate, chown,
chmod
open, truncate, chown,
chmod

Process→ Socket Write write, socketcall, sendfile
Socket→ Process Read read, socketcall

Table 5.1: Dependency rules between processes, files and sockets

originates an intrusion), or the result of an attack (e.g., some strange files identified by a host

IDS). When the detection points are not the source of an attack, the algorithm goes into an

initial tracing phase that starts from the detection points and scans the audit log backwards to

trace the source objects of the attack. The algorithm then switches to the propagation phase that

starts from the source objects of the attack and scans the audit log forwards and taints objects

and operations affected by the intrusion.

This tainting algorithm is conservative and taints all attack-related objects but it can also re-

sult in a large number of false dependencies leading to legitimate objects being marked tainted.

For example, suppose an attacker appends a malevolent account to the /etc/passwd file. The

tainting algorithm will taint this file and all processes that access this file even though they may

access information related to other accounts. Therefore, all objects created or modified by such

processes will become tainted and will unnecessarily be reverted to a previous state. To reduce

the possibility of tainting legitimate objects, the Analyzer implements enhancements that relax

the application of dependencies. For example, it may choose not to taint a process which reads

from the /etc/passwd file.

CHAPTER 5. INTRUSION RECOVERY 29

U
ser p

referen
ces

Recovery script

Recovery algorithm,
conflict resolution

Recovery script
generation

Forensix
database

Tainted
operations

File-system
snapshot

recovery actions

Figure 5.1: The Resolver

The Resolver is the final component of Taser. Its input consists of the set of tainted file-

system objects generated by the Analyzer and the entire set of file-system operations available

from the audit log in the Forensix database. Figure 5.1 shows the architecture of the Resolver.

The recovery algorithms revert tainted file-system objects to a clean state. Our recovery model

and the recovery algorithms are described in sections 5.2 and 5.3. The conflict resolution

methods handle cases in which a tainted operation cannot be fully reverted because it affects

a legitimate object. These methods are described in section 5.4. Finally, the last phase of

recovery generates an executable script consisting of a sequence of recovery operations which

revert the effects of tainted operations. The next sections describe each part of the Resolver in

detail.

5.2 Recovery Model

The recovery model in this thesis assumes a POSIX-compliant Unix file-system consisting of

regular files, directories, symbolic links and device nodes, each of which has three types of

information associated with it: name, content, and attributes. This model treats file name,

CHAPTER 5. INTRUSION RECOVERY 30

name op : name id → directory name id, name
content op : object id → content
attribute op : object id → attribute

Table 5.2: The recovery model

content and attributes as separate objects during recovery, and assumes that operations on each

object are independent. For example, it assumes that name operations occur independently of

content or attribute operations. Separating file-system operations helps in optimizing name and

attribute recovery as discussed later in section 5.3.

The recovery model distinguishes between a file object and a name object because Unix

files can have multiple names. It assumes that an object id uniquely identifies a file object, and

a name id uniquely identifies a name object. In Unix file systems, the object id contains the

inode number of the file. A name id is associated with exactly one object id and this association

is immutable over the lifetime of the system. In contrast, an object id can be associated with

multiple name ids because a file object can have multiple names. Additional requirements on

these identifiers, such as uniqueness over time, were described previously in Chapter 2. File

names in a Unix file system are stored as part of the contents of directories. The Resolver

recovers these contents indirectly during the recovery of file names.

The Resolver enforces file attributes such as permissions and ownership at the file object (or

inode) level, immaterial of the name by which the file is accessed. For example, modifications

to file permissions (e.g., via chmod) are assumed to occur directly on the inode rather than via

the name of the file.

To formalize the recovery model, we define the three types of file-system operations as the

mappings shown in Table 5.2. A name operation (e.g., rename) creates, modifies or removes

the mapping between a name object and the pair (directory name id, name). A directory name

id is a name id associated with a file object of type directory. A content operation creates,

modifies or removes the mapping between a file object and its content, and similarly for the

CHAPTER 5. INTRUSION RECOVERY 31

attribute operation. These definitions make the three different types of operations on an object

independent of other operations on the same or other objects provided that three consistency

requirements imposed by the file system are met:

1. The name or object id must exist for a successful operation.

2. The directory name id must exist for a successful name operation.

3. The name mapping must be one-to-one, i.e. two different name objects in the same

directory must map to different file names at any given time.

Separating the three different types of operations has two benefits. First, it simplifies resolving

conflicts between tainted and legitimate operations, an issue discussed further in Section 5.4.

Second, it allows using a more efficient recovery algorithm that is discussed below.

5.3 Recovery Algorithm

The goal of the Resolver is to revert tainted file-system operations but preserve legitimate oper-

ations. It takes as input a file-system snapshot, the set of tainted file-system objects generated

by the Analyzer, and the audit log created by the Auditor that contains all the file-system oper-

ations. The Analyzer marks modification operations to a file-system object that occur after the

time the object was tainted as tainted operations. To revert the tainted operations, the Resolver

uses a selective redo algorithm that only replays legitimate operations in the log that occur on

the tainted objects. It assumes that recovery starts with an immutable file system so that the

file-system state does not change during recovery.

The Resolver only considers successful legitimate operations that modify the file system; it

ignores read-only operations or operations that returned with a failed status. It is possible that

that these operations would have yielded different results (e.g., a failed legitimate operation

could have succeeded) if the intrusion had not occurred. However, the resolver does not know

CHAPTER 5. INTRUSION RECOVERY 32

the semantics of the processes that issued the legitimate operations, and hence does not at-

tempt to predict process behavior if tainted operations had not occurred. Similarly, the resolver

preserves the effects of all legitimate operations even though it is possible that a legitimate op-

eration may have failed if the intrusion had not occurred (e.g., writes to a file made accessible

by a tainted operation).

The rest of this section first considers a simple recovery algorithm based on redo logging.

Then it presents selective redo, our optimized redo algorithm that is used by the Resolver.

5.3.1 Simple Redo Algorithm

In the simple redo algorithm, recovery starts with a file-system snapshot and sequentially re-

plays the file-system modification operations captured in the audit log. Only the legitimate

operations should be replayed since the effects of the tainted operations should be ignored.

This simple redo solution is correct because the dependency rules in Table 5.1 ensure that le-

gitimate operations do not depend on tainted operations. Unfortunately, replaying all legitimate

operations can be a slow process.

5.3.2 Selective Redo Algorithm

The selective redo algorithm makes two optimizations to improve the performance of the re-

covery process. First, we observe that the file-system state at recovery time has the correct

state for all non-tainted objects. Therefore, the Resolver starts the recovery process with the

file system at the recovery time instead of the file system at the snapshot time, and it selectively

replays legitimate operations only on tainted objects. To recover a tainted object, the Resolver

obtains an initial version of the object from the file-system snapshot and sequentially replays

the object’s legitimate modification operations since the snapshot.

A second optimization takes advantage of the recovery model and performs recovery for

file name, content and attribute operations separately. Separating file-system operations helps

CHAPTER 5. INTRUSION RECOVERY 33

in optimizing name and attribute recovery. At each name or attribute operation, the Auditor

captures the complete state of the object as shown in Table 5.2. For example, it captures all the

attributes (permission, ownership) of a file after an attribute operation. As a result, a sequence

of attribute and name operations can simply be replaced by the last operation during recovery.

Therefore, the resolver recovers a tainted attribute or name by replaying the last legitimate

operation on that attribute or name. In contrast, to recover file contents, the resolver replays all

legitimate content operations starting from the snapshot until the first tainted operation. It does

so because, for storage efficiency, the Audit log does not store the complete state of the content

mapping at each operation. Note that name recovery implicitly recovers directory contents.

The Resolver performs name recovery before content or attribute recovery. This ordering

helps meet the consistency requirements discussed in Section 5.2. Intuitively, name recovery

sets up a virtual, consistent name space for the recovered file system, and then content and

attribute operations are performed on this name space.

