SEAMLESS KERNEL UPDATES

Maxim Siniavine

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright (©) 2012 by Maxim Siniavine



Abstract

Seamless Kernel Updates

Maxim Siniavine
Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto

2012

Kernel patches are frequently released to fix security vulnerabilities and bugs. However,
users and system administrators often delay installing these updates because they require
a system reboot, which results in disruption of service and the loss of application state.
Unfortunately, the longer an out-of-date system remains operational, the higher is the
likelihood of a system being exploited.

Approaches, such as dynamic patching and hot swapping, have been proposed for
updating the kernel. All of them either limit the types of updates that are supported, or
require significant programming effort to manage.

We have designed a system that checkpoints application-visible state, updates the
kernel, and restores the application state. By checkpointing high-level state, our system
no longer depends on the precise implementation of a patch and can apply all backward
compatible patches. The results show that updates to major kernel releases can be

applied with minimal changes.

i



Acknowledgements

I would like to express sincere gratitude to my advisor Prof. Ashvin Goel for his patience
and invaluable advice. His guidance helped me all the time during research and writing
of this thesis. I would also like to extend my thanks to all the committee members:
Professor Angela Brown, Professor Michael Stumm and Professor Raviraj Adve for their
insightful comments and hard questions. I thank my fellow graduate students Vladan
Djeric, Zoe Chow, [saac Good, Stan Kvasov for providing an intellectually stimulating and
supportive environment. Finally I would like to thank my family for their encouragement

and support.

iii



Contents

1 Introduction

2 Related Work

3 Approach
3.1 Implementation Overview . . . . . . . .. ... ... .. .. .......
3.2 Quiescence . . . . ... e
3.3 Restarting System Calls . . . . . .. ... ... ... 0000
3.4  Checkpoint Format and Code . . . . . . . ... ... ... ........

4 Implementation

4.1 Implementation of checkpoint and restore . . . . . . . . . ... ... ...
4.1.1 Threads . . . . . . . . . .
4.1.2 Address Space . . . . . . ...
4.1.3 Files . . . . . .
4.1.4 Network Sockets . . . . . .. .. ..o

4.1.41 UDP Sockets . . . . . . . ... ...
4142 TCP Sockets . . .. .. .. ... ..o
4.1.5 Pipes. . . ..
4.1.6 Unix Sockets . . . . .. . .. L
4.1.7  Terminals and Keyboard . . . . . . . ... ... ... ... ....

v

11

12

14

18

20

24



4.1.8 Framebuffer . . . . . . . . ... 37

4.1.9 Mouse . . . . 38

4.2 System Call Interface . . . . . . . .. ... o L0000 39
4.3  Limitations . . . . . . . .. L 39
5 Evaluation 42
5.1 Code Analysis . . . . . . . . . 42
5.2 Experience with Updating Kernels . . . . . ... .. .. ... ... ... 45
5.3 Performance . . . . . ... 47
5.3.1 Application Benchmarks . . . .. ... ... ... ......... 48
53.1.1 Quake . . . . .. ... 49

53.1.2 MySQL . . .. ... 50

5.3.1.3 Memcached . . . . . .. ..o 50

5.3.2 Microbenchmarks . . . . . .. ... o 0oL 53

6 Conclusions 55



List of Tables

3.1

5.1
5.2
2.3
0.4
3.9

Analysis of vim_area_struct . . . . . .. ... 21
Kernel structures and checkpoint format . . . . . . ... ... ... ... 43
New or modified lines of code . . . . .. .. ... ... ... ... 44
Summary of updates needed for checkpoint code . . . . . . .. ... ... 46
Per-application checkpoint time and size . . . . .. ... ... ...... 52
Kernel restart time . . . . . . . ..o 52

vi



List of Figures

3.1

5.1
5.2
2.3
0.4

Timeline for regular and seamless kernel update . . . . . .. . ... ... 12
Quake reboot vs. update . . . . ... 48
Mysql/sysbench update . . . . . . .. . ... 50
Memcached results after reboot vs. update . . . . ... ... ... ... 51
Mmap checkpoint-restore time . . . . . . . . .. ... L. 53

