
DETERMINING INTRUSION ACTIVITY FOR FILE-SYSTEM RECOVERY

by

Kai Yi Po

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2005 by Kai Yi Po

Abstract

Determining Intrusion Activity for File-System Recovery

Kai Yi Po

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2005

Recovery from intrusions is typically a very time-consuming and error-prone task because the

precise details of an attack may not be known. The wide availability of attack toolkits that

install modified utility programs and erase log files to hide an attack further complicates this

problem. This thesis explores a fast and accurate method for determining intrusion activity for

file-system recovery. Given an audit log of all system activities, our approach uses dependency

analysis to determine the set of intrusion-related activities. This approach effectively detects

all attack-related activities, but it can falsely mark legitimate activities as related to an intru-

sion. Hence, we propose various enhancements to improve the accuracy of the analysis. This

approach is implemented as part of the Taser intrusion recovery system. Our evaluation shows

that Taser is effective in recovering from the damage caused by a wide range of intrusions and

system management errors.

ii

Acknowledgements

First and foremost, I would like to thank Ashvin Goel for his thoughtful supervision, his finan-

cial support and the large amount of time we spent discussing challenging issues in computer

security.

I am thankful to Kamran Farhadi and Zheng Li, with whom I worked on many aspects of

the Taser project.

I would also like to thank Eyal de Lara for his time and his valuable input.

Finally, I would like to thank the University of Toronto as well as the Department of Elec-

trical and Computer Engineering for their financial support.

iii

Contents

1 Introduction 1

1.1 Research Approach . 2

1.2 Contributions . 4

1.3 Thesis Structure . 4

2 An Overview of the Taser Recovery System 5

2.1 The Taser Auditor . 5

2.2 The Taser Analyzer . 7

2.3 The Taser Resolver . 7

3 The Basic Analyzer 10

3.1 Dependency Model . 10

3.2 Analysis Phases . 13

3.2.1 Trace Phase . 13

3.2.2 Propagation Phase . 14

4 The Enhanced Analyzer 15

4.1 Inter-object Dependencies . 16

4.1.1 Tainting Policies . 16

4.1.2 White List . 16

4.2 Intra-object Dependencies . 17

iv

5 Implementation 20

5.1 Preprocessor . 20

5.2 Dependency Rules . 21

5.3 Trace and Propagation Phases . 22

6 Evaluation 24

6.1 Accuracy . 25

6.1.1 Scenarios . 28

6.1.2 Discussion . 33

6.2 Performance Measurements . 34

6.2.1 Analyzer . 34

6.2.2 Auditor . 35

7 Related Work 38

7.1 Intrusion Analysis . 38

7.2 Causality Analysis . 39

7.3 Database Intrusion Recovery . 40

7.4 Intrusion Detection . 40

7.5 Sandboxing . 40

8 Conclusions 42

8.1 Future Directions . 42

A Mapping for System Calls to Operations 49

v

List of Tables

3.1 Dependencies between processes, files and sockets 11

4.1 Tainting policies and operations . 17

6.1 Analyzer accuracy using various dependency policies 27

6.2 The analyzer performance . 35

6.3 Average daily backend statistics . 36

vi

List of Figures

2.1 The Forensix architecture . 6

2.2 The resolver architecture . 8

3.1 The analyzer architecture . 12

4.1 Inter-object and intra-object dependencies . 19

5.1 Overview of the Taser analyzer implementation 21

vii

Chapter 1

Introduction

Computer intrusions have become common today because of the widespread availability of

automated attack tools. According to CERT [5], the number of intrusion incidents has doubled

approximately each year since 1997. When these incidents occur, the attacked systems need

to be recovered. The recovery of file-system data is one of the most error-prone and time-

consuming tasks. This typically involves many steps: installation of a new system image that

includes the operating system and all applications, installation of software patches that fix

known vulnerabilities, and retrieval of uncorrupted user data. Each of these recovery steps is

manual, tedious and time-intensive.

Today, snapshot-based file-systems [23, 28] provide a well understood and commonly de-

ployed recovery solution [32]. This method gets rid of all corrupted data, but unfortunately, it

also gets rid of useful data not related to the intrusion, which has to be manually retrieved or

recovered separately.

Given the high human costs associated with recovery, we argue that sacrificing some ma-

chine and networking resources for automating the recovery process should be an attractive

proposition. Moreover, with the rapid and continuous decline in computing, networking, and

storage costs, logging all system operations, which is needed for recovery, is now technically

and economically feasible [29, 7, 16, 11].

1

CHAPTER 1. INTRODUCTION 2

This thesis focuses on analyzing system operations to determine the set of operations that

are related to an intrusion. These operations are called tainted operations and the analysis

process is called tainting analysis. Once the set of tainted operations is determined, file-system

data can be selectively recovered by reverting the effects of these tainted operations. This

approach has similarities with system software upgrade where the upgrade can be selectively

rolled back without affecting the rest of the system [3, 13].

Our tainting approach is implemented as part of the Taser intrusion recovery system. Taser

consists of three major components: auditor, analyzer, and resolver. Taser uses the Forensix

system [11] as the auditor to provide an accurate audit log of file, process and socket related

system-call operations. The Taser analyzer, which is the focus of this thesis, uses the data

provided by the auditor to correlate objects based on causal dependencies. Objects are marked

as tainted if they depend on an attack-related object. Finally, the Taser resolver takes the set of

tainted objects and generates recovery actions for these objects so that the effects of all tainted

operations are reverted.

1.1 Research Approach

The goal of the Taser analyzer is to identify the set of tainted operations using causal depen-

dencies between kernel-level objects such as processes and files. The analyzer creates depen-

dencies between these objects based on the flow of information that occurs during system-level

operations. A causal dependency relationship between two objects occurs when there is an

indirect flow of information across them via other objects. Starting from some known tainted

objects, the analyzer marks all causally dependent objects as tainted.

Unfortunately, sometimes legitimate user operations may unknowingly interact with attack-

related objects. For example, during a daily examination of the various log files in the system,

the administrator reads a file that is mangled by an attacker. Such interaction establishes a false

dependency relationship and renders the legitimate read operation tainted.

CHAPTER 1. INTRODUCTION 3

To avoid creating such false dependencies, we enhance the analyzer to ignore certain de-

pendencies during analysis. The choice of dependencies involves an inherent trade-off. These

dependencies can be chosen conservatively. For example, any interaction between the ker-

nel objects may be used to taint an object. This approach taints all attack-related operations,

but it may also mistakenly mark legitimate operations as tainted, which causes the resolver

to issue recovery actions to revert these legitimate operations. In contrast, when some of the

dependencies are ignored, the number of mistakenly tainted operations may be reduced, but

this approach can miss some attack-related operations. The analyzer exposes this trade-off

by providing a choice of tainting policies from conservative to optimistic. The more optimistic

policies ignore more dependencies. For example, an optimistic policy may assume that reading

certain log files does not cause a process to be tainted.

The analyzer consists of two main phases: trace and propagation. The trace phase attempts

to find the attack source objects such as a socket or a server process from which an attack

originated. This phase starts with an externally provided or known tainted object such as a file

created by an attacker and then traverses causal dependencies in reverse order to find potential

attack sources. The attack source objects are fed into the propagation phase, which taints all

the objects causally dependent on the attack sources.

The propagation phase provides a number of tainting policies that successively ignore cer-

tain dependencies. We find that the differences in the outputs of these policies aid in deter-

mining the set of attack-related objects and operations. When the propagation phase is run

repeatedly with different policies, it reveals a common set of tainted objects that are likely

to be attack-related, while the differences in the outputs of these runs are the ambiguous ob-

jects and whether they are attack related needs to be manually determined. Our evaluation

shows that the number of ambiguous objects is typically small compared to the total number

of file-system objects that have been modified since an attack and hence the precise set of

attack-related objects and operations can be determined quickly.

CHAPTER 1. INTRODUCTION 4

1.2 Contributions

The analyzer provides a fast and accurate methodology for determining intrusion activity for

file-system recovery. It automates the process of identifying damage caused by an intrusion

using a dependency-based tainting analysis method. To achieve accuracy, it provides flexible

dependency policies. The analyzer is fully implemented as part of the Taser intrusion recovery

system. A detailed evaluation in this thesis shows that the analyzer correctly taints file-system

objects for a wide range of intrusions, as well as erroneous system management activities. The

analyzer is used in the context of Taser and as such, we also provide a performance evaluation

of Taser.