Figure 5.2 presents an example to illustrate the selective redo recovery algorithm. This

figure shows the snapshot time when the file-system snapshot is taken, the attack time when

an attack occurs, and the recovery time when the attack is detected and intrusion recovery is

started. All the file-system operations are shown at the top of the figure. This example shows

how the file-system operations can be separated into name, content and attribute operations for

two files, File 1 and File 2. Operations that occur after the attack time are marked tainted and

are shown in boxes. Note that, as mentioned earlier, the dependency rules in Table 5.1 ensure

that after the first tainted operation, all operations on a tainted name, content or attribute object

are marked tainted.

Recovery starts with the file-system state at the recovery time. Note that File 2 is untainted

and no operations need to be redone for this file. In contrast, File 1 has to be recovered.

Name 1 can be recovered in a single step by replaying operation 3. Similarly Attributes 1 can

be recovered by replaying operation 8. Finally, Content 1 is recovered by replaying operations 5

and 6. In this example, selective redo requires replaying four legitimate operations, whereas the

CHAPTER 5. INTRUSION RECOVERY 34

Last legitimate
operation

Snapshot
time

Recovery
time

Attack
time

71 2 3 4 5 6 8 10 12 15

Name 2

1 10

11

Attributes 2

2 12

13

1411

Attributes 1

4 8

Content 2

15

1613

Content 1

5 6

17
All
file-system
operations

Time

7 17

Name 1

3 9

9 1614

Figure 5.2: Separating content, name and attribute operations

CHAPTER 5. INTRUSION RECOVERY 35

simple redo algorithm requires replaying all ten legitimate operations. In general, selective redo

is beneficial if the footprint of the attack is small compared to the total number of legitimate

modification operations since the snapshot.

5.4 Conflict Resolution

As mentioned in section 5.1, the Analyzer implements enhancements, that relax the application

of dependency rules, to reduce the possibility of tainting legitimate objects. These enhance-

ments can, however, cause conflicts when legitimate operations depend on tainted operations.

In this case, reverting the tainted operations may result in reverting legitimate file-system op-

erations or the loss of legitimate file-system objects. For example, the Analyzer provides a

policy that ignores tainting an object that reads a tainted file or directory name. With this pol-

icy, a legitimate file can be created in a tainted directory. If the recovery action for the tainted

directory simply removes the directory, then the legitimate file will be lost. We consider such

a recovery action as having failed because the goal of the recovery system is to preserve all

legitimate operations.

We say that conflicts occur when an operation reads a tainted file-system object, and this

read is ignored by the Analyzer. As a result, legitimate operations can occur after tainted

operations as shown in Figure 5.3. As the tainting policies of the Analyzer become more

optimistic, they ignore more dependencies, and can cause more conflicts. In the example above,

reading a tainted directory does not taint the process or the file creation. This conflict would

occur with any of the Analyzer’s policies that ignores reading file (or directory) names.

Table 5.3 provides a fine classification of conflicts, which allows designing resolution poli-

cies suited for each type of conflict. The file-system operations are divided into elementary

operations and the types of conflicts are based on these operations. A conflict arises when a

legitimate operation, shown along the top row, reads an object that was modified by a tainted

operation shown along the left column. Directory-related operations are not shown in the table

CHAPTER 5. INTRUSION RECOVERY 36

71 2 3 4 5 6 8 10 12 1511 13 17
All
file-system
operations

Snapshot
time

Recovery
time

Attack
time Time

7 17

Name 1

3 9

9

11

Attributes 1

4 8 14

13

Content 1

5 6 16

1614

Last legitimate
operation

Figure 5.3: Legitimate operations occur after tainted operations

Legitimate Operations
Tainted Operations Name Create Name, Object Remove Content Update Attribute Update
Name Create name-create conflict name-remove conflict name-access conflict name-access conflict
Name, Object Remove name-recreate conflict not possible not possible not possible
Content Update non-conflicting content-remove conflict content-access conflict non-conflicting
Attribute Update attribute-access conflict attribute-remove conflict attribute-access conflict attribute-access conflict

Table 5.3: Types of conflicts caused by different legitimate and tainted operations

but are discussed below.

Next, we describe the different types of name, content and attribute conflicts, and the res-

olution policies implemented by the Resolver. The resolution policies help isolate conflicting

tainted operations because these operations cannot be completely reverted.

5.4.1 Name Conflicts

Name-create conflict A name-create conflict occurs when a legitimate name creation op-

eration accesses a tainted name. For example, an administrator renames a file created by an

attacker. Recall that a tainted name is recovered by simply replaying the last legitimate oper-

ation on that name. This operation may conflict with a previous tainted name operation. For

example, in Figure 5.3, operation 9 may generate a name that depends on the name produced

CHAPTER 5. INTRUSION RECOVERY 37

by tainted operation 7. This name conflict occurs with any policy of the Analyzer that ignores

dependencies caused by reading tainted file names. The Resolver also ignores this conflict be-

cause the conflict does not violate any of the consistency requirements described in Section 5.2.

Name-remove conflict A name-remove conflict occurs when a legitimate operation removes

a tainted name or a directory containing a tainted name. These conflicts could be ignored

because the object was legitimately removed previously. However, it is possible that a user

would not have removed this object if the name had not been tainted. For example, the user

may have removed a legitimate file that was renamed to an unusual name by a tainted operation.

Hence, for these conflicts, the object is recreated with a name that has a .removed extension

so that it can be inspected manually.

Name-access conflict A name-access conflict occurs when a legitimate operation updates the

content or attributes of a file with a tainted name, or modifies a file under a tainted directory. In

this case, the file or the directory has seen no legitimate name operations. This object should be

removed, but the relevant legitimate operations should be recovered. For example, an adminis-

trator may have created a legitimate file under a tainted directory. Simply removing the tainted

name would violate one of the first two consistency requirements described in Section 5.2. To

resolve this conflict, the tainted name of the object is isolated, instead of being reverted, and

recovered with a .nonexistent extension. This extension indicates that the name was not

created legitimately. At the end of recovery, a list of these suspect objects is provided so that

the user can inspect these objects and take appropriate actions.

Name-recreate conflict A name-recreate conflict occurs when a legitimate operation recre-

ates a name that was removed by a tainted operation. For example, the administrator may

recreate a legitimate file that was removed by an attacker. Simply recreating the removed

tainted object leads to two different but legitimate objects with the same name, which violates

the third consistency requirement. If the recovery action recreates the same object such as via

CHAPTER 5. INTRUSION RECOVERY 38

multiple names of a file, then the conflict is ignored. Otherwise, the resolver recreates the

previous objects with the same name but with a version number extension.

5.4.2 Content Conflicts

Content-access conflict A content-access conflict occurs when a legitimate operation up-

dates the tainted contents of an object. Recall that the resolver replays the legitimate content

operations starting from the snapshot until the first tainted operation. For example, opera-

tions 5 and 6 would be replayed to recover Content 1 in Figure 5.3. Any legitimate operation

after the first tainted operation causes a content-access conflict because the Resolver assumes

that content operations always read contents before modifying them. Content-access conflicts

need to be fixed manually since file contents are typically unstructured. An alternative is to use

application-specific conflicts resolvers [26, 20, 37].

Content-remove conflict This conflict occurs when a legitimate operation removes an object

whose content is tainted. Similar to the reasons for storing objects that are involved in a name-

remove conflict, objects involved in a content-remove conflict are also recreated with a name

that has a .removed extension so that the contents of the object can be inspected manually.

5.4.3 Attribute Conflicts

Attribute-access conflict An attribute-access conflict occurs when a legitimate operation

(other than remove) accesses the tainted attributes (permission or ownership) of an object.