vii



Chapter 1

Introduction

Operating system maintainers release kernel patches regularly to fix security vulnerabili-
ties and bugs, and to add features. However, users and system administrators often delay
installing these updates because they require a system reboot, which results in disruption
of service and the loss of application state. For example, updating the operating system
for a game server requires all client users to stop playing the game, wait for the server to
come back up, login to the server, and then generally play the game from the beginning,

which is especially annoying for shooter and other real-time games.

Today, operating systems are updated infrequently because the updates have to be
managed carefully. However, the longer an out-of-date system remains operational, the
higher is the risk of a bug being triggered, or a system being exploited, since most exploits
target existing vulnerabilities. In addition, users are unable to use the new features, e.g.,

performance optimizations, available in the kernel updates.

Realizing these problems, application programmers are increasingly designing pro-
grams that can be updated without significant disruption. For example, users of web
applications are not aware when it is updated and can start using the new version auto-
matically after they reload the page. In fact, users generally have no control over updates,

which helps avoid the need to support several application versions. Similarly, many large



CHAPTER 1. INTRODUCTION 2

applications save and restore their state on an update (e.g., browsers restore web page
tabs), thereby reducing disruption. Operating system kernels are the major remaining
component of the software stack that require significant time for updates and lose state

after an update.

Existing kernel update systems work at varying granularity. Dynamic patching per-
forms updates at function granularity [6, 3|, and hot swapping at object or module gran-
ularity [17, 4]. These techniques require significant programmer effort for implementing
patch, object or module-specific state transfer functions that synchronize the state of an
updated component with an existing component. For example, hot patching operates
at function granularity and can be applied relatively easily to patches that only change
code. However, carefully crafted state transfer functions are needed for patching up-
dated data structures. Similarly, object and module granularity update systems require
component-specific transfer functions for the updated stateful components, and must be

designed to handle changes to the component interfaces [4].

None of these techniques handle cross-cutting changes due to major restructuring of
code that occurs across major kernel revisions. For example, the Linux kernel is updated
on average with five patches every hour, and developers release a major kernel release
every 2-3 months [10]. Later in the paper, we show that each of these releases often consist
of over a million lines of modified or new code. Requiring programmers to write state
transfer functions for each of their patches or modules is simply impractical, especially
when kernel patches occur so frequently and major revisions involve millions of lines of

code.

Our goal is to reliably install major kernel updates, with minimal programmer effort,
and without requiring user intervention or any changes to applications. The main insight
is that applying updates at a courser granularity reduces the required programming
effort. At higher level of abstraction implementation details are hidden which reduces

the need to write state transfer functions for each patch. Say that a transfer function



CHAPTER 1. INTRODUCTION 3

exists for a stateful module. A patch that changes module internal state will not require
an additional transfer function because this state is not exposed, making the patch easier
to apply. For example, Swift et al. update device drivers at multi-module granularity
by using common driver interfaces to automatically capture and transfer state between

driver versions [19, 20].

Taking this idea to the limit, we have designed a system for the Linux kernel that
checkpoints application-visible state, reboots and updates the entire kernel, and restores
the application state. The checkpointed state consists of information exposed by the
kernel to applications via system calls, such as memory layout and open files, and via the
network, such as network protocol state. Our update system requires the least amount
of additional programmer effort for installing a patch, because it hides most kernel im-
plementation details, including interfaces between the kernel components. Furthermore,
the kernel and the applications are strongly isolated from each other by memory man-
agement hardware and communicate by passing messages, i.e., system calls. As a result,
there is no need to detect and update references from old to new data structures, or
determine when this update process can terminate, which poses challenges in dynamic
patching systems. Another significant benefit is that our system can handle all backward
compatible patches because they do not affect application-visible state. Kernel patches
generally provide such compatibility to minimize disruption. The main drawback of
rebooting the kernel is that it is human perceptible, but we believe that the main im-
pediment to applying updates today is loss of application state, rather than brief system

unavailability.