1.3 Thesis Structure

The rest of the thesis provides the details of the analyzer. Chapter 2 provides an overview of

the other components of Taser, namely the auditor and the resolver. Chapter 3 presents the

basic design of the analyzer that can perform a conservative analysis. Chapter 4 describes en-

hancements that improve the accuracy of the analysis. Chapter 5 discusses the implementation

of the analyzer in detail. Chapter 6 provides an evaluation of the analyzer in terms of accuracy

and performance. Chapter 7 discusses the related work in the area. Finally, Chapter 8 presents

the conclusions and directions for future work.

Chapter 2

An Overview of the Taser Recovery

System

The Taser system consists of three components: the auditor, the analyzer and the resolver. This

chapter provides an overview of the auditor and the resolver components of Taser. The focus

of this thesis is the analyzer, and it is discussed in detail in the later chapters.

2.1 The Taser Auditor

The Taser auditor consists of the Forensix system, which provides an audit log of all system

calls performed in a target system. In particular, Forensix monitors and logs all the system calls

and their arguments and securely stores this audit log into a database at a backend system.

Figure 2.1 shows the Forensix architecture. The target system, which hosts publicly-

available services, is potentially vulnerable. The Forensix logger monitors the system calls

from the target system’s kernel to retrieve the relevant audit information. This audit log is

transmitted to the backend system via a private network and saved into append-only files at the

backend system. Then the data is batch-loaded into a database periodically. The separation of

the audit log from the target system ensures that the audit data cannot be easily destroyed.

5

CHAPTER 2. AN OVERVIEW OF THE TASER RECOVERY SYSTEM 6

Application server

Public network

Private network Logging pinhole

Backend
system

Forensix database

Append-only files

Target
system

Forensix kernel logger

Operating system

Figure 2.1: The Forensix architecture

The Forensix audit system has three characteristics that make it suitable for kernel-level

auditing: resistance to intrusions, unambiguous system-call attribution, and race-free auditing.

Resistance to Intrusions The auditing system must be resistant to attacks. Since the Foren-

six logger runs in the kernel on the target system, the logger is as vulnerable as the target

system’s kernel. The statistics we collect from Secunia [25] show that for the three distribu-

tions of Redhat Linux (Fedora Core 1, 2 and 3), the breakdown of the number of known kernel

to application-level vulnerabilities is 9/74, 9/132 and 6/112. In other words, kernel vulner-

abilities accounted for 10% or less of all vulnerabilities. While security statistics are never

conclusive [18], we believe that securing the kernel code is easier than securing all applica-

tions. To reduce the risk of kernel intrusions, Forensix uses LIDS [34] to disable 1) user-level

writes to kernel memory, 2) user-level writes via the raw disk interface, 3) writing to the kernel

or Forensix binary files, and 4) the loading of kernel modules. These simple measures make

current root-kits ineffective against the kernel [10, 24], and hence against the Forensix logger

as well.

Unambiguous System-Call Attribution The Forensix kernel logger has direct access to

system-call arguments because it wraps system calls to get audit data. The system-call ar-

guments by themselves do not unambiguously determine what kernel objects are involved in

CHAPTER 2. AN OVERVIEW OF THE TASER RECOVERY SYSTEM 7

the call. For example, the file object accessed when ./passwd is opened depends on the

current working directory of the calling process. To unambiguously identify the kernel objects

involved in system calls, the logger retrieves the kernel-level identifier of each object, which

is unique at any given point in time. However, these identifiers may be re-issued by the kernel

for storage efficiency. Since Forensix needs to identify objects uniquely over time, it attaches

an extra field, which is usually a timestamp, to distinguish kernel objects over time.

Race-Free Auditing The Forensix logger is implemented as wrappers to system calls. These

wrappers are prone to concurrency races. For example, a potential race condition occurs when

a open system call is issued concurrently with a rename system call. Between the time when

Forensix audits the open system call’s file name and the file is opened, if the rename system

call renames another file to the file name being opened, then Forensix would record the wrong

file object for the open system call. To avoid these races [9], Forensix uses the Linux security

modules facility [33] to gather further information that helps to precisely determine the identity

of kernel objects when they are accessed during system calls. In the example above, the file

object ID (the inode on UNIX file systems) is recorded during the open call.

2.2 The Taser Analyzer

The Taser analyzer is described in detail in later chapters. Briefly, it traverses the audit log

provided by the auditor and taints objects that are causally dependent on a seed object. The

seed object is provided externally and is known to be related to an attack.

2.3 The Taser Resolver

The goal of the resolver is to revert tainted file-system operations but preserve legitimate op-

erations. The resolver’s architecture is shown in Figure 2.2. It takes as input a file-system

snapshot, the set of tainted file-system objects and operations generated by the analyzer, and

CHAPTER 2. AN OVERVIEW OF THE TASER RECOVERY SYSTEM 8

U
ser p

referen
ces

Fi
le

-s
ys

te
m

 s
n
ap

sh
ot

Resolver

Recovery algorithm,
conflict resolution

Recovery script
generation

Recovery scripts

Forensix
database

Tainted
objects

Figure 2.2: The resolver architecture

the audit log created by the auditor. To revert operations, the resolver uses a selective redo

algorithm that only replays the legitimate operations in the audit log. The resolver assumes

that recovery starts with an immutable file system so that the file-system state does not change

during recovery.

The selective redo algorithm makes two optimizations to improve the performance of the

recovery process. First, the recovery is started using the current state of the file system. At

this state, all non-tainted objects are at their correct state and so no recovery action is needed

for these objects. To recover a tainted object, the resolver obtains an initial version of the ob-

ject from the file-system snapshot and sequentially replays the object’s legitimate modification

operations since the snapshot. Second, the algorithm recovers file name, content, and attribute

operations separately, which helps in optimizing name and attribute recovery. At each oper-

ation that modifies name or attribute, the auditor captures the complete resulting state of the

object. As a result, only the last legitimate operation needs to be replayed to recover a tainted

name or attribute. This optimization is not applicable for content recovery because the auditor

only captures changes in state but not the entire state for content operations.

While the analyzer enhancements described later in Chapter 4 help achieve accuracy dur-

CHAPTER 2. AN OVERVIEW OF THE TASER RECOVERY SYSTEM 9

ing recovery, they may introduce conflicts when legitimate operations depend on tainted oper-

ations. In such cases, reverting the tainted operations may result in cascaded reverting of the

dependent legitimate operations which violates the resolver’s goal of preserving all legitimate

operations. To handle these conflicts, the resolver defines various conflict resolution methods.

These resolution methods either reorder operations or isolate the tainted objects by recovering

them with special name extensions. For example, a legitimate operation creates a file under a

directory created by an intrusion. The resolver finds a conflict: it cannot remove the tainted

directory due to the legitimate file in it. The resolver handles this case by renaming the tainted

directory with a .nonexistent extension as an alternative way to remove the tainted di-

rectory while preserving the legitimate file. The detailed information regarding the conflict

resolution methods is described by Goel et al. [12].

Chapter 3

The Basic Analyzer

The goal of the analyzer is to determine the set of tainted file-system objects. To do so, the

interactions between three types of kernel objects, sockets, processes and files, are analyzed to

determine causal dependencies. Socket connections form initiating points for remote attacks,

processes issue operations that create other dependent processes or files, and file accesses cause

additional dependencies, and, in addition, files are the persistent state of the system that need

to be recovered.

A dependency occurs when information flows from one object to another via an operation.

When an object is tainted, the taint propagates along the direction of the dependency. In other

words, a tainted source object of a dependency renders the sink object tainted. A dependency

is denoted by Osrc
op→ Osnk where Osrc is a source object, Osnk is the sink object, and op is the

relevant operation. For example, when a process writes to the file, the file becomes dependent

on the process. Similarly, a process becomes dependent on a file when it reads the file.

3.1 Dependency Model

Table 3.1 shows the operations between the objects that are considered by the analysis. A

process to process dependency occurs when a child process is forked, which captures a tainted

process hierarchy, and when IPC and signal-based communication occurs between processes.

10

CHAPTER 3. THE BASIC ANALYZER 11

Dependencies Operations

Process→ Process IPC, Signals

Process→ Process Fork

Process→ File Content Write/remove file content

Process→ File Name Write/remove file name

Process→ File Attribute Write/remove file attribute

Process→ Socket Write

File Content→ Process Execute

File Content→ Process Read file content

File Name→ Process Read file name

File Attribute→ Process Read file attribute

Socket→ Process Read

Table 3.1: Dependencies between processes, files and sockets

CHAPTER 3. THE BASIC ANALYZER 12

Trace

Propagation

Analyzer

Forensix
database

Detection
points

Tainted objects

M
an

u
al feed

b
ack

Figure 3.1: The analyzer architecture

A process to file dependency occurs when a process writes to the content, name or attribute

(permissions and ownership) of a file, or when a process removes the content, name, or attribute

of a file. Note that file content, name and attribute are treated as separate objects because this

separation allows finer-grained analysis. A file to process dependency occurs either when a

process executes a file or reads the content, name or attribute of the file. For example, suppose

a directory’s attribute is tainted. A process accessing that directory will then become tainted.