Recall that a tainted attribute is recovered by simply replaying the last legitimate operation on

that attribute. For example, Figure 5.3 shows the last legitimate and the last tainted operations

(operations 14 and 11) on Attributes 1. In this case, since the last operation is legitimate, noth-

ing needs to be done for recovery, otherwise, operation 14 would be replayed if there were

tainted operations after it. Similar to name-create conflicts, the resolver ignores this conflict

because it does not violate the consistency requirements.

CHAPTER 5. INTRUSION RECOVERY 39

Attribute-remove conflict This conflict occurs when a legitimate operation removes an ob-

ject whose attributes are tainted. This conflict is resolved in a similar way to name-remove

conflicts by recreating the object with a name and that has a .removed extension and with

legitimate attributes.

5.4.4 Global Conflict Resolution

Recall from Section 5.2 that the Resolver performs name, content and attribute recovery sepa-

rately. Typically, conflict resolution is performed as part of the corresponding recovery opera-

tion. For example, name conflicts are resolved as part of name recovery, etc. However, certain

conflicts must be resolved globally after all recovery actions have been generated. For exam-

ple, a name-access conflict occurs when a legitimate operation updates the content or attributes

of a file with a tainted name. This name conflict can be detected and resolved only after the

name, content and attribute recovery algorithms have been executed. In particular, the tainted

name cannot be removed during name recovery if the object has legitimate content or attribute

modifications.

5.5 The Resolver Implementation

This section describes the implementation of the the Resolver component of the Taser intrusion

recovery system. The recovery algorithms in the Resolver selectively recover a file-system after

an intrusion by reverting the tainted file-system operations. The Resolver also contains conflict

resolution methods which ensure that all legitimate data is preserved after recovery. Below, we

describe the structure of the Resolver and its implementation.

5.5.1 Resolver Structure

Figure 5.4 shows the structure of the Resolver. The input to the Resolver is the Forensix

auditing database that stores a file-system snapshot and the file-system operations since the

CHAPTER 5. INTRUSION RECOVERY 40

recovered name
state of file-system

tainted attributes list

attribute recovery
actions

attribute recovery,
attribute conflict

resolution

tainted names list

name recovery
actions

name recovery,
name conflict

resolution

content recovery
actions

name, content and attribute
recovery scripts

tainted content list

content recovery,
content conflict

resolution

execute recovery

unified conflict resolution,
recovery script generation

Resolver

Figure 5.4: Structure of the Resolver

snapshot, and a table of tainted objects and operations that are provided by the Analyzer. The

Analyzer provides a separate list of tainted name, content and attribute objects as shown in

Figure 5.4. Table 5.4 shows the different types of file-system operations considered during

recovery. At the end of recovery, the same types of operations are issued as recovery actions to

revert tainted operations.

The name, content and attribute recovery algorithms are performed together with the cor-

responding conflict resolution methods. Note that name recovery is performed before content

and attribute recovery because it sets up the name space before the other recovery actions are

applied to the file-system. The output of the recovery algorithms are recovery actions that take

the immutable file system at recovery time to a recovered system that has reverted or isolated

the effects of tainted operations. The recovery actions are fed to the global resolution phase

CHAPTER 5. INTRUSION RECOVERY 41

Create Update Remove

File names
create, mknod,
link, symlink

rename unlink

Directory names mkdir rename rmdir

File contents
create, mknod,
symlink

write, truncate n/a

File/directory attributes
create, mknod,
mkdir, symlink

chmod,
chown

n/a

Table 5.4: File-system operations

that performs the unified conflict resolution operations.

A final recovery script generation phase orders the recovery actions so that they can be

executed consistently. For example, suppose name A at recovery time must be renamed to

name B. However, name B exists at recovery time and must be renamed to name B.old. Then

the script generation phase orders the second action before the first one. This phase takes user

preferences into account such as whether old object versions should be kept or certain files can

be ignored for recovery (e.g., editor backup files). The Resolver runs entirely on the backend

system and then the recovery scripts are executed on the target.

The Resolver uses some of the interval tables described in Section 3.2. These tables store an

archive of the mapping information described in Table 5.2, and they allow creating snapshots

of the file system, including the state of the file system just before the attack time or at the

recovery time on the backend machine.

Next we describe each component of the Resolver in detail. For implementation purposes,

we define two new terms. The last legitimate and tainted operation times Tl and Tt are the

times at which the last legitimate and tainted operation made a modification to the object.

There are separate Tl and Tt times for name, content and attribute operations. The time Tl (or

Tt) is marked as null when no legitimate (or tainted) operation has ever been performed on

the object. Note that the recovery algorithm only considers objects that have been modified

by a tainted operation, and hence the time Tt for at least one of the name, content or attribute

operations is not null.

CHAPTER 5. INTRUSION RECOVERY 42

5.5.2 Name Recovery

The name recovery code is shown in Figures 5.5 and 5.6. At a high level, the first part of

the algorithm deals with conflicts and appends tainted names to a recovery list that consists of

all names that need to be recovered. The recovery action itself is performed at the end in the

finalize_name_recovery function. Names are appended to the recovery list using the

function get_name(name id, Tl), where name id is the unique identifier described in

the beginning of this chapter. The get_name function returns the tuple (name id, Tl, name,

parent-dir id) where the name and the parent-dir id are the name and the directory containing

name id immediately after time Tl (or before Tl, when Tl refers to a remove activity). This

function is implemented by querying the current recovery list and the file system at the recov-

ery time Tl, which together represent the “recovered name state” at recovery time. Note that

searching a name id in the file system is performed by issuing a query to the inode interval table

in the auditing database. Function mark_conflict(name id, tag) simply appends a

tag to the name associated with the given name id to show the type or reason of conflict oc-

curred during recovery of this name. At the end of recovery, these tagged names can be looked

up and analyzed manually.

The input to the name recovery is the tainted_name_list that contains all the tainted

names whose time Tt is not null. Each name in this list, identified by its name id, has the

last legitimate and tainted activity times Tl and Tt associated with it. When Tl is null, the

name has not been created, updated or removed by a legitimate activity. This name is marked

and is removed at the end of recovery if it does not generate a name-access conflict. A

name-access conflict occurs when the object with this name has legitimate attribute or

content updates, where for directories, content updates occur when it has objects underneath

that have legitimate name, attribute or content updates.

When Tl > Tt, no recovery action is required if the name was last created or updated by

a legitimate activity since it is assumed to be legitimate now. If the name was legitimately

removed (it is not in the file system) then this tainted name is marked with a name-remove

CHAPTER 5. INTRUSION RECOVERY 43

name_recovery(tainted_name_list):
recovery_list = empty
foreach name id in tainted_name_list:
if Tl is null:
mark_conflict(name id, name-access)

if Tl > Tt:
if name id removed at Tl:
mark_conflict(name id, name-remove)
append(recovery_list, get_name(name id, Tl))

else:

append(recovery_list, get_name(name id, Tl))

mark_remove_parent_conflict(recovery_list)
mark_name_recreate_conflict(recovery_list)

// all conflicts have been handled
foreach not done element in recovery_list:

perform_name_recovery(recovery_list, element)

Figure 5.5: Name recovery code (Part 1)

mark_remove_parent_conflict(list):
foreach name id in list:
if parent-name id not in recovered state:
mark_conflict(parent-name id, name-remove)

append(list, get_name(parent-name id, Tl))

mark_name_recreate_conflict(list):
foreach name id in list:
if name id has duplicate in recovered state:
mark_conflict(name id, name-recreate)

perform_name_recovery(list, element):
if parent-dir id in list:
finalize_name_recovery(list, parent-dir)

generate_name_recovery_action(element)
mark_done(list, element)

Figure 5.6: Name recovery code (Part 2)

CHAPTER 5. INTRUSION RECOVERY 44

conflict and appended to a recovery list. In this case, recovery will involve recreating the name

just before it was removed. If the remove was for the last name of an object, the object is also

recovered. Finally, when Tl < Tt, the name is appended to the recovery list so that it can be

recovered.1

The function mark_remove_parent_conflict checks that all parents of a name

that needs to be recovered exist in the recovered state, i.e., either in the file system or in the

recovery list. If not, the parent was removed legitimately but with a name-remove conflict.