Our focus on designing a reliable and practical update system raises several challenges.
Ensuring that the system will restore applications reliably requires taking a consistent
checkpoint. When kernel data structures are inconsistent, e.g., when a system call is
in progress, a consistent checkpoint cannot be taken. Waiting for system calls to finish

is unreasonable since many system calls can block in the kernel indefinitely. A third



CHAPTER 1. INTRODUCTION 4

solution is to interrupt system calls, but many applications are not designed to handle
interrupted calls. Unlike dynamic patching and hot swapping methods, our solution
guarantees quiescence, allowing consistent checkpoints to be taken for all updates. For
system calls, we start with the POSIX specification for restarting system calls when a

signal occurs, and provide a method for resuming system calls transparent to applications.

A practical system should require minimal programmer effort for applying kernel up-
dates. To achieve this goal, the checkpoint format and the checkpoint /restore procedures
must be made as independent of the kernel implementation as possible. We checkpoint
data in the same format as exposed by the system call API and the network protocols.
Both are standardized, and so our checkpoint format is independent of the kernel version,
and we expect it to evolve slowly over time. An additional benefit of this approach is
that we can use existing kernel functionality to convert the data to and from the kernel
to the checkpoint, since this functionality is already needed to perform these conversions
during system calls. When the kernel is updated, the updated functions will perform
the conversion correctly. To minimize changes to the checkpoint procedures, we use ker-
nel API functions as far as possible. These include system call functions and functions

exported to kernel modules, both of which evolve slower than internal kernel functions.

This work makes three contributions. First, we design a reliable and practical kernel
update procedure that allows taking a consistent checkpoint for all kernel updates, and
requires minimal programmer effort for applying these updates. Second, we perform a
detailed analysis of the effort needed to support updates across major kernel releases,
representing more than a year and a half of changes to the kernel. During this time,
six million lines of code were changed in 23,000 kernel files. We are not aware of any
system that provides such extensive support for kernel updates. Finally, we evaluate our
implementation and show that it works seamlessly for several, large, real-world applica-
tions, with no perceivable performance overhead, and without requiring any application

modifications. The overall reboot time is reduced by a factor of 4 to 10 for several of



CHAPTER 1. INTRODUCTION )

these applications.

Section 2 discusses related work in this area. Section 3 presents our approach and
Section 4 describes the implementation of our system. Section 5 presents our analysis of
the programmer effort needed to use our system and evaluates the performance of the

system. Section 6 summarizes our work and provides conclusions.



Chapter 2

Related Work

Closest in goals to this work, Autopod [16, 15| uses a virtualization layer to decouple
processes from their dependencies on the underlying operating system. Virtualization
layer intercepts system calls and rewrites their inputs and outputs to enable consistency in
the resource identifiers seen by the applications. The system calls are modified so that the
identifiers they use, remain consistent on different machines after migration, to prevent
conflicts with existing resources, and to isolate migrated processes. The virtualization
layer creates a POD abstraction which gives a group of processes a private namespace

for resource IDs and a private file systems.

The migration is performed by sending a SIGSTOP to all the processes in a POD to
stop them, and then making a copy of all their resources, their memory and their private
file systems. This copy is then transfered to another machine and the saved processes

are once again started in another POD at the destination.

Similar to our system, Autopod uses a checkpoint-restart mechanism, with a high-
level checkpoint format, for migrating processes across machines running different kernel
versions. The focus on migration has several consequences. First, virtualization intro-
duces performance overheads, and the virtualization layer itself needs to be maintained to

keep up with kernel changes. This layer is not needed in our system, designed purely for



CHAPTER 2. RELATED WORK 7

kernel updates. Second, the checkpoint requires copying all memory pages, making the
checkpoint much larger than required in our system. Third, Autopod requires migrat-
ing state across machines, which may not be a viable option for desktop environments
and stateful servers such as databases running on large local disks. Furthermore, Au-
topod exposes applications to interrupted system calls, making applications susceptible
to crashes and data loss. By migrating state across machines that are already running
operating systems, Autopod does not seem to address quiescence issues such as caused
by non-interruptible system calls and interrupts. Finally, we evaluate our system across
major kernel updates and provide a detailed analysis of our checkpoint code and format,

and all the code changes required.