Each component of a path name is considered as a separate object, and hence, when a process

accesses a path name in a system call, a dependency occurs from every component of the path

name to the process.

A process to socket dependency occurs when a process writes to a socket, and a socket

to process dependency occurs when a process reads from a socket. Given that attacks often

originate from the network, the taint propagation typically starts from socket objects.

CHAPTER 3. THE BASIC ANALYZER 13

3.2 Analysis Phases

The analyzer derives the set of tainted objects using the dependencies defined above. Figure 3.1

shows the architecture of the analyzer. The analysis starts with an initial set of tainted objects

that are assumed to have been detected by an IDS or by a administrator. These tainted objects

are known as the detection points. These objects could either be the source of an attack (such

as a NIDS alert about a connection that transfers malicious content) or the result of an attack

(such as a HIDS alerts about a strange file). The analysis proceeds in two phases, a trace phase

and a propagation phase, which we describe next.

3.2.1 Trace Phase

When the detection points are not the source of an attack, it is necessary to trace back to the

sources to determine all objects that are related to the attack. To trace the sources, the trace

phase is given the detection points as tainted objects and a conservative estimate of the attack

time interval. The trace phase traverses all operations within the given time interval in reverse

time order so that the taint propagates from sink objects to source objects in this phase.

The set of tainted objects resulting from the reverse tainting analysis helps the administrator

choose objects that are deemed to be an attack source. For example, the administrator may

run the trace phase using a single suspicious login session as the detection point to find all

other sessions from the same attacking IP address. To further aid the analysis, the output is

grouped according to various criteria (such as number of dependent objects, processes that

have accepted remote connections, setuid processes, remote sockets, setuid files, etc.)

Since it is unlikely that all potential attack sources are selected as the attack source for

the propagation phase, the objects tainted during the trace phase may not be tainted in the

propagation phase. So, all objects are marked untainted at this point, except those that are

selected as the sources of the attack.

CHAPTER 3. THE BASIC ANALYZER 14

3.2.2 Propagation Phase

The propagation phase starts with the attack-source objects determined above. This phase

traverses all the operations from the attack time in time order and propagates the taint to all

causally dependent objects. In the basic model, once an object is marked tainted, it typically

remains for the lifetime of the object. However, for file names, it lasts forever. Hence, when

a tainted file name is removed from the system and is later recreated, the new file name object

still remains tainted. The output of this phase is the set of tainted objects, ready to be used by

a recovery tool.

The basic dependency model presented above captures every object that is potentially re-

lated to the source of an attack. However, sometimes a legitimate objects may unknowingly

access a tainted objects, which creates a false dependency and the legitimate objects is then

falsely tainted. The next chapter will describe enhancements to the analyzer that improve the

accuracy of the analysis by ignoring these false dependencies.

Chapter 4

The Enhanced Analyzer

The dependency model presented above taints attack-related objects but may taint legitimate

objects also. While all operations presented in Section 3.1 cause information flow, it is unclear,

without detailed program analysis [22], whether the dependencies that are created are critical.

For example, a SIGCHLD signal sent from a tainted process to its parent process may occur

as part of normal activity, and hence the parent process should not be marked tainted solely

because of such a signal. Similarly, applications may read and write from /dev/null but

this file does not cause any explicit information flow.

A solution to the problem described above is to relax the dependencies show in Table 3.1.

We define dependency rules as a mechanism to govern the behaviour of the analyzer. The use

of these rules, on one hand, reduces the possibility of tainting legitimate objects; on the other

hand, it increases the chance that an attacker’s operations are left untainted. This trade-off is

discussed in the evaluation. Dependency rules control two types of dependency: inter-object

dependency (across objects) or intra-object dependency (within an object over time). These are

discussed is the following sections.

15

CHAPTER 4. THE ENHANCED ANALYZER 16

4.1 Inter-object Dependencies

The dependencies that are described in the previous chapter are inter-object dependencies.

These dependencies relate two objects based on an operation. Below, we discuss two types

of dependency rules: tainting policies and white list, to reduce the number of falsely tainted

objects. Tainting policies ignore dependencies caused by certain operations, while white list

ignores dependencies caused by certain objects.

4.1.1 Tainting Policies

We define six tainting polices that progressively ignore an increasing number of dependen-

cies. These policies range from a conservative policy that creates dependencies by taking into

account all operations, to an optimal policy that considers a minimal set of operations.

Table 4.1 shows these policies. The Snapshot policy taints all operations that occur after an

attack regardless of any dependencies. It is used for comparison against the other dependency-

based policies. The Conservative policy takes all dependencies into account. From the NoI

policy onwards, each policy progressively ignores the following operations: IPC/signals, file

attribute read, file name read, and file content read. The NoI policy ignores IPC and signal

operations, the NoIA ignores IPC, signal, and file attribute read operations, and so on. The

NoIANC policy is the most optimistic policy. It includes a minimal set of operations that are

considered essential for creating tainting dependencies. These operations include fork that

creates the tainted process hierarchy, file or socket writes by a tainted process, execution of a

tainted file, and reads from a tainted socket.

4.1.2 White List

Besides pruning dependencies based on operations, dependencies can be pruned based on ob-

jects as well. When a tainted object is white-listed, its taint does not propagate to the sink

object in an operation. A common situation where an object is white-listed is when a shared

CHAPTER 4. THE ENHANCED ANALYZER 17

Policy Description

0 Snapshot All operations tainted

1 Conservative All operations shown in Table 3.1

2 NoI Ignores IPC, signals

3 NoIA Further ignores reading file attribute

4 NoIAN Further ignores reading file names

5 NoIANC Further ignores reading file contents

Table 4.1: Tainting policies and operations

file accessed by many processes. If this shared file becomes tainted, all processes that access it

will become dependent on it, potentially creating many falsely tainted process objects.

In practice, white list works well in conjunction with the NoI, NoIA and the NoIAN tainting

policies. Attacks usually trigger writes to various log files in the /var/log directory and to

/dev/null. The NoI, NoIA and NoIAN policies generate false dependencies from tainted

processes to other processes via these files. If these files are white-listed, the dependency

caused by reading these files is ignored, which reduces false positives.

4.2 Intra-object Dependencies

Until now, we have only discussed inter-object dependencies that cause information flow across

objects. However, we also consider information flow over time within an object and call it an

intra-object dependency. The dependency model described above assumes that intra-object

dependencies exist for the lifetime of each object. With this conservative approach, once an

object is tainted, it remains tainted forever. For example, a process remains tainted until it dies.

This approach avoids missing dependent tainted operations but, unfortunately, it can be too

coarse-grained, especially when objects exist for long periods. For example, a server process

often performs activities that are logically distinct for each connection. Tainting based on

CHAPTER 4. THE ENHANCED ANALYZER 18

this long running process will generate false dependencies between these unrelated activities

simply because the same process issues them.

To reduce these false dependencies, we introduce the notion of intervals to intra-object

dependencies so that each interval is considered independent of the other intervals. When an

object is tainted, it remains tainted until the end of its current dependency interval, and we

name this time period the tainted interval. Below, we describe how we define the dependency

intervals for each type of object.

Processes For processes, we consider two cases: 1) server processes that communicate using

a socket connection that is initiated by a remote source, and 2) all other processes. In the latter

case, we define only one dependency interval, which is simply the lifetime of the process. In

the former case, a server process can be the initiating point for external attacks. Such a process

or its parent is typically a demultiplexing point for large numbers of unrelated activities. Hence,

creating different intervals for the unrelated activities can significantly avoid false dependency

sharing.

We argue that successful socket read operations can distinguish intervals for a server pro-

cess. A read from a different remote socket indicates that the process switches “context” to

work for another unrelated activity. Such a read terminates the current interval and starts an-

other interval. This interval method can be used for various common server models such as

separate processes started by Inetd, worker processes that handle different multiple connec-

tions and event-driven servers that multiplex the activities of different connections.

Figure 4.1 shows inter-object and intra-object dependencies. Similar to the notation used in

Magpie [4], the start and end of an intra-object dependency interval is shown with a � symbol.

However, unlike Magpie that aims to create sets of related objects and uses undirected depen-

dencies, the dependencies shown here are directed. The figure shows two different intervals for

Process 1 based on whether the process is serving Socket 1 or Socket 2. Each of these intervals

is multiplexed over time as shown by the | symbol.