Therefore it is appended to the recovery list with a name-remove tag so that it can be recreated.

This function ensures that all parents that are needed for correct recovery will eventually be in

the recovered state. The function mark_name_recreate_conflict checks for names in

the recovery list that have duplicates in the recovered state. A duplicate occurs when, in the

recovery-list and file-system at recovery time, there exist two or more name ids with the same

pair (name, parent-name id). For example, the file /A/B exists and there is a recovery action

to create another /A/B. In this case, except the name id with the latest Tl, all the others are

marked with the name_recreate conflict. At the end of the name-recovery, these names

are either removed or recreated with a version extension depending on the policy used for

name-recreate conflicts.

At this point, all name conflicts have been handled, and the function perform_name_re-

covery performs recovery recursively from the top to the bottom of the name hierarchy. The

function generate_name_recovery_action generates the actual name recovery ac-

tion, which can consist of either creating the first name of an object together with the object, or

renaming of an object, or creating an additional name for an object. When an object is created,

its contents and attributes are recreated later as part of content and attribute recovery. At the

end of recovery, objects marked with the name-access tag (nonexistent) are removed if they

do not have name-access conflicts. Also, versioned objects are handled depending on the

1Note that in this case the last legitimate activity can only be a name creation or update. It cannot be name
removal or else Tl < Tt would not be true and so the name should be recovered.

CHAPTER 5. INTRUSION RECOVERY 45

for each object id in tainted_content_list:
if object id not in recovered state:
mark_conflict(object id, update-remove)
append(recovery_list, get_name(object id, Tl))

generate_content_recovery_actions(object_id)

Figure 5.7: Content recovery code

name-recreate policy.

One optimization to the entire recovery code is to implement an efficient get_name func-

tion which is used frequently in all the recovery algorithms to lookup path names of different

name ids at either recovery time (current path name) or at recovered name state (target path

name). As described in section 4.3, resolving a name id to path name is an iterative process

which builds the path name component by component. To optimize this function, we can im-

plement two caches which store lookups of directory components of path names at recovery

time and at the recovered name state. For example, after resolving a name id to path name

/A/B/C at recovery time, any other name id in directories /A and /A/B at the same time can be

resolved to its path name directly using the corresponding cache.

5.5.3 Content Recovery

The input to the content recovery algorithm shown in Figure 5.7 is a set of content-tainted

file objects along with all content-modifying legitimate or tainted operations. First, the code

checks whether a tainted object exists in the recovered state. If not, the object is marked with

an update-remove conflict since this object has been removed by a legitimate activity but

has tainted content updates. Such an object is recreated, but since it may never have had a

legitimate name, we recover such objects in a separate orphanage area and add it to the

recovery list with a generated name so that later, if needed, attribute recovery will find this

object in the recovered state.

Content recovery actions consist of legitimate content-modifying operations until Tl. Un-

like name and attribute recovery, which are assumed to be atomic and non-conflicting, content

CHAPTER 5. INTRUSION RECOVERY 46

modification can involve partial reads and writes. Recovery only redoes those operations whose

target position in the file is not dependent on any previous tainting operation and hence all le-

gitimate appends are redone. Further, a legitimate truncate followed by legitimate writes until

the first content tainting activity are also redone. All other legitimate modifications are reported

as content conflicts that must be resolved manually or via application-specific resolvers.

5.5.4 Attribute Recovery

The attribute recovery code is very similar to content recovery and not shown. The only dif-

ferences are that attribute recovery is performed only when the last legitimate activity occurs

before the last tainted activity (Tl < Tt), and it is a one-shot operation that sets the attribute to

the attribute value at Tl.

5.5.5 Global Conflict Resolver

The global conflict resolver performs some final recovery actions by identifying the actual

name-access conflicts. Having all the recovery actions from name, content and attribute

recovery phases, it finds the tainted names that have a name-access conflict tag and have

no legitimate attribute or contents for their objects at the end of recovery. 2 These tainted

names do not cause a name-access conflict. Therefore, their conflict tag is removed and

any of them which still exists on the system (at the recovery time), will be removed by issuing

a remove action for it.

2For a directory object, this means that the directory’s attributes are still tainted and the directory is empty in
the recovered name state. However, a directory may become empty as part of the global conflict resolution (e.g.
its only file is deleted). To solve this issue, the global resolution is performed from the bottom to the top of the
directory hierarchy.

CHAPTER 5. INTRUSION RECOVERY 47

5.5.6 Recovery Script Generator

The input to the recovery script generator consists of a sequence of commands such as (re-

covery_action, current_path, (optional) target_path, options) produced by the name, content

and attribute recovery phases. The target_path, obtained from the recovered name state of file-

system, is the final path of an object after the entire recovery has taken place. At this point, a

user has the choice to observe the list of recovery actions and remove any undesired command.

Finally, all remaining recovery actions are parsed and reordered such that they can be executed

correctly on the target system and without violating any file-system consistency requirements

(described in section 5.2). For example, a file should be created after and not before the cre-

ation of its parent directory. Or, the renaming of file X to Y and of file Y to X should be done

using a temporary name such as Z.

An important issue with the final executable recovery script is that it should not depend

on the target system. For example, the recovery script is a statically linked executable that

does not use any library on the target system since these libraries may have been compromised

themselves [38].

Chapter 6

Evaluation

This chapter evaluates the functionality and performance of the intrusion analysis tools and

the recovery algorithms presented in this thesis. We present our analysis results for a target

system that was attacked multiple times during the course of a week. The results demonstrate

how intrusions can be interactively and easily analyzed using the set of tools implemented in

this thesis. Then, we evaluate the performance overhead of the backend system. Finally, to

evaluate our recovery algorithms, we run the Taser recovery system [13] to analyze real attacks

and evaluate the performance cost and correctness of the recovery performed by the Resolver.

6.1 General Setup

The experimental setup consists of a target machine where Forensix [12] audits and logs Linux

kernel events. This data is streamed to a backend system where it is periodically loaded to a

MySQL database. Then the interval tables are updated to reconstruct system state and, at this

point, we can perform intrusion analysis and recovery. The target and the backend machines

both run AMD Athlon MP 2600+ machines with 512 MB RAM. The target runs stock RedHat

7.2 together with the Forensix auditing module. It contains four vulnerable services or exe-

cutables: the samba and the wu-ftpd daemon that allow remote root exploits, and the sendmail

and the pwck-setuid programs that allow local root escalation exploits. The experiments use

48

CHAPTER 6. EVALUATION 49

the Snort network intrusion detection tool to detect potential intrusions. The backend machine

is connected to the target on a separate network and has a firewall with a single open port that

only allows an authenticated connection from the target machine. The backend machine runs

Redhat Fedora Core 3 and uses the MySQL version 4.1.10 database for storing the audit data.

6.2 Intrusion Analysis Evaluation

The target was run with the vulnerable services for approximately a week from May 11th until

May 18rd, 2005. During this time, an external attacker (unknown to us) successfully gained

access to the target by using the Wu-ftpd remote root exploit around 5pm on May 12th. The

following subsection presents analysis of the ftpd attack. During the week, several other attacks

were run on the system and later analyzed in detail. The analysis methods for these attacks were

similar to the ftpd attack and not presented here.