Otherworld [9] is designed to recover from kernel failures. In addition to the main
kernel it maintains a secondary crash kernel. When a fault is detected in the main
kernel, execution transfers to the crash kernel. The crash kernel initializes itself and then
examines the data structures of the main kernel. Using the main kernel’s data structures,
the crash kernel attempts recover the state of the running applications and to resurrect

them, so they can function after the crash.

The design of Otherworld has inspired this work, but our goals are different, namely
applying kernel updates reliably. After a kernel failure, Otherworld does not have the lib-
erty to achieve quiescence. For example, a thread may have acquired a lock and partially
updated a critical kernel data structure when a crash occurs, making the checkpoint and
resurrection process failure prone. Similarly, as we show later, restarting system calls
transparently without achieving quiescence is impractical. Given that the kernel has
crashed, a best-effort resurrection process is acceptable, while our aim is to make the up-
date process as reliable as possible. Also, we support sharing of kernel resources between
threads, do not require any modifications to applications, and evaluate the feasibility of

the approach for kernel updates.

Several researchers have proposed dynamic patching at function granularity for ap-



CHAPTER 2. RELATED WORK 8

plying kernel updates [6, 13, 3]. LUCOS [6] uses the Xen VMM to stop and dynamically
update functions in Linux. When a kernel data structure is updated, LUCOS maintains
both versions in memory, until it can determine that the old version is no longer in use.
This quiescence step requiring walking the stack of every kernel thread looking for up-
dated code. However, this assumes that code that accesses an updated data structure
must have been updated. Programmers have to analyze a Linux patch, decide whether
any data structures have been updated, and then write a LUCOS-specific state transfer
function, a tedious engineering effort [6]. LUCOS uses page protection and the transfer

function to maintain coherence between the data structure versions.

DynAMOS [13] patches functions, similar to LUCOS, after disabling interrupts. Dy-
nAMOS supports updates to non-quiescent functions as well as changes to the data
structures. Non-quiescent functions are updated via a series of transformations to the
code which allows both old and new versions of the same function to exist at the same
time. As the old instances terminate they gradually get replaced by the new updated
code. Adding new fields to data structures are done using shadow structures. New field
is added to the shadow structure which is maintained along side the original data struc-
tures, and all the users of the new field are changed to access the shadow structure.
Kernel threads are updated when they enter a sleep state. When a thread enters sleep it

is terminated and the new threads running updated code is started instead.

Ksplice |3| generates and applies binary function patches for security updates, while
requiring minimal or no programmer effort. It inspects binary object files to detect the
changes to the code and automatically generate patches from those changes. To apply
the patch it overwrites the memory if the running kernel to insert new updated functions
and remove old ones. Security patches tend to be localized, generally only changing code,

and hence the approach works well for this domain.

At the application level, several systems use compiler support for updating pro-

grams |7, 14]. Polus [7] finds all changed types, global variables and modified functions



CHAPTER 2. RELATED WORK 9

by comparing the syntax tree of both the old and the new versions of files, and builds re-
lations between the changed variables and functions to generate patches. Then, it applies
techniques similar to LUCOS for patch injection. Ginseng [14] introduces sufficient room
in data types to update them with new fields in the future. It also adds indirections for
types and functions, to provide type-safe updates for C code. Using these techniques for
kernels is challenging because of the frequent use of type unsafe code, including assem-
bly code, as well as optimized and inline functions for which it is hard to ensure safety
guarantees. For example, Polus is unable to generate patches correctly in the presence

of pointer aliases and void pointer casts.