CHAPTER 4. THE ENHANCED ANALYZER 19

Time

re
ad

re
ad

re
ad

re
ad

Process 1

Socket 1

Socket 2

Objects are shown on the left side of the figure. Inter-object dependencies are shown as

vertical arrows while intra-object dependencies are shown as horizontal lines. The start and

end of an intra-object dependency interval is shown with a � symbol. Dependency intervals

can be multiplexed over time as shown by the | symbol for Process 1. For this process, reading

from different sockets starts the different intervals.

Figure 4.1: Inter-object and intra-object dependencies

File name With the conservative approach, once a name in a directory is tainted, it remains

tainted forever. For example, say a tainted name is removed. If a legitimate process creates

the same name in the same directory again, this name still remains tainted. With dependency

intervals, a file name interval starts when a new file name is created and it ends when the file

name is removed.

Files content For file content, the dependency interval starts when a new file is created and

it ends when the file is removed. In addition, the interval ends and another interval starts if

the data of an object is completely overwritten. For example, the complete truncation of a file

starts a new interval since the truncation stops any file content related dependency.

File attribute For file attribute, the dependency interval starts when a new file is created and

it ends when the file is removed.

Sockets For sockets, the dependency interval is simply the lifetime of the socket. Because

the states at the remote end of the socket are not available, we can only conservatively define

one dependency interval for a socket.

Chapter 5

Implementation

The implementation of the analyzer is divided into four components: the preprocessor, the

dependency rules, the trace phase and the propagation phase. The preprocessor extracts op-

erations from the Forensix system-call data. The trace phase finds the attack sources and the

propagation phase handles the tainting process according to dependency rules. Figure 5.1

shows an overview of the implementation.

5.1 Preprocessor

The semantics of system calls can be complex. For example, many system calls take a path-

name as an input argument. The kernel internally translates the input pathname to a kernel file

object. During the translation, the kernel reads the name, permission and ownership of each

of the components of the path to locate the kernel file object as well as to determine access

privileges. Some system calls allow an input flag to control their behaviour. For example, the

O_CREAT flag controls whether an open system call will create a new file if the file does not

exist.

The preprocessor interprets the complexity of system calls and maps them to one or more

simple operations defined in Table 3.1. It mimics some of the kernel’s behaviour in terms of

handling system calls. The detailed mapping is shown in Appendix A. While some system

20

CHAPTER 5. IMPLEMENTATION 21

Trace
phase

Propagation
phase

Analyzer

Forensix
database

Detection
points

Tainted objects

M
an

u
al feed

b
ack

Preprocessor

Dependency
rules

Figure 5.1: Overview of the Taser analyzer implementation

calls, like fork, have simple one-to-one mapping, some system calls have complex mappings.

For example, the rename system call takes an old path and a new path as arguments. If the

new path exists, it will be atomically replaced. This system call translates into the following

operations: 1) read file name and attribute for all the components in the old path (to access the

old pathname), 2) read file name and attribute for all the components in the existing new path

(to access the new pathname), 3) write file name of the existing new path (to remove the name),

4) write file content and attribute of the existing new path if it is the last link (to remove the

kernel file object), 5) write file name of the existing old path (to remove the name), 6) write file

name of the new path (to create the new name).

5.2 Dependency Rules

The dependency rules consist of the analyzer enhancements: tainting policies, white list, and

dependency intervals. Based on these enhancements, this component makes two decisions: 1)

whether to start a tainted interval for a sink object, or 2) whether to end the current tainted

interval for a sink object. Without these enhancements, the first decision is always true and the

CHAPTER 5. IMPLEMENTATION 22

second decision is always false.

A tainted interval is started when a dependency caused by an operation is considered by the

tainting policy and when the source object is not in the white list. A tainted interval ends when

dependency intervals are enabled and the conditions described in Section 4.2 are met.

The implementation of dependency rules is straightforward except for the complications

that arise in identifying server processes. Previously, we defined a server process as one that

communicates on a socket connection that is initiated by a remote host. However, this process

may fork child processes to run utility programs that also use the same socket connection.

For instance, an Apache process forks a child to execute a common gateway interface (CGI)

program. These utility processes should not be treated as server processes. Fortunately, the

parent process of a real server process does not communicate with the remote host on the

connection. The parent simply accepts the connection and lets the server process service the

request. As a result, an additional constraint, that the parent process should not read from or

write to the same connection as a server process, is needed to identify server processes.

Of the policies listed in Table 4.1, the snapshot policy and the conservative policy are not

implemented as part of dependency rules at the moment. The snapshot policy finds the file-

system objects that would be reverted by restoring a snapshot. We implement this policy in an

ad hoc manner by tainting all process objects from the time of the snapshot and then running the

analyzer with the NoI policy. The conservative policy cannot be reliably implemented because

the Forensix auditor does not currently capture all IPC-related information.

5.3 Trace and Propagation Phases

The implementation of the trace and the propagation phases is similar. The trace phase consists

of three steps. It first queries the auditor to get the system-call data, and then in the second

step, it queries the preprocessor to obtain the operations for each system call. Finally, the

trace phase considers each operation in reverse time order to determine the tainted source

CHAPTER 5. IMPLEMENTATION 23

objects. When the sink object of an operation is in a tainted interval, this step taints the source

object by creating a tainted interval that starts from the beginning of time (−∞) until the time

of the operation. This tainted interval is used if this source object becomes a sink object in

another operation. To avoid missing attack sources, this phase is conservative and ignores the

dependency rules.

The propagation phase also consists of three steps. The first two steps of the trace and the

propagation phases are exactly the same. In the last step, the propagation phase considers each

operation in forward time order to determine the tainted sink objects. When the source object

of an operation is in a tainted interval, this step queries the dependency rules to determine

whether to create a tainted interval for the sink object. The tainted interval is created from the

time of the operation to the end of time (∞). In addition, if the dependency rules component

decides to end the tainted interval at an operation, the propagation phase limits the end time of

the tainted interval to the time of the operation.

Chapter 6

Evaluation

We evaluate the analyzer using two criteria: 1) the accuracy with which it correctly identifies

attack-related objects and 2) the performance of the analyzer. The analyzer can only be used in

conjunction with the Taser auditor. As a result, we also evaluate the performance and storage

cost of using Forensix as the auditor.

The experimental setup consists of a target and a backend machine. The target machine is

an AMD Athlon 2600+ machine with 512 MB memory. It runs stock Redhat 7.2 together with

the Forensix logger. It contains four vulnerable services or executables: the samba and the wu-

ftpd daemon that allow remote root exploits, and the sendmail and the pwck-setuid programs

that allow local root escalation exploits. The backend machine is an Intel Pentium 4 2.4 GHz

CPU with Hyper-Threading and 512 MB memory. It runs Redhat Fedora Core 3 and uses the

MySQL version 4.1.10 as the Forensix database. The target system is a server that provides an

online album service using a web application called Gallery.

The experiment is run for approximately a week. During this time, a third machine runs

a program called Galhogger to simulate user interactions against the Gallery service continu-

ously. Galhogger simulates an anonymous user that browses the albums every 2 seconds on

average, and five registered users that each modifies the albums every 3000 seconds on average

to generate concurrent activities and to load the target system.

24

CHAPTER 6. EVALUATION 25

6.1 Accuracy

We use the entire Taser recovery system to evaluate the accuracy of the analyzer. The output

of the analyzer is used by Taser to generate a list of actions that revert the tainted operations

performed on tainted objects. Since the analyzer is the only component that decides whether

objects are tainted, the Taser output reflects the decisions made by the analyzer and therefore

its accuracy. This list contains the minimal number of recovery actions and is more compact

than the analyzer output.

This evaluation consists of six scenarios. Each scenario represents a different flavour of

situation in real life that requires file-system recovery. Four of the scenarios are intrusion-

related and two reflect system mis-configuration cases.

As described in Section 3.2, the analyzer first runs the trace phase to obtain the attack

source from detection points and then the propagation phase. The trace phase is run without

ignoring any dependency so that it finds all potential attack sources. The propagation phase

is run with five different policies: Snapshot, NoI, NoIAN and NoIANC. The NoIA policy

has results similar to the NoI policy and is not shown in this evaluation. The output of the

propagation phase is then fed to the recovery system to generate the set of recovery actions.

Two metrics are used to evaluate the accuracy: 1) the number of false positives, which

are recovery actions generated to undo legitimate operations, and 2) the number of false nega-

tives, which are the attacker’s operations that are not subject to recovery. Recovery operations

for each file content object are aggregated as a single recovery action, whereas for name and

attribute objects, each recovery operation is counted as a recovery action. To calculate the

number of false positives and negatives, the correct number of recovery actions is determined

manually. To evaluate the accuracy over time, Taser is run one day and one week after the

incidents in the scenarios.