6.2.1 Analysis of Ftpd Attack

In a typical ftpd intrusion, a remote attacker gains root access to the vulnerable system. On

May 12 around 17:10 Snort reported an anonymous FTP login followed by command overflow

attempts that contained shell-code. While Snort helps with detecting attacks, it provides little

information about what actually happened on the system. To look for any recent changes

in the file system, we ran the file-access tracker to list all the files or directories modified

between 17:00 and 19:00 of that day. A partial report, shown in Figure 6.1, lists the modified

files grouped by root directories and their last modification times. The numbers in the second

column show the number of modified files. Based on this report, we suspected that a rootkit

had been installed since system files such as /usr/bin/killall have been modified.

Next we queried for the process which created the new /usr/bin/killall and, using the query

to find the parent of a process, traversed up the process hierarchy to find ftp daemon. Querying

the process and process_owner interval tables revealed the spawned process is a non-

CHAPTER 6. EVALUATION 50

/bin 74 /bin/kill 05-12 17:11:58
/bin/ps 05-12 17:11:46

/dev 3
/etc 84 /etc/passwd 05-12 17:11:20
/home 11
/lib 588
/root 3 /root/.bash_history 05-12 18:40:32
/sbin 175 /sbin/ldconfig 05-12 17:12:09
/tmp 26
/usr 26 /usr/bin/killall 05-12 17:11:46
/var 452

Figure 6.1: File-access tracker output for ftpd attack.

/usr/sbin/adduser pol
passwd pol
wget XXXX.XXXXXXXXXX.com/kanaris/adrian/rk.jpg
tar xzvf rk.jpg
./setup
rm -rf rk.jpg

Figure 6.2: Attack activities before getting the interactive root shell

interactive root-shell which we replayed it using our shell-IO tracker tool. The shell commands

are shown in figure 6.2 in which we see the creation of a user account pol and the downloading

of the rk.jpg file which contained the rootkit. The file was untarred and removed later.

Using the file-contents constructor, we recreated the removed rk.jpg file that installs a back-

door. To find out more about the backdoor, we issued a query on the connection and the

process interval tables. This query revealed ports that had been opened between 17:00 and

18:00, and here, we found a process called sendmail that was listening on port 212 from 17:12

and was probably used to run an interactive shell. Therefore, we then queried the inode inter-

val table for any instance of /dev/pts/x creations between 17:00 and 19:00. This query returned

one row that showed an interactive shell was used from 17:12 until 18:40. A query to the

process_owner interval table showed that this attacker’s shell was also run as root. Next

we used our IO tracker tool to replay the shell. Key output from the shell session is shown in

Figure 6.3.

The psyBNC.tgz file, which is removed by the attacker and which we later recreated, has

an executable file disguised as crond. The attacker runs the SucKIT rootkit that does not need

CHAPTER 6. EVALUATION 51

[root@rex www]# ftp -v 65.113.XXX.XXX
Name: XXXXXXX
Password:
get psyBNC.tgz
[root@rex www]# tar xzvf psyBNC.tgz
[root@rex www]# rm -rf psyBNC.tgz
[root@rex m4a1]# crond
Listening on: 0.0.0.0 port 6001
Thu May 12 17:18:11 :psyBNC2.3.1-cBtITLdDMSNp started (PID :3975)
[root@rex .sk12]# ./sk i 3975
[= SucKIT version 1.3a, Jan 27 2005 =]
Can’t open /dev/kmem for read/write (1)
[root@rex www]# w
6:40pm up 4:20, 0 users, ...
[root@rex log]# pico /var/log/messages
[root@rex www]# logout

Figure 6.3: IO tracker output for the ftpd attack.

a kernel with support for loadable kernel modules [29] but is loaded through /dev/kmem into

the kernel. With the rootkit, the attacker tried to hide the fake crond process but since we use

LIDS [41] on the target system to disable writes to /dev/kmem, the attacker was not successful.

6.2.2 Analysis Results

The previous section described the queries we ran to analyze the ftpd attack. The total time

taken to run each of the queries is shown in Table 6.1. This table shows that all these queries

that use the interval tables run quickly and can be used by an interactive user.

Ftpd attack analysis Time taken
List all the modified files and directories 20 s
Find root-owned setuid files that were executed by non-root pro-
cesses

7 s

Traverse the process hierarchy up to the source of attack 2 s
Finding uid of the shell process < 1 s
Replaying attacker’s shell 1 s
Recreation of the removed attack files 3 s
Finding the interactive shells < 1 s
Finding the listening port set by the attack code < 1 s

Table 6.1: Time taken for each intrusion analysis query.

CHAPTER 6. EVALUATION 52

Without the interval tables, historical analysis queries on the Forensix event data are not

only much harder to implement, but they essentially have to generate partial interval tables on

the fly. We implemented the first two queries in Table 6.1 without using the interval tables.

Their running times were 79 s and 33 s, which is a factor of 4-5 times slower. Our approach

generates the interval tables once and hence queries can reuse the reconstructed state for faster

analysis.

6.2.3 Performance Measurements

Forensix logs data at the frontend machine and loads this data at the backend machine. Logging

imposes overhead at the frontend while loading, storing and analyzing the data imposes over-

head at the backend. Analysis and recovery are performed entirely on the backend machine and

hence we present the performance overheads on the backend machine. Note that the frontend

performance is mostly decoupled from the backend performance. For example, the analysis

queries in the previous section are run at the backend system and have virtually no affect on the

performance of the frontend system. For the frontend performance measurements, the reader

is referred to the original Forensix work [12].

The target system was run with the vulnerable services for approximately a week. During

this time, we ran a popular web-based photo album application called Gallery on the target

system. To load the system, we simulated users’ interactions with Gallery with a client-side

Galhogger program. Galhogger browses the photo albums 75% of the time and modifies the

albums rest of the time. Browsing reads image files and modifies statistics files. Album mod-

ifications include 1) adding and deleting photos which creates and removes image files and

2) adding and deleting albums which creates and removes directories and some other statis-

tics files. The program was run non-stop for the entire week, simulating 5 heavy users that

performed an operation every 4 seconds on average.

The cost imposed at the backend, averaged per day, is shown in Table 6.2. The system load

and hence the daily numbers do not vary much across different days. The figure shows the

CHAPTER 6. EVALUATION 53

number of kernel events generated on the target machine. The most common events consist of

open (3.3 M), close (2.5 M), read (6.1 M), write (540 K), create (240 K), unlink

(160 K), connection (36 K), exec (24 K) and fork (16 K) events. These constitute 83%

of all events.

Number of Events 15.6 Million
Loading time 37.8 min
Interval table generation time 26.4 min
Size of events in flat file 1.7 GB
Size of database w/o interval tables 2.2 GB
Size of interval tables 64 MB

Table 6.2: Average daily backend statistics

The generation of the interval tables imposes a 70% overhead (26.4/37.8) at the back-

end. Another way to interpret the results, based on the loading time of 37.8 minutes, is that

the Forensix backend, without the interval tables, would be able to sustain a 38 time larger

load (24*60/37.8) than our experiment load. With the interval tables, the load could be 22

(24*60/(37.8+26.4)) times larger than our experiment load. While the generation time for the

interval tables is not small, it is comparable to the batch loading of files in a database, and

becomes relevant only when the backend load gets very high.

Note that the size of the interval tables is small compared to the original database (it adds

about 2.9% overhead (0.064/2.2)). Queries using the interval tables access less data, which

partially explains why they can be run faster. Table 6.2 shows results for an entire day. How-

ever, note that the database is loaded every two hours in our system and can be loaded more

frequently for intrusion analysis with shorter delays.

While the storage requirements of the Forensix system are large, the large amount of net-

work capacity and massive and inexpensive storage space available in local networks today

(a terabyte costs between $500-$1000) make the Forensix approach feasible and essential for

reliably analyzing and recreating intrusion activity.