The K42 operating system is designed to allow hot swapping and updating compo-
nents at the object and module granularity [17]. In K42 function calls are made through
an indirection table. Updating the entry in the indirection table allows all the callers
to automatically start using the new version of the function. Issues with quiescence are
handled by restructuring the kernel so that all kernel threads handle requests quickly in a
non-blocking manner. By restructuring the kernel K42 supports data structure updates
within modules as well as updates to module interfaces [4|. However, it cannot update
code outside its object system including low-level exception-handling code, parts of the
scheduler, and its message-passing IPC mechanism. More importantly, state transfer

functions need to be written manually for the updated objects and modules.

Updating the entire kernel has several other advantages over dynamic patching and
hot swapping systems, including handling updates to boot code and non-quiescent code

such as long-running kernel threads, and fixing non-critical failures such as memory leaks.

Several systems use checkpoints for recovering from failures in applications or ker-
nel components. Linux-CR [11] aims to add a general-purpose checkpoint and restart
mechanism to the Linux kernel. It relies on the Linux containers to isolate the processes
that are meant to be checkpointed from others running on the system, and give them

a private namespace for resource identifiers. To stop the processes in a quiescent state



CHAPTER 2. RELATED WORK 10

Linux-CR uses freezer control groups. Freezer control allows to stop all the processes in
the control group in the same way as sending them the SIGSTOP signal, but silently,
without making signal visible to the applications. The Linux-CR addresses the difficulty
of keeping the checkpoint code synchronized with kernel developments by keeping the
generic code in its own subsystem and the code to save specific object types close to
the native code for those objects. While it addresses the difficulty of maintaining the
checkpoint code, it does not attempt to tackle the problem of migrating applications to
new versions of the kernel.

CuriOS [8] recovers a failed service transparently to clients in a microkernel OS by
isolating and checkpointing the client state associated with the service. Membrane 18]
restarts failed file systems transparent to applications by using a lightweight logging and
checkpoint mechanism.

Complementary to this work, virtual machines can be used to speed the kernel reboot
process by running the existing and the updated kernel together [12]. Primary-backup
schemes can be used for rolling kernel upgrades in high availability environments, but

they require application-specific support [1, 2|.



Chapter 3

Approach

Our goal is to perform seamless kernel updates, without requiring user intervention or
any changes to applications. Figure 3.1 shows the timeline of events for regular updates
and seamless updates. During a regular update, applications are closed manually after
saving work, the kernel is rebooted, and then applications need to be restarted manually.
Our seamless update approach is based on treating the entire kernel as a replaceable
component [9].

Our update system operates in five steps as shown below and in Figure 3.1.

1. Load new kernel: When a kernel update arrives, we use the kexec facility in Linux
to load the new kernel image and to start executing it. We modified kexec so that

it performs the next two steps before starting the new kernel.

2. Wait for quiescence: We ensure that the kernel reaches quiescence as described in

Section 3.2.

3. Save checkpoint: The checkpoint code walks the kernel data structures associated
with application-visible state and converts them to a high-level format that is in-

dependent of the kernel version.
4. Initialize new kernel: The kexec jumps execution to the beginning of the new kernel,

11



CHAPTER 3. APPROACH 12

Regular kernel update

Update Start new New kernel
arrives kernel finishes booting
| | | |
l v J ] 1 ] J
Close Load & initialize Restart
applications new kernel applications
manually manually

Seamless kernel update

Update  Start Start new New kernel
arrives checkpoint kernel finishes booting
| | | | | |
! [ I I I I
L v A v A v A v A v J
Load new Wait for Save Initialize Restore

kernel quiescence checkpoint new kernel checkpoint

Figure 3.1: Timeline for regular and seamless kernel update

and the new kernel initializes itself.

5. Restore checkpoint: After kexec has initialized the new kernel, it reads the check-
point and recreates applications using the checkpoint information. Then it restarts
these applications which may require restarting blocked system calls as described

in Section 3.3.