The Snapshot policy is presented as a base case for comparison. This policy can only

have false positives, as all operations happen after the snapshot time are reverted. Note that

illegitimate actions of all scenarios are performed prior to the Taser’s runs. As a result, the

CHAPTER 6. EVALUATION 26

false positive numbers for the snapshot policy are similar across scenarios.

The NoI and the NoIAN policies create dependencies due to reading file content. In general,

they can generate large numbers of false positives due to false dependencies caused by reading

character device files and log files. A small set of files are white-listed to minimize the number

of false positives. Unless explicitly mentioned, the default white list for these policies consisted

of the following: 1) all character device files such as /dev/null and /dev/pts/0; 2) the

log files /var/log/wtmp, /var/log/wtmp.*, /var/run/utmp, /var/log/lastlog;

and 3) shell history files. Note that white-listed files are irrelevant to the Snapshot and the

NoIANC policies because the former already has all process objects tainted and the later does

not concern about content to process dependencies.

By default, dependency intervals defined in Section 4.2 are enabled for all the policies.

One of the scenarios used a server process, and in this scenario, results that have dependency

intervals enabled and disabled are compared to show that disabling dependency intervals for

tainted worker processes can cause a large number of false positives.

The following subsections describe of the scenarios and their results.

CHAPTER 6. EVALUATION 27

A
na

ly
si

sd
on

e
on

e
da

y
af

te
r

at
ta

ck
A

na
ly

si
sd

on
e

on
e

w
ee

k
af

te
r

at
ta

ck

Sc
en

ar
io

R
ec

ov
er

y
A

ct
io

ns
Sn

ap
sh

ot
N

oI
N

oI
A

N
N

oI
A

N
C

Sn
ap

sh
ot

N
oI

N
oI

A
N

N
oI

A
N

C

Il
le

ga
ls

to
ra

ge
50

7
63

3,
0

2,
0

0,
0

0,
0

41
54

,0
7,

0
0,

2
0,

2

C
on

te
nt

de
st

ru
ct

io
n

73
9

18
77

,0
0,

0
0,

0
0,

0
53

38
,0

0,
0

0,
0

0,
1

U
nh

ap
py

st
ud

en
t

16
7

11
06

,0
2,

0
0,

0
0,

1
46

17
,0

4,
0

0,
0

0,
1

C
om

pr
om

is
ed

da
ta

ba
se

3
81

4,
0

0,
0

0,
0

0,
2

25
57

,0
0,

0
0,

0
0,

2

So
ft

w
ar

e
in

st
al

la
tio

n
35

0
15

42
,0

1,
0

0,
0

0,
0

50
06

,0
1,

0
0,

0
0,

0

In
ex

pe
ri

en
ce

d
ad

m
in

39
13

66
,0

11
,0

11
,0

0,
0

49
82

,0
11

,0
11

,0
0,

0

In
ex

pe
ri

en
ce

d
ad

m
in

(d
ep

en
de

nc
y

in
te

rv
al

s
di

sa
bl

ed
)

39
13

66
,0

41
5,

0
41

5,
0

12
5,

0
49

82
,0

70
1,

0
70

1,
0

12
6,

0

Fo
r

ea
ch

sc
en

ar
io

,t
he

se
co

nd
co

lu
m

n
sh

ow
s

th
e

co
rr

ec
tn

um
be

r
of

re
co

ve
ry

ac
tio

ns
as

de
te

rm
in

ed
m

an
ua

lly
.

T
he

re
st

of
th

e
co

lu
m

ns
sh

ow

th
e

ac
cu

ra
cy

of
fo

ur
de

pe
nd

en
cy

po
lic

ie
s

in
te

rm
s

of
fa

ls
e

po
si

tiv
es

an
d

fa
ls

e
ne

ga
tiv

es
,s

ep
ar

at
ed

by
co

m
m

as
.

T
he

ac
cu

ra
cy

of
th

e
po

lic
ie

s

ar
e

sh
ow

n
on

e
da

y
an

d
on

e
w

ee
k

af
te

rt
he

at
ta

ck
.

Ta
bl

e
6.

1:
A

na
ly

ze
ra

cc
ur

ac
y

us
in

g
va

ri
ou

s
de

pe
nd

en
cy

po
lic

ie
s

CHAPTER 6. EVALUATION 28

6.1.1 Scenarios

Illegal storage: A user logs into the system and launches the pwck local escalation ex-

ploit to get the root shell and creates a new root account root100 by directly writing to the

/etc/passwd and the /etc/shadow files. This attacker creates a directory under another

user’s directory (as root) and downloads 500 illegal pictures into this directory. Finally, he

downloads a trojaned binary ls program in the user’s bin directory to hide the existence of the

illegal directory. Later, the victim user logs in, uses the trojaned ls program and creates two

files in his home directory. The attacker logs back in as root100 after two days and downloads

two more pictures into the hidden directory.

Correct recovery actions: Remove all the illegal pictures and the hidden directory, the tro-

janed ls binary, and the home directory of the attacker’s root100 account. In addition, the

legitimate versions of the /etc/passwd and /etc/shadow files need to be recovered.

Detection points: The trojaned ls program is detected by the victim and given to the trace

phase.

Results: The trace phase detects the remote connection of the attacker and propagation is

started using the remote host address. The NoI and the NoIAN policies with the default white

list generated several false positives because /etc/passwd and /etc/shadow are written

by the attacker and their content is read by all the following ssh login processes which also get

tainted. As a result, all activities in the these login sessions are to be reverted by the recovery

system. The content objects for /etc/passwd and /etc/shadow are then added to the

white list and the analysis is run again. Table 6.1 shows that two false positives for the NoI

policy when Taser is run after a day. These errors are caused by the victim’s shell process that

gets tainted as it accesses the name of the trojaned ls program. Therefore, the two new files

created by him are tainted and will be removed during recovery. The other two policies have

no errors when recovery is performed after one day.

When Taser is run one week after the attack, the NoIAN and the NoIANC policies have

two false negatives because the attacker’s second login is not caught tainted as the password

CHAPTER 6. EVALUATION 29

files are put into the white list. The two new picture files created in this session are missed by

these policies. The NoI policy has no false negatives because the second login by the attacker

accesses the tainted root100 directory that taints this session. Table 6.1 shows that the recovery

results after a week are similar to the recovery results after a day, and therefore, for the rest of

the scenarios, the discussion will be based on the recovery results after a day.

Content destruction: A software developer has been working on the files src/project.c,

hfiles/p1.h and hfiles/p2.h. He has also saved a backup of the project.c file in

backup/project.c.bak. Another developer on the system launches the sendmail local

escalation exploit to get the root shell. This attacker deletes the project.c and p2.h files.

The victim notices that the project.c file is missing. He copies the backup file to the src

directory and also moves the p1.h file to the src directory. Then, he deletes the hfiles

directory and notifies the administrator.

Correct recovery actions: Remove numerous files generated by the sendmail attack, restore

the deleted p2.h file in the hfiles directory, recover the original project.c file and deal

with different versions of this file.

Detection points: The missing p2.h and project.c files.

Results: The trace phase detects the attacker’s login process, which is used for propaga-

tion. The results show that none of the policies, except the snapshot policy, have any errors.

The hfiles directory is created along with the recreation of the p2.h file. The original

project.c file is recovered with an extra file name extension to differentiate from the exist-

ing version.

Unhappy student: An attacker launches a remote attack on the wu-ftpd daemon running on

the system and modifies the permissions of a grades file in a professor’s home directory to be

globally writable. Later, student A (an accomplice) with a regular account modifies the grades

file in the professor’s directory and also copies the professor’s whole home directory in his own

directory. Then, student B (another accomplice) logs in and copies the modified grades file to

CHAPTER 6. EVALUATION 30

his home directory and creates two other files.

Correct recovery actions: Recover the original grades file in the professor’s directory, restore

the attribute of this file, and remove all copied files in both student A’s and student B’s home

directories.

Detection points: The grades file that the professor finds is writable by others.

Results: The trace phase detects the remote attacker’s root shell as well as student A’s login

session but not student B’s login because B did not modify the grades file. The NoI propagation

policy detects and taints student B’s shell process and the two files created by him which are

false positives. The NoIANC policy on the other hand did not taint student B’s operations,

which leads to a false negative because the illegal copy of the grades file in student B’s home

directory is not removed. The NoIAN policy had no errors because this policy tainted B’s copy

operation but not B’s entire shell process.