CHAPTER 6. EVALUATION 54

6.3 Intrusion Recovery Evaluation

In this section, we evaluate the functionality and performance of the recovery system. We

use various exploits to attack the target system. Each of the exploits gain access and affect

the file-system. Our recovery system reverts effects of those attacks. During each attack and

before recovery, legitimate activities are issued to simulate load on the system. This is done

using the Galhogger program described in the previous section. For each attack, we used the

Analyzer component of Taser [13] to provide a set of tainted objects and operations as input to

the Resolver. Then, the Resolver generated a recovery script which contains a list of recovery

actions that revert the tainted operations and resolve conflicts caused by legitimate operations

that depend on some tainted operations. For recovery actions, we count the number of distinct

name and attribute recovery operations and the number of distinct file objects that require

content recovery. Below, we describe three scenarios and the recovery actions generated for

each of them. Table 6.3 shows the scenarios, the number of recovery actions, the number

of legitimate modification actions during and after the incident, and the recovery time. The

number of legitimate actions is the total number of file-system modification operations that

have occurred on the system since the attack time.

Scenario Recovery Actions Legitimate Actions Recovery Time
Content destruction 739 5338 9 s
Compromised database 1617 2557 21 s
Software installation 350 5006 5 s

Table 6.3: Recovery measurements for different scenarios

A. Content destruction

Scenario: A software developer has been working on the files src/project.c, hfiles/-

p1.h and hfiles/p2.h. He has also saved a backup of the project.c file in backup/pro-

ject.c.bak. Another developer on the system launches the sendmail local escalation ex-

ploit to get the root shell. This attacker deletes the project.c and p2.h files. The victim

notices that the project.c file is missing and copies the backup file to the src directory.

CHAPTER 6. EVALUATION 55

Then he moves the p1.h file to the src directory and deletes the hfiles directory.

Recovery actions: Remove numerous files generated by the sendmail attack, restore the

deleted p2.h and project.c files. The hfiles directory is recovered with a .removed

extension since it was legitimately removed by the victim (a name-remove conflict). The origi-

nal project.c file is recovered with a version extension since a legitimate file with the same

name already exists (a name-recreate conflict).

B. Compromised database

Scenario: Authenticated MySQL clients update a MySQL database running on a remote

server. An attacker launches a remote attack on the Samba daemon running on the system,

gets a root shell and creates an SSH backdoor by writing his public key to root’s autho-

rized_keys2 file. He also downloads and installs a rootkit. Later, other remote legitimate

clients insert transactions into the database. After six hours, the attacker uses the ssh backdoor

to log back into the machine. He issues a local MySQL query to remove some transactions

from the database. After that, more legitimate clients update the database.

Recovery actions: Remove the attacker’s ssh backdoor by removing his public key from the

authorized_keys2 file. In addition, remove rootkit files and recover two files associated

with a MySQL table in the compromised database. The database files are restored to the state

right before the attacker’s second login when he modified the database. The rest of the legiti-

mate writes were marked with a content conflict but we were unable to recover them. For trans-

actional databases, the database would need to be involved in the recovery process [21, 23].

C. Software installation

Scenario: This scenario, unlike the previous ones, presents and analyzes system administra-

tion error. Using a root account, the system administrator installs RealPlayer 8 in the wrong

directory which causes it to create many files and directories in this directory. In addition,

it creates or updates various Netscape, KDE and Gnome configuration files or directories in

CHAPTER 6. EVALUATION 56

/root including a .netscape/plugins directory. Later, the root user browses the web

with the netscape browser and downloads and saves a PDF reader plugin for Netscape in this

directory.

Recovery actions: Remove all the RealPlayer files and directories and restore the configu-

ration files. However, the plugins directory is recovered with a .nonexistent extension

because this directory, created by the tainted process, contains the legitimate plugin file (name-

access conflict). The user needs to retrieve this file separately.

In summary, in all the above scenarios, the recovery system generated recovery scripts that

correctly reverted the effects of the tainted operations, and the scripts handled conflicts so that

legitimate operations are preserved as much as possible. Also, recovery takes a short time in

the order of seconds.

Chapter 7

Related Work

This thesis consists of two main components, intrusion analysis, and recovery. We focus on

related work in these areas in turn.

7.1 Intrusion Analysis

Current intrusion analysis tools provide piecemeal or “lossy” information and hence lack the

ability to accurately reconstruct what happened in the system. For example, application and

system log files only track events based on what the applications and system administrators

think is necessary to log. On the other hand, process accounting mechanisms only provide

information as to how commands are executed, and can fail to track what programs are doing

internally or the sequence of activities that led to an attack. Network traffic traces alone are

also problematic in that sessions can be encrypted and it is extremely difficult to correlate

network forensic information directly to higher-level application behavior that elucidates the

actual damage done to the target system. File system activity logs can only detect modifications

to files and thus are unable to address attacks in which running processes are compromised

directly [6]. A secondary problem with many existing intrusion analysis and detection tools is

that they can affect evidence when conducting analysis. For example, accessing a file on the

system changes its access time.

57

CHAPTER 7. RELATED WORK 58

In this thesis, we use the Forensix [12] audit system that uses kernel-based logging. An

alternative is to use Virtual Machine(VM)-based auditing that can provide additional resistance

to attacks on the logging mechanism. ReVirt [7] places a system within a virtual machine

and logs the VM-to-host instruction stream and allows replaying and analyzing the system’s

execution before, during and after an intrusion. ReVirt replays activity in linear time order

which can slow down the analysis. However, this approach can be used to extract system call

events during the first replay and then our backend system can be used for analysis. Garfinkel

uses a similar Virtual Machine Monitor(VMM)-based kernel introspection mechanism [11].

Garfinkel [10] demonstrated several races in using system call interposition. To resolve these

races, Forensix uses the Linux security modules facility [40] to correctly order events in time

and unambiguously identify system objects (e.g., files).

System call traces have been used in the past to identify normal system behavior and to au-

tomatically detect suspicious behavior or intrusions [16, 30, 33, 8]. However, these approaches

examine system-call patterns over a short window of 5-100 calls and hence do not completely

capture system activity for intrusion analysis. In contrast, Forensix captures system calls, their

timing, parameters, return values and the user making the call for long periods of time for

analysis.

Sandboxing techniques are complementary to the intrusion analysis approach described in

this thesis. They interposition code that allows blocking program actions that may compromise

security. Janus [14] interpositions system calls using the proc file system. Systrace [25]

notifies the user about system calls executed by an application. Then it generates a sandboxing

policy based on user response. Sandboxing raises the issue of policy selection, i.e, determining

what actions are permissible for a given piece of software. It should be possible to implement

sandbox policies using our analysis tools.

Tripwire [18] monitors the cryptographic hash and size of key system files and directories

and reports file accesses and modifications. However, it does not provide information about the

processes or users that modified the files. Venema and Farmer have developed the Coroner’s

CHAPTER 7. RELATED WORK 59

Toolkit (TCT) [9] that can be used for postmortem analysis of a UNIX system after a break-

in, similar to our system. TCT provides tools to collect forensic information from different

sources (e.g. memory, file-system, system utilities and logfiles). These tools can reconstruct

sequences of past events. With Forensix, this analysis can be performed using simple queries

to the database. The TCT mactools program that displays access times and patterns of open,

currently accessible or deleted files motivated our file-access tracker tool. To recover deleted

files, TCT implements the unrm and lazarus tools that try to recreate files from unallocated

disk blocks. The tools described in this thesis perform all these tasks and do so accurately

since we store the system state including all writes over time. To do so, one must necessarily

audit more information, but as explained in Section 6.2.3, storage space is abundantly available

today. Unlike TCT, we use a separate secure backend which allows storing the audit data more

securely and avoids disturbing the target machine during analysis. Interestingly, the Forensix

auditing system automatically captures the output of other analysis tools running on the target

machine so we can benefit from these tools, e.g., generate the output files of sysstat, a system

monitoring utility, in the last three days.