3.1 Implementation Overview

Our update system checkpoints and restores processes by capturing application-visible

kernel state from kernel data structures. The Linux kernel stores all process related in-



CHAPTER 3. APPROACH 13

formation in the task struct data structure. This structure contains process information
such as the PID of the process, the parent and the children of the process, scheduling
parameters and accounting information. The task structure contains pointers to other
data structures that describe the resources currently being used by the process, such
as memory management information, open files, etc. Thus the state of a process can
be checkpointed by traversing the graph rooted at the task struct associated with the
process. Our checkpoint typically saves the fields in the data structures that are visible
to applications through system calls. These fields also allow us to restore these data

structures during the restore process.

The checkpoint information and the memory pages of all the processes need to be
preserved during the reboot process. When the Linux kernel starts executing, it uses
a bootstrap memory manager to dynamically allocate memory that is needed during
the boot process before the memory management system has been initialized. After the
bootstrap memory manager is initialized, we read the checkpoint and mark all the pages
used by the checkpoint and the process pages as reserved so that the memory manager
cannot immediately reuse these pages. After the restore operation, the process pages are

marked as allocated and can be freed when a process terminates or as a result of demand
paging.

When multiple processes share a resource, eg. a memory region, they keep pointers
to the same structure, e.g., a memory region descriptor. We implement this sharing by
saving each resource separately in the checkpoint, and using pointers within the check-
point to indicate the sharing. The implementation tracks each encountered resource in a
Save hash table. The key of this hash table is the memory address of the kernel resource,
and the value is the memory address of the corresponding entry in the checkpoint. When
checkpointing any resource, we check if its address exists in the Save hash table, and if
so, we use the value in the Save hash table to create a pointer to the existing checkpoint

entry. During restore, we create a Restore hash table with keys that are the values from



CHAPTER 3. APPROACH 14

the Save hash table. As each resource is restored, its memory address is filled in as the
value in the Restore hash table. Looking up the Restore hash table as each resource is
created ensures that the resource sharing relationships are setup correctly.

The restore process runs with root privileges and hence care must be exercised when
restoring the state of the OS resources. The kernel uses two types of credentials, one set
for processes and another for files. We set the the various user and group IDs for each
restored process thus ensuring that the restored process runs with the correct credentials.
The restore process does not create files and hence we do not need to set up or modify any
file credentials. However, there is one exception to this rule with listening Unix sockets
which we describe later.

Our implementation currently checkpoints the following OS resources: 1) thread state,
2) memory state, 3) open files, 4) network sockets, 5) pipes, 6) Unix sockets, and 7) ter-
minals. It also checkpoints the state of the following simple hardware devices: 1) frame-
buffer, 2) mouse, and 3) keyboard. Our aim has been to implement features that enable
supporting as many commonly used applications as possible, and especially server-side
applications. While we have tested several simple desktop programs using the Xfbdev X
server, adding support for live driver updates would make our approach more compelling

for updating device-rich client machines [19].

3.2 Quiescence

Ensuring that our system will restore applications reliably requires taking a consistent
checkpoint, with two conditions: 1) all threads are stopped, and 2) the kernel data
structures are consistent. The first ensures that thread state remains consistent with its
checkpoint state. For example, if a thread continues execution during or after checkpoint-
ing, it can affect the state of other threads with which it shares any resources. When

both these conditions are met, we say that the kernel is quiescent, and a checkpoint is



CHAPTER 3. APPROACH 15

taken.

The first condition can be met easily by pausing all processors other than the one
running the checkpoint thread.! For the second condition, data structures can be incon-
sistent when any kernel code is executing, including in system calls, exception handlers
and interrupt handlers. We need to let all kernel code finish executing and stop further
entry into the kernel. However, system calls and exception handlers can block or sleep
while waiting for events. A thread can sleep in one of two states, uninterruptible sleep
and interruptible sleep, in the Linux kernel. During an uninterruptible sleep, the thread
can hold locks and modify data structures, so we need to let this code continue executing.
Fortunately, an uninterruptible sleep is used where an operation is expected to take a
relatively short time, such as a disk access for paging and memory allocation. Very long
uninterruptible sleep is considered a bug and we do not expect to encounter it during
normal operation. Recovery from this type of failure is beyond the scope of our project.
Waiting for this code to finish executing does not significantly impact the overall update

time because it is much faster than the time needed to initialize the new kernel.