Compromised database: Authenticated MySQL clients update a MySQL database running

on a remote server. An attacker launches a remote attack on the Samba daemon running on the

target system, gets a root shell and creates an SSH backdoor by writing his public key to root’s

authorized_keys2 file. Later, other remote legitimate clients insert transactions into the

database. After six hours, the attacker uses the ssh backdoor to log back into the machine.

He issues a local MySQL query to remove some tuples from the database. After that, more

legitimate clients update the database.

Correct recovery actions: Remove the attacker’s ssh backdoor by removing his public key

from the authorized_keys2 file. In addition, recover two files associated with a MySQL

table in the compromised database.

Detection points: Snort [21] detects the Samba attack but is unable to give further information

regarding the damages done at the target machine. So the Forensix tools [11] are used to

determine the attacker’s root shell session as the detection point.

Results: The trace phase starts from the root shell and detects the attacker’s first connection,

CHAPTER 6. EVALUATION 31

which is used for propagation. The results show that none of the policies have any false posi-

tives. All of them recover the authorized_keys2 file. Using the NoI and the NoIAN poli-

cies, the analyzer detects the attacker’s second login via the dependency caused by the tainted

authorized_keys2 file. Taser then restores the modified database files to the state right

before the attacker’s second login session in which he modifies the database. The rest of the

legitimate database updates are not recovered as the database’s file content objects are tainted

since the attack. The Snapshot policy would revert the database to a state before the attacker’s

first login and miss all database writes since then. The file-based recovery approach works in

this scenario because MySQL is configured not to use transactions. For transactional databases,

the database recovery logs would need to be incorporated in the recovery process [17, 19]. The

NoIANC policy has two false negatives because it misses the attacker’s second login as well as

the delete query.

Software installation: Unlike the previous scenarios, the next two scenarios present and an-

alyze system administration errors. Using a root account, an administrator installs RealPlayer

8 in the wrong directory which causes it to create many files and directories in this directory.

In addition, it creates or updates various configuration files of Netscape, KDE and Gnome, and

creates directories in /root such as .netscape/plugins. Later, the root user browses

the web with the netscape browser and downloads and saves a PDF reader plugin for Netscape

in this directory.

Correct recovery actions: All the RealPlayer files and directories should be removed and the

configuration files should be restored.

Detection points: One of the RealPlayer files.

Results: The trace phase detects the process of the RealPlayer installer program, which is used

for propagation. For this scenario, none of the policies generated any false negatives. However,

the NoI policy has one false positive because the Netscape plugins directory is tainted and

this policy taints the PDF reader plugin that the recovery later removes. The NoIAN and the

CHAPTER 6. EVALUATION 32

NoIANC policies do not taint the PDF reader plugin. Although the plugins directory is tainted,

it remains in the system because it contains the legitimate plugin file.

Inexperienced administrator: The administrator uses the photo Gallery software (which is

also used as background load in the experiments) to store his digital pictures and also creates

an account for a guest user. The new account is set up with a weak password because the

administrator expects the guest to change the password soon. Then, the administrator adds

new albums and pictures under his account and logs off. Before the guest can change his

password, an attacker at a remote site logs into the guest’s account by using a dictionary attack.

The attacker creates two new albums and uploads 14 pictures to the target machine and then

views the administrator’s albums. Later, the administrator views the albums and discovers

inappropriate images in the two new albums. He contacts the guest user and finds out that the

guest user is not responsible for these albums.

Correct recovery actions: Remove the attacker’s albums and all related data (such as thumb-

nails) generated by Gallery.

Detection points: A directory that contains one of the attacker’s albums.

Results: The trace phase detects the attacker’s remote connection and propagation is started

using the remote host address. Gallery maintains album, image, thumbnail and photo visit

counters in a file hierarchy. Table 6.1 shows that there are 39 necessary recovery actions: 2

of which are to remove the attacker’s albums, 14 are to remove the images, 16 are to remove

the automatically generated thumbnails, 6 are to remove the album data files generated by

Gallery (such as album.dat), and the remaining one is to recover a common data file called

albumdb.dat that contains some global Gallery information. The NoI and the NoIAN poli-

cies generated many false positives because these policies create content-related dependencies

and Gallery always reads the albumdb.dat file which taints all connections and their sub-

sequent operations. After the albumdb.dat file and the per-directory album.dat files

are added to the white list, running Taser with these policies generated 11 false positives. In

CHAPTER 6. EVALUATION 33

contrast, the NoIANC policy generated no false positives because the tainted status does not

propagate via the albumdb.dat file.

Gallery runs on the Apache server that uses a worker model for servicing requests. The

experiment above is performed using multiple tainted intervals, one per connection, for the

Apache worker processes. The same analysis is run again but allowing only a single tainted

interval for the worker processes for this run. The last row of Table 6.1 shows that the single

interval setting results in false positives even with the NoIANC policy, the most optimistic

policy, because once a worker process is tainted by the malicious connection then it remains

tainted even if it later services a legitimate connection. If it is not that case that Apache kills

and re-spawns a new worker thread regularly, the single interval setting will cause all Gallery

actions after the attack to be reverted.

6.1.2 Discussion

The previous subsection has evaluated the accuracy of the analyzer in terms of correctly recov-

ering legitimate data under various scenarios. There are several key results from Table 6.1 that

are worth highlighting. First, the table shows that the analyzer typically achieve high accuracy.

The number of false positives or negatives remains small comparing to the number of recovery

actions required.

Second, the accuracy results do not vary significantly when Taser is run one day or one

week after the attack. Because the usefulness of Taser does not degrade over time, the timeli-

ness requirement for intrusion detection systems can be relaxed.

Finally, the most significant result is that no tainting policy performs ideally under all cir-

cumstances, a result that may seem undesirable. However, note that the optimistic policies

have relatively few false positives while the conservative policies have few false negatives. For

example, the NoIANC policy had no false positives in all scenarios while the NoI policy had no

false negatives. By comparing the output of the different policies, one can quickly determine

the correct set of recovery actions. Recovery actions that occur in all policies are most likely to

CHAPTER 6. EVALUATION 34

be correct actions. The difference in the outputs of these policies are the recovery actions that

are ambiguous, that is, whether these actions are legitimate or not. This difference, in terms

of the sum of false positives and false negatives of the scenarios, is indeed a small number.

Hence, it should be easy to classify these actions manually.

6.2 Performance Measurements

Taser utilizes Forensix to provide an audit log of all system-call data relevant to file-system

recovery. This section shows the performance of the analyzer and the cost of using Forensix

as the auditor. Note that the target and the backend performance are mostly decoupled. For

example, the analyzer that is run at the backend machine has relatively little impact on the

performance of the target machine.

6.2.1 Analyzer

Table 6.2 shows the time required to run the analyzer when it is started one day and one week

after the attack. For each of the four dependency policies, the average analyzer runtime and the

95% confidence intervals in minutes are shown. The average is taken across all the scenarios

that are evaluated in Section 6.1.

The trace phase was run for each scenario once and the attack time interval is set to one

hour. It takes less than a minute for every scenario and is not shown in the table. The prop-

agation phase takes below 7 minutes when the analyzer is started one day after the attack.

However, the propagation time can be as much as one hour when the analyzer is run after a

week. Note that the propagation time grows with the time to analysis because propagation

visits every operation done by the target system to determine dependencies.

The performance of the propagation phase is indeed held back by the performance of

the Forensix database. Approximately 80% of the propagation time is spent in the MySQL

database retrieving system-call data sorted in time order. While using a database to store the

CHAPTER 6. EVALUATION 35

Policy One day One week

Snapshot 5.5±1.1 102.9±7.4

NoI 4.5±0.9 58.3±3.3

NoIAN 4.4±1.0 56.2±3.1

NoIANC 4.0±0.9 63.6±12.6

The performance numbers of the analyzer run one day and one week after the attack.

Each number is shown in minutes and averaged across the different scenarios.

Table 6.2: The analyzer performance

Forensix audit log is useful for general intrusion analysis, we postulate that the analyzer can be

greatly optimized by using a customized implementation for data storage and retrieval.

While the performance results above show that the analyzer can be run relatively quickly,

note that the administrator must still spend time choosing the appropriate attack source objects

between the trace and the propagation phases of the analysis. Interactive and graphical analysis

tools that can display the tainted source objects together with their attribute, such as the number

of dependent objects, can ease this process.