The Sleuth Kit [4] is a derivative of Coroner’s Toolkit and provides file system information,

file names and contents from file inode information and lists recently deleted files in a direc-

tory. Simple analysis queries in Forensix can provide this information without requiring any

knowledge of the file system structure. Sebek [17] captures the write system calls so that it

can replay an attacker’s keystrokes similar to the shell-IO tracker tool. Since only the write

calls are captured but not the inode number to which the write occurred, the replay can produce

significant irrelevant information as well as miss information. Sebek is mainly intended for

honeypots so it takes detailed measures to hide its presence, which unfortunately can lead to it

being used against unsuspecting users. Our goal is to implement a secure but visible auditing

system that acts as an intruder repellent.

Complementary to the host-based intrusion analysis tools in this thesis are network-based

analysis tools such as SNORT [27] that capture and log network packets and, in addition, detect

CHAPTER 7. RELATED WORK 60

intrusions based on predefined rules that match packet headers or data. These analysis rules are

filters that help reduce the amount of data that needs to be logged but they only allow detecting

known vulnerabilities.

7.2 Intrusion Recovery

Versioning file systems retain earlier versions of modified files, allowing recovery from user

mistakes or system corruption. A key focus of versioning systems is encoding efficiency. For

example, the Elephant file system [28] uses a clever purging method that keeps “landmark”

data versions and purges generated and temporary files aggressively, while CVFS [35, 34]

encodes meta-data versions efficiently. The recovery system described in this thesis uses an

unoptimized data storage mechanism and would benefit from some of these techniques, al-

though purging data versions would limit some of the benefits of the recovery approach. While

versioning approaches provide the basic capability to rollback system state to a previous time,

such a rollback discards all modifications made since that time, regardless of whether they were

done by a tainted or legitimate process.

The Repairable File System [42] has goals closest to this work. It supports fine-grained

logging to allow roll-back of any file update operation, and has a basic contamination analysis

mechanism to determine the extent of system damage after an incident. However, during re-

covery, this file system does not seem to consider conflicting operations, which if not handled

correctly, may lead to loss of useful data. Application-specific conflict resolution policies has

been extensively studied in the context of replicated file systems [26, 20] and databases [37].

While this work has not experimented with these policies, they would directly apply to our

conflict resolution techniques.

Fastrek [23] recovers databases by attributing modifications to malicious activities and then

rolling back changes selectively. A potential issue with this approach is cascading aborts where

a legitimate operation is rolled back if it may have depended on the data produced by a tainted

CHAPTER 7. RELATED WORK 61

operation. While conservative tainting of file-system operations effectively achieve the same

result in our approach, the conflict resolution policies allow using optimistic taintings that

reduce this problem. Liu et al. [21] describe algorithms that rewrite transaction history in a

database by moving the attacking transaction and all affected transactions after non-affected

transactions.

Brown [3] describes an application-neutral framework which allows operators to recover

from their own mistakes. Their proof-of-concept implementation provides a recovery service

that deals with operator errors in a mail server. While it is possible to extend the service to

other applications, it is unclear how much effort is involved since it has to be tailored for each

specific application. In contrast, our system is geared towards recovery at the file-system level

which does not necessarily have the clearly defined semantics of a mail server and hence our

recovery techniques are more generic.

Sun [36] provides a safe execution environment (SEE) that enables users to try out new

software (or configuration changes to existing software) without fear of damaging the system

in any way. This is accomplished via a novel one-way isolation mechanism where processes

running within the SEE are given read-access to the environment provided by the host OS, but

their write operations do not affect the host until a commit point. The commit is performed

if a consistency criteria is met or else the SEE is rolled back. This approach allows recovery

only until the commit point. In addition, rollback caused by consistency criteria being violated,

becomes more likely for long running SEEs.

Our approach of recovering only the compromised parts of a file-system while preserv-

ing legitimate data has similarities with system software upgrade where the upgrade can be

selectively rolled back without affecting the rest of the system [1, 15]. Also, non-linear and se-

lective undo recovery have been extensively studied in collaborative application environments.

Prakash and Knister [24] propose a general framework for undoing an individual’s actions in

collaborative systems based on defining inverse, conflict and transpose functions. Berlage [2]

describes a technique in graphical user interfaces (e.g., editors, paint programs) where selec-

CHAPTER 7. RELATED WORK 62

tive undo only looks at the command to undo and the current state, and does not depend on the

history in between.

Chapter 8

Conclusions and Future Work

Currently, after a computer system is compromised, the user must manually sift through large

amounts of uncorrelated system and application-specific log files to understand what happened

on their system. This process is tedious and highly error prone, does not provide a complete

picture of the attack, and makes it hard to retrieve uncorrupted data. Further, it does not neces-

sarily provide hints on how the system can be hardened. To deal with this problem, this thesis

uses a complete system-level audit trail for intrusion analysis. The challenge with such ap-

proach is to provide tools that allow analyzing the large amount of data that is generated. This

thesis shows that interval tables, which contain lifetimes of system objects and their attributes,

allow interactive analysis of large data sets. With these interval tables, we have implemented

a number of powerful, efficient and easy-to-write intrusion analysis tools and used them to

analyze real attacks in detail.

This thesis also focuses on intrusion recovery. The current approach of using snapshot-

based file-systems to recover from intrusions or from human errors is well understood and

easy to use but it works well only when intrusions (or errors) can be immediately detected.

Otherwise, a snapshot before an attack loses legitimate user modifications that occur after the

attack and that data needs to be recovered manually. We describe a framework that recovers

persistent data after an intrusion or local damage occurs. This framework performs recov-

63

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 64

ery efficiently by using a redo approach that reverts the effects of intrusions. The framework

also provides conflict resolution methods to handle conflicts caused by dependencies between

legitimate and tainted operations. The resolution methods ensure that all legitimate data is pre-

served by isolating the tainted objects involved in a conflict. This framework is implemented

as part of the Resolver component of Taser [13]. Our evaluation of the Resolver shows that

recovery actions can be performed quickly for a wide range of intrusions as well as erroneous

user action scenarios.

8.1 Future Work

There are two main areas of research related to intrusion analysis and recovery that we plan to

pursue in the future. Below, we discuss each area separately.

8.1.1 Enhanced Intrusion Analysis

The tools implemented in this thesis enable analysis of an intrusion to find out what happened

on the compromised system. These tools could be enhanced with graphical tools. For ex-

ample, the Backtracker [19] is a graphical tool that uses a timing-based approach to generate

dependencies between processes, files and filenames and uses the dependency graph to view

intrusions. Similarly, an attack graph [31] represents the steps of the attack and the system or

network vulnerabilities used by the attack. Attack graphs help to characterize the attack and

perform vulnerability analysis on systems. Using our analysis infrastructure we hope to define

and implement similar graphical tools which provide specific views of system events.

We believe that our analysis tools can be used to improve current intrusion detection tech-

niques. Currently, different intrusion detection systems (IDS) monitor different parts of a sys-

tem (e.g. file-system, network, kernel, etc.). The problem with these IDSs is that they are not

integrated and each IDS can generate a large number of false alarms. It should be possible to

use multiple IDS sources so as not to miss any attack and then correlate the alarms using our

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 65

intrusion analysis tools.

Cross-machine intrusion analysis is another area which needs to explored in future. The

main problem which we currently see in this area is that in general, operating systems provide

little or no support for tracing user activity across machines. For example, the username,

shell process id or connection identifier on the current machine is not reliably transfered to the

second machine upon connection. Our intrusion analysis tools could be enhanced to perform

cross-machine analysis with this type of information.