A thread in an interruptible sleep can block indefinitely, e.g., waiting for user or
network input. In this case, the kernel releases locks so that the thread does not block
other threads from making progress, and ensures that its data structures are consistent
before putting a thread in an interruptible sleep state. Only system call threads can sleep
in an interruptible state, and they can be interrupted by sending a signal to the thread,
in which case, the system call returns immediately with an EINTR error code. To avoid
blocking indefinitely, we save the state of system calls blocked in an interruptible sleep
(below, we will call these blocked calls) and handle them during restore, as described in

Section 3.3.

We use the following steps to ensure that the kernel is quiescent before taking a

!The quiescence conditions don’t apply to the checkpoint thread because it is not checkpointed and
it doesn’t modify any kernel data structures



CHAPTER 3. APPROACH 16

checkpoint:

1. Stop other processors: We start the process by using the stop machine function in
Linux that allows waiting for interrupt handlers to finish executing on all processors,
disables interrupts and pauses execution all other processors, and then returns

control back to the calling processor where this code can continue running.

2. Quiesce user threads: In this step, we wait until all user threads are quiesced. If
a user thread is currently in user mode or is blocked, then it is not running any
kernel code, and we say that it is quiesced. When all user threads are quiesced, we

can proceed to Step 3, otherwise we perform the following steps:

(a) Disable all further system calls: We need to let threads running in the kernel
or sleeping in uninterruptible sleep continue execution. By disabling further
system calls, we can guarantee quiescence of user threads. If a thread issues
a system call, we block it in a special blocked state, so that we know that it

simply needs to be restarted on restore.

(b) Wait briefly for quiescence: We enable the processors again by returning from
stop__machine, wait for 20 ms, and restart the process by returning to step 1.
While waiting, the kernel operates normally, allowing interrupts to occur and

threads to exit the kernel or to block in interruptible sleep.

3. Quiesce kernel threads: In this step, we wait until all kernel threads are quiesced.
Kernel threads are used to perform deferred processing tasks, such as writing dirty
file buffers to disk. We separate quiescing user threads from quiescing kernel threads
so that the existing deferred tasks can be completed before taking a checkpoint.

Quiescing kernel threads proceeds in four steps:

(a) Deferred processing: At this point, we have returned from the stop machine

function and all interrupts are enabled, and we can perform various deferred



CHAPTER 3. APPROACH 17

processing tasks. We create hard links to temporary files and then save all
dirty file buffers by calling the system-wide sync operation to complete any

buffered 10, as described later in Section 4.1.3.

Reboot notification: Then, we send a standard reboot notification to all kernel
threads so that these threads can prepare for devices to be shutdown. In
particular, after the notification returns, the threads do not access any devices.
For example, fast devices, such as the hard drive, will not serve any further
requests because users threads are quiescent and the kernel threads have been

notified about the reboot in this step.

Shutdown devices: Next, we shutdown all devices because many drivers as-
sume upon startup that devices have previously been reset [5]. This shutdown
process may wake up certain kernel threads (e.g., when the hard drive cache
is flushed) and hence we cannot disable interrupts or suspend kernel threads
until this point. However, since interrupts are enabled, certain slow devices,
such as the keyboard, mouse, timer and the network may generate exogenous
interrupts until the devices have been shutdown, but we prevent these inter-
rupts from waking up sleeping user threads. Losing these exogenous interrupts
will resemble a short system freeze, but without significantly affecting applica-
tions. For example, TCP packets will be retransmitted since we restore TCP

state.