6.2.2 Auditor

Auditing system calls imposes overhead on the target system while loading this data into a

database at the backend machine imposes overhead on the backend. With the load imposed

by Galhogger on the Gallery photo album application, the logging overhead at the target is

insignificant. The cost imposed at the backend, averaged per day, is shown in Table 6.3. The

system load and hence the daily numbers do not vary much across different days. The table

shows the number of system calls generated on the target machine. The most common system

calls consist of read (5.8 M), open (3.0 M), close (2.0 M), mmap (1.7M), write (371 K),

dup (155 K), signal (106 K), connection (31 K), unlink (16 K), exec (9 K) and fork

CHAPTER 6. EVALUATION 36

Number of operations 13.3 Million

Size of flat files 1.9 GB

Size of database 2.3 GB

Database loading time 36.3 min

Table 6.3: Average daily backend statistics

(8 K). These constitute 99% of all operations.

The total amount of uncompressed file data generated is 1.9 GB per day. When this data

is loaded into a database, the database size grows by 2.3 GB per day. The loading time is

36.3 minutes per day. Another way to interpret this result is that the backend system can

sustain loads that are approximately 40 (24 × 60 ÷ 36.3) times larger than the load imposed

by Galhogger or one backend system can audit 40 target machines with the same load. The

database loading time is the main bottleneck in Forensix. A Forensix audit log implementation

optimized for the analysis could potentially avoid the loading times.

Target Performance Under Heavy Load

To measure the overhead of auditing at the target system under heavy loads, two benchmarks

are used: Webstone and Linux kernel build. The Webstone benchmark stresses a standard

Apache web server running on the target system by issuing back-to-back client requests and

is a representative of a loaded server environment. A third machine, which has the same con-

figuration as the target machine, runs as the Webstone client and it is connected to the target

machine with a Gigabit network. The kernel build benchmark determines the overhead im-

posed for CPU-bounded applications in a regular desktop environment.

The performance overhead of auditing on the target machine is measured by logging the

system calls on the target machine and streaming these data to the backend where they are

stored in append-only files. Auditing has an insignificant effect on kernel compilation (0.6%)

while Webstone throughput decreases from 258.3 Mbs to 239.2 Mbs or about 7.4%. These

CHAPTER 6. EVALUATION 37

results are encouraging because they show that even under heavy load, the Forensix logging

mechanism on the target has low overhead.

The amount of compressed data collected in these experiments (extrapolated per day) is 8

GB per day for kernel compilation and 11 GB per day for Webstone. Even though the amount

of logged data is roughly the same, the Webstone throughput suffers much more than kernel

compilation because Webstone generated approximately 11 times the number of system calls

compared to kernel compilation. While the storage requirements of Forensix can be large

under heavy loads, the large amount of network capacity and massive and inexpensive storage

space available in local networks today (for example, a terabyte costs between $500 and $1000)

render this approach feasible for reliable intrusion analysis.

Chapter 7

Related Work

The goal of this thesis is to perform attack analysis to enable recovery after an intrusion. In

this chapter, we first describe related work in the areas of intrusion analysis and causality-

based analysis. Then, we describe related research in recovery, in particular, database recovery.

Finally, we discuss complementary computer security research related to intrusion detection

and sandboxing.

7.1 Intrusion Analysis

The analyzer is directly motivated by the work on backtracking intrusions [16]. Their Back-

Tracker system uses a time-based approach to generate dependencies between processes, files

and sockets and uses a dependency graph to view intrusions. The primary difference between

the two systems stems from the difference in their goals. While BackTracker is focused on

tracking the sources of an intrusion, the analyzer generates a set of tainted files that need to

be recovered. As a result, the BackTracker’s taint analysis policies are conservative or else

it would miss the intrusion, while the analyzer provides optimistic policies so that legitimate

data can be preserved as much as possible during recovery. BackTracker considers each file

as a single object, while the analyzer separates the content, name, and attribute of a file into

different objects. This difference in granularity allows the analyzer to provide optimistic poli-

38

CHAPTER 7. RELATED WORK 39

cies. Furthermore, unlike BackTracker, the analyzer uses interval-based analysis to improve its

accuracy.

Sebek [15] provides a honeypot1 environment to capture activities of attackers and stores

this data in a separate machine for administrators to review the intrusion session. Sebek has

a similar architecture as the Forensix auditor but it only audits write system calls. This is

sufficient for Sebek because it attempts to reveal data such as keystrokes, uploaded files and

passwords, whereas Forensix provides a framework for general intrusion analysis. Another

difference between Sebek and Taser is that Sebek assumes a honeypot environment where all

activities on the target machine are assumed to be related to an intrusion. However, Taser needs

the analyzer to determine whether an activity is intrusion-related for a general system.

7.2 Causality Analysis

Magpie [4] extracts the control flow and the resource requirements of requests in a clustered

server environment by monitoring kernel and application-level events. Then it correlates these

events using an application-specific event schema. Magpie uses interval-based correlation sim-

ilar to the analyzer’s dependency intervals. However, while Magpie uses undirected dependen-

cies to cluster events, the analyzer uses directed dependencies to derive data flow.

Project5 [2] exposes performance problems in a distributed, multi-layer system by means

of a graph of communicating nodes. The nodes and edges in the graph are assigned latencies,

and performance bottlenecks are determined by calculating the total latency of critical paths.

Because Project5 does not know the semantics of the distributed application, it uses statisti-

cal techniques to infer dependencies. The Taser analyzer knows the semantics of the system

operations and therefore it can precisely determine the dependencies.

Data lifetime analysis using system-level simulation [6] or hardware-based information

flow [30] allows detecting or protecting programs against malicious attacks by identifying spu-

1Honeypot is a system that masquerade as abusable resources to attract intruders.

CHAPTER 7. RELATED WORK 40

rious information flows from untrusted I/O sources. Both can provide more accurate taint anal-

ysis than the analyzer’s approach but either run orders of magnitude times slower or require

special architectural support.

7.3 Database Intrusion Recovery

Fastrek [19] recovers databases by attributing modifications to malicious activities and then

rolling back changes selectively. A potential issue with this approach is cascading aborts where

a legitimate operation is rolled back if it may have depended on the data produced by a tainted

operation. The conservative policies used by the analyzer exhibit similar problems. However,

it is not clear whether optimistic policies are possible with transactional databases.

7.4 Intrusion Detection

System-call traces have been used in the past to identify normal system behavior and then to

automatically detect suspicious behavior or intrusions [14, 26, 27, 8]. These approaches ex-

amine system-call patterns over a short window of 5-100 calls. Our tainting analysis approach

correlates both system-call operations and their arguments, which could be used to implement

more accurate intrusion detection algorithms.

RIPPER [1] correlates application- and system-level logs on the target system to detect

intrusions. We argue that these logs can be destroyed by the attacker, and hence they are not

suitable for analysis. However, since Taser is capable of recovering files after an intrusion, it

should be possible to use RIPPER to analyze attacks using log files that are recovered by Taser.

7.5 Sandboxing

Sun [31] provides a safe execution environment (SEE) that enables users to try out new soft-

ware (or configuration changes to existing software) without fear of damaging the system in

CHAPTER 7. RELATED WORK 41

any way. This is accomplished via a novel one-way isolation mechanism where processes run-

ning within the SEE are given read-access to the environment provided by the host OS, but

their write operations do not affect the host until a commit point. The commit is performed if a

consistency criteria is met or else the SEE is rolled back. This approach allows recovery only

until the commit point. Furthermore, rollback caused by violating the consistency criteria can

become more likely for long running SEEs.

Systrace [20] notifies the user about system calls executed by an application. Then it gener-

ates a sandboxing policy based on user response. Systrace relies on pathname to identify files.

This makes the policies prone to race attack because the same name may point to different files

at different times. Sandboxing raises the issue of policy selection, i.e, determining what actions

are permissible for a given piece of software.

Chapter 8

Conclusions

Today, snapshot-based file-systems are typically used to recover from intrusions or human

errors. This approach is well understood but it works well only when intrusions or errors

can be immediately detected. Otherwise, a snapshot before an attack loses legitimate user

modifications that occurs after the attack. The Taser intrusion recovery system addresses this

shortcoming of snapshots. The key problem that this thesis solves is to accurately determine

the set of tainted file-system operations so that they can be reverted.

We evaluated the accuracy of Taser in dealing with a wide range of intrusions as well

as erroneous user activity scenarios. Our evaluation shows that our most optimistic analysis

policy does not taint legitimate data but can miss intrusion activity, while the more conservative

policies avoid missing any intrusion activity but require some hand tuning by white-listing files.

Our experience with Taser shows that an appropriate set of recovery actions can be determined

quickly when the results of the different policies are compared. We believe that Taser provides

the basis for developing automated intrusion recovery solutions.

8.1 Future Directions

Our tainting analysis approach can be applied to improve anomaly detection tools. Current

anomaly detection tools create a profile of normal system use by limiting themselves to mon-

42

CHAPTER 8. CONCLUSIONS 43

itoring activities per process. The tainting approach can be used to build profiles based on

monitoring activities across processes as well as file-system and network activities.