8.1.2 Towards Automating Recovery

We believe the recovery framework defined in this thesis provides the basis for developing

automated intrusion recovery solutions. In the future, we plan to explore whether the recovery

system could be integrated with journaling and versioning file systems to improve scalability

and to reduce disk space requirements. Another potential is to add recovery support for network

file systems such as NFS. The reason this is not currently done is that the recovery system

audits at the client end which causes consistency issues for concurrent accesses. Auditing at

the server end would avoid this problem. Finally, we plan to implement a common recovery

infrastructure that can be used by complex application programs such as databases so that they

can be recovered after an intrusion. Such applications will benefit from an application-specific

recovery policy, which ideally, should be provided by the application itself to the recovery

system.

Bibliography

[1] Edward C. Bailey. Maximum RPM. Sams, August 1997.

[2] Thomas Berlage. A selective undo mechanism for graphical user interfaces based on

command objects. ACM Transactions on Computer-Human Interaction, 1(3):269–294,

1994.

[3] Aaron B. Brown and David A. Patterson. Undo for operators: Building an undoable e-

mail store. In Proceedings of the USENIX Technical Conference, pages 1–14, June 2003.

[4] Brian Carrier. The Sleuth kit & Autopsy. http://www.sleuthkit.org/.

[5] CERT Coordination Center. Cert/cc statistics 1988-2004. http://www.cert.org/

stats/cert_stats.html.

[6] Crispin Cowan. Immunix: Adaptive system survivability. http://www.immunix.

org, 1998.

[7] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and Peter M. Chen.

ReVirt: Enabling intrusion analysis through virtual-machine logging and replay. In Pro-

ceedings of the Operating Systems Design and Implementation (OSDI), December 2002.

[8] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An attack language for state-based

intrusion detection. Journal of Computer Security, 10(1/2):71–104, 2002.

[9] Dan Farmer and Wietse Venema. The Coroner’s toolkit. http://www.porcupine.

org/forensics/tct.html.

66

BIBLIOGRAPHY 67

[10] Tal Garfinkel. Traps and pitfalls: Practical problems in system call interposition based se-

curity tools. In Proceedings of the Network and Distributed System Security Symposium,

February 2003.

[11] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based architecture

for intrusion detection. In Proceedings of the Network and Distributed System Security

Symposium, February 2003.

[12] Ashvin Goel, Wu-chang Feng, David Maier, Wu-chi Feng, and Jonathan Walpole. Foren-

six: A robust, high-performance reconstruction system. In Proceedings of the Inter-

national Workshop on Security in Distributed Computing Systems (SDCS), June 2005.

In conjunction with the International Conference on Distributed Computing Systems

(ICDCS).

[13] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara. The Taser intru-

sion recovery system. In Proceedings of the Symposium on Operating Systems Principles

(SOSP), October 2005.

[14] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure environment

for untrusted helper applications. In Proceedings of the USENIX Security Symposium,

1996.

[15] Bobbie Harder. Microsoft windows system restore. http://msdn.microsoft.

com/library/en-us/dnwxp/html/windowsxpsystemrestore.asp,

April 2001.

[16] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using

sequences of system calls. Journal of Computer Security, 6(3):151–180, 1998.

[17] The Honeynet Project. Know your enemy: Sebek. http://www.honeynet.org/

papers/sebek.pdf.

BIBLIOGRAPHY 68

[18] Gene H. Kim and Eugene H. Spafford. The design and implementation of Tripwire: A

file system integrity checker. In Proceedings of the ACM Conference on Computer and

Communications Security, pages 18–29, 1994.

[19] Samuel T. King and Peter M. Chen. Backtracking intrusions. In Proceedings of the

Symposium on Operating Systems Principles (SOSP), pages 223–236, October 2003.

[20] Puneet Kumar and Mahadev Satyanarayanan. Flexible and safe resolution of file conflicts.

In Proceedings of the USENIX Technical Conference, pages 95–106. USENIX, January

1995.

[21] Peng Liu, Paul Ammann, and Sushil Jajodia. Rewriting histories: Recovering from mali-

cious transactions. Distributed and Parallel Databases, 8(1):7–40, 2000.

[22] N. Nguyen, P. Reiher, and G.H. Kuenning. Detecting insider threats by monitoring system

call activity. In IEEE Information Assurance Workshop, New York, June 2003.

[23] Dhruv Pilania and Tzi cker Chiueh. Design, implementation, and evaluation of an in-

trusion resilient database system. Technical Report TR-124, SUNY, Stony Brook, April

2005.

[24] Atul Prakash and Michael J. Knister. Undoing actions in collaborative work. In Proceed-

ings of the ACM conference on computer-supported cooperative work, pages 273–280,

1992.

[25] N. Provos. Improving host security with system call policies. In Proceedings of the

USENIX Security Symposium, pages 257–272, August 2003.

[26] Peter Reiher, John S. Heidemann, David Ratner, Gregory Skinner, and Gerald J. Popek.

Resolving file conflicts in the Ficus file system. In USENIX Technical Conference, pages

183–195. USENIX, June 1994.

BIBLIOGRAPHY 69

[27] Martin Roesch. Snort - Lightweight intrusion detection for networks. In Proceedings

of the USENIX Large Installation Systems Administration Conference, pages 229–238,

November 1999.

[28] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch, Ross W.

Carton, and Jacob Ofir. Deciding when to forget in the Elephant file system. In Pro-

ceedings of the Symposium on Operating Systems Principles (SOSP), pages 110–123,

December 1999.

[29] sd and devik. Linux on-the-fly kernel patching without LKM. Phrack issue 58, December

2001.

[30] R. Sekar and P. Uppuluri. Synthesizing fast intrusion prevention/detection systems from

high-level specifications. In Proceedings of the USENIX Security Symposium, pages 63–

78, August 1999.

[31] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M. Wing.

Automated generation and analysis of attack graphs. In Proceedings of the 2002 IEEE

symposium on security and privacy, 2002.

[32] Jim Snow. Auditing filesystem activity at the page cache layer. http://syn.cs.

pdx.edu/wiki/index.php/Forensix.

[33] A. Somayaji and S. Forrest. Automated response using system-call delays. In Proceed-

ings of the USENIX Security Symposium, pages 185–198, August 2000.

[34] Craig A. N. Soules, Garth R. Goodson, John D. Strunk, and Gregory R. Ganger. Metadata

efficiency in versioning file systems. In Proceedings of the USENIX Conference on File

and Storage Technologies, pages 43–58, 2003.

[35] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules, and

Gregory R. Ganger. Self-securing storage: Protecting data in compromised systems. In

BIBLIOGRAPHY 70

Proceedings of the Operating Systems Design and Implementation (OSDI), pages 165–

180, 2000.

[36] Weiqing Sun, Zhenkai Liang, R. Sekar, and V.N. Venkatakrishnan. One-way Isolation:

An Effective Approach for Realizing Safe Execution Environments. In Proceedings of

the Network and Distributed System Security Symposium, February 2005.

[37] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer,

and Carl H. Hauser. Managing update conflicts in Bayou, a weakly connected replicated

storage system. In Proceedings of the 15th Symposium on Operating Systems Principles

(SOSP), pages 172–183, December 1995.

[38] Ken Thompson. Reflections on trusting trust. Communication of the ACM, 27, August

1984.

[39] Andy Watson and Paul Benn. Multiprotocol Data Access: NFS, CIFS, and HTTP. Tech-

nical Report TR3014, Network Appliance, Inc., 1999. http://www.netapp.com/

tech_library/3014.html.

[40] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-Hartman.

Linux Security Modules: General security support for the Linux kernel. In Proceedings

of the USENIX Security Symposium, pages 17–31, 2002.

[41] Huagang Xie and et. al. Linux intrusion detection system (LIDS) project. http://

www.lids.org/.

[42] Ningning Zhu and Tzi-Cker Chiueh. Design, implementation, and evaluation of re-

pairable file service. In Proceedings of the IEEE Dependable Systems and Networks,

pages 217–226, June 2003.