We also wish to explore if the tainting analysis approach can be used for intrusion recovery

of transactional databases. Transactional databases have four features, atomicity, consistency,

isolation, and durability, to protect the integrity of data. However, these features are not guar-

anteed at the system-call level at which Forensix audits the system. Considering data from

both the transaction log of the database and the audit log of Forensix may allow the analyzer

to determine whether there are any transactions performed by an attacker and possibly revert

these tainted transactions.

Bibliography

[1] Cristina Abad, Jed Taylor, Cigdem Sengul, Yuanyuan Zhou, William Yurcik, and Ken

Rowe. Log correlation for intrusion detection: A proof of concept. In Proceedings of the

Annual Computer Security Applications Conference, pages 255–265, December 2003.

[2] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha

Muthitacharoen. Performance debugging for distributed systems of black boxes. In Pro-

ceedings of the Symposium on Operating Systems Principles (SOSP), pages 74–89, Oc-

tober 2003.

[3] Edward C. Bailey. Maximum RPM. Sams, August 1997.

[4] Paul T. Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using magpie

for request extraction and workload modelling. In Proceedings of the Operating Systems

Design and Implementation (OSDI), pages 259–272, 2004.

[5] CERT Coordination Center. Cert/cc statistics 1988-2004. http://www.cert.org/

stats/cert_stats.html.

[6] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum. Un-

derstanding data lifetime via whole system simulation. In Proceedings of the USENIX

Security Symposium, pages 321–336, August 2004.

44

BIBLIOGRAPHY 45

[7] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and Peter M. Chen.

ReVirt: Enabling intrusion analysis through virtual-machine logging and replay. In Pro-

ceedings of the Operating Systems Design and Implementation (OSDI), December 2002.

[8] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An attack language for state-based

intrusion detection. Journal of Computer Security, 10(1/2):71–104, 2002.

[9] Tal Garfinkel. Traps and pitfalls: Practical problems in system call interposition based se-

curity tools. In Proceedings of the Network and Distributed System Security Symposium,

February 2003.

[10] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based architecture

for intrusion detection. In Proceedings of the Network and Distributed System Security

Symposium, February 2003.

[11] Ashvin Goel, Wu-chang Feng, David Maier, Wu-chi Feng, and Jonathan Walpole. Foren-

six: A robust, high-performance reconstruction system. In Proceedings of the Inter-

national Workshop on Security in Distributed Computing Systems (SDCS), June 2005.

In conjunction with the International Conference on Distributed Computing Systems

(ICDCS).

[12] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara. The Taser intru-

sion recovery system. In Proceedings of the Symposium on Operating Systems Principles

(SOSP), October 2005.

[13] Bobbie Harder. Microsoft windows system restore. http://msdn.microsoft.

com/library/en-us/dnwxp/html/windowsxpsystemrestore.asp,

April 2001.

[14] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using

sequences of system calls. Journal of Computer Security, 6(3):151–180, 1998.

BIBLIOGRAPHY 46

[15] The Honeynet Project. Know your enemy: Sebek. http://www.honeynet.org/

papers/sebek.pdf.

[16] Samuel T. King and Peter M. Chen. Backtracking intrusions. In Proceedings of the

Symposium on Operating Systems Principles (SOSP), pages 223–236, October 2003.

[17] Peng Liu, Paul Ammann, and Sushil Jajodia. Rewriting histories: Recovering from mali-

cious transactions. Distributed and Parallel Databases, 8(1):7–40, 2000.

[18] Nicholas Petreley. Security report: Windows vs Linux. The Register, October

2004. http://www.theregister.co.uk/security/security_report_

windows_vs_linux.

[19] Dhruv Pilania and Tzi cker Chiueh. Design, implementation, and evaluation of an in-

trusion resilient database system. Technical Report TR-124, SUNY, Stony Brook, April

2005.

[20] N. Provos. Improving host security with system call policies. In Proceedings of the

USENIX Security Symposium, pages 257–272, August 2003.

[21] Martin Roesch. Snort - Lightweight intrusion detection for networks. In Proceedings

of the USENIX Large Installation Systems Administration Conference, pages 229–238,

November 1999.

[22] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on

Selected Areas in Communications, 21(1):5–19, January 2003.

[23] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch, Ross W.

Carton, and Jacob Ofir. Deciding when to forget in the Elephant file system. In Pro-

ceedings of the Symposium on Operating Systems Principles (SOSP), pages 110–123,

December 1999.

BIBLIOGRAPHY 47

[24] sd and devik. Linux on-the-fly kernel patching without LKM. Phrack issue 58, December

2001.

[25] Secunia. Secunia vulnerability report. http://www.secunia.com.

[26] R. Sekar and P. Uppuluri. Synthesizing fast intrusion prevention/detection systems from

high-level specifications. In Proceedings of the USENIX Security Symposium, pages 63–

78, August 1999.

[27] A. Somayaji and S. Forrest. Automated response using system-call delays. In Proceed-

ings of the USENIX Security Symposium, pages 185–198, August 2000.

[28] Craig A. N. Soules, Garth R. Goodson, John D. Strunk, and Gregory R. Ganger. Metadata

efficiency in versioning file systems. In Proceedings of the USENIX Conference on File

and Storage Technologies, pages 43–58, 2003.

[29] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules, and

Gregory R. Ganger. Self-securing storage: Protecting data in compromised systems. In

Proceedings of the Operating Systems Design and Implementation (OSDI), pages 165–

180, 2000.

[30] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program exe-

cution via dynamic information flow tracking. ACM SIGARCH Computer Architecture

News, 32(5):85–96, 2004.

[31] Weiqing Sun, Zhenkai Liang, R. Sekar, and V.N. Venkatakrishnan. One-way Isolation:

An Effective Approach for Realizing Safe Execution Environments. In Proceedings of

the Network and Distributed System Security Symposium, February 2005.

[32] Andy Watson and Paul Benn. Multiprotocol Data Access: NFS, CIFS, and HTTP. Tech-

nical Report TR3014, Network Appliance, Inc., 1999. http://www.netapp.com/

tech_library/3014.html.

BIBLIOGRAPHY 48

[33] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-Hartman.

Linux Security Modules: General security support for the Linux kernel. In Proceedings

of the USENIX Security Symposium, pages 17–31, 2002.

[34] Huagang Xie and et. al. Linux intrusion detection system (LIDS) project. http://

www.lids.org/.

Appendix A

Mapping for System Calls to Operations

System call Operations

open, creat
1) read file name and attribute of all path components

2) write file name and attribute of the file if a file is created

execve
1) read file name and attribute of all path components

2) executes the file

mkdir
1) read file name and attribute of all path components

2) write file content, name and attribute of the directory

unlink

1) read file name and attribute of all path components

2) remove file name of the last path component

3) remove file content and attribute file if it is the last link

mknod

1) read file name and attribute of all path components

2) write file name of the last path component

3) write file content and attribute of the file

rmdir
1) read file name and attribute of all path components

2) remove file content, name and attribute of the directory

49

APPENDIX A. MAPPING FOR SYSTEM CALLS TO OPERATIONS 50

chown,

chown32

1) read file name and attribute of all path components

2) write file attribute of the file

lchown,

lchown32

1) read file name and attribute of all path components

2) write file attribute of the file

fchown,

fchown32
1) write file attribute of the file

chmod
1) read file name and attribute of all path components

2) write file attribute of the file

fchmod 1) write file attribute of the file

symlink

1) read file name and attribute of all path components of the old and new path

2) write file name of the last path component of the new path

3) write file content and attribute of the new file

link
1) read file name and attribute of all path components of the old and new path

2) write file name of the last path component of the new path

rename

1) read file name and attribute of all path components of the old and new path

2) remove file name of the last path component of the existing new path

3) remove file content and attribute of the existing new file if it is the last link

4) write file name of the last path component of the new path

5) remove file name of the last path component of the old path

truncate,

truncate64

1) read file name and attribute of all path components

2) write file content of the file

ftruncate,

ftruncate64
1) write file content of the file

chdir 1) read file name and attribute of all path components

chroot 1) read file name and attribute of all path components

APPENDIX A. MAPPING FOR SYSTEM CALLS TO OPERATIONS 51

socketcall
1) write file content of the socket for send and sendto calls

2) read file content of the socket for recv and recvfrom calls

read, pread,

readv
1) read file content of the file

write,

pwrite,

writev

1) write file content of the file

fork, clone,

vfork
1) fork

sendfile
1) read file content of the file

2) write file content of the socket