Wait briefly for quiescence: After all the user threads are quiescent and all the
devices have been shutdown, the kernel threads should not have any further
work and they should not be running, i.e., they should be quiescent. At this
point, we invoke stop machine to disable interrupts again. For safety, we
check if all the kernel threads are blocked, and if so, we can proceed to the
next step. Otherwise, we return from stop machine, wait for 20 ms, and

repeat this step.



CHAPTER 3. APPROACH 18

4. Take checkpoint: Now that the kernel is quiescent and all interrupts are disabled,
we can checkpoint application-visible state. The checkpoint and restore process is
described in Section 4. We ensure that the checkpoint accesses memory but not

the disk, which has been shutdown in the previous step.

3.3 Restarting System Calls

After restoring the checkpoint in the new kernel, we need to resume thread execution,
which requires handling system calls that were blocked. There are over 300 system calls
in Linux, but only 57 of them are interruptible. 2 It is fortunate that we do not need to
consider the uninterruptible calls because many of them modify kernel data structures
and are not idempotent and thus are not easily restartable.

For the interruptible calls, a simple solution would be to return the EINTR error code
to the user thread, since this return value is part of the specification of what happens
when a signal is sent to the thread. However, most applications do not handle interrupted
system calls, specially if they don’t use signals.

Instead, we reissue the system calls that were blocked after the application is restored.
To ensure correct behavior, we looked at the POSIX specification for restarting system
calls upon a signal, since this specification is implemented by the Linux kernel. The
kernel can already automatically restart some system calls when they are interrupted by
a signal. It can restart these calls because they are idempotent when they are blocked,
even if they are not idempotent otherwise. The system calls block in order to wait for
external events. However, if the event has not occurred, then the system call has not done
any work, and so it can be safely reissued. The POSIX specification disallows restarting
some of the system calls on a signal, for two reasons: 1) a timeout is associated with

the system call, or 2) the system call is used to wait for signals. In our case, we still

2We found this number by manual analysis, and by cross correlating with the manual pages of the
calls. Of the 57, several are variants of each other, such as the 32 and 64 bit versions of the call.



CHAPTER 3. APPROACH 19

wish to restart these calls to avoid failing the application. For timeout related calls, they
can be reissued after taking the timeout period into account, as discussed below. For
signal related calls, they can be restarted, because a signal was never delivered in our
system. However, they require adjusting the signal mask, as described below. We use
five methods to transparently resume all the blocked system calls after restoring a user

thread. A few system calls require multiple methods.

1. Restart: The system calls that are idempotent when they are blocked are restarted.
This is exactly the same behavior the kernel already implements for these system
calls when they are interrupted by a signal. Examples are open, wait and its vari-
ants, futex, socket calls such as accept, connect, etc. There are 19 such restartable

calls.

2. Track progress: System calls that perform IO operations like read and write keep
track of how much progress they have made. When these calls are interrupted by
a signal, their current progress is returned to the user. We implement the same
behavior, and after restoring the thread, we return the progress that the system call
had made before the checkpoint was taken. We do not reissue this call to complete
the operation (e.g., finish a partial read) because input may never arrive. It may
appear that returning a partially-completed 1O operation may cause certain appli-
cations to malfunction. However, system call semantics require correctly designed
applications to handle short reads and writes. For example, on a read, fewer bytes
may be available than requested because the read is close to end-of-file, or because
the read is from a pipe or a terminal. Similarly, network applications communicate
with messages of predetermined length and reissue the calls until the full message
is processed [21]. As a result, we have not observed any problems with returning
partial results for reads and writes for the applications that we have tested. When
no progress has occurred, we restart the system call, because returning a zero in-

dicates that the communication has terminated (EOF) after which the application



CHAPTER 3. APPROACH 20

may fail, when in fact our checkpoint maintains the communication channel. In
this case, we can still safely reissue the call since it had not made any progress

before being blocked. There are 23 calls that require progress tracking.

3. Return success: System calls that close file descriptors like close or dup2 invalidate
the descriptors if they block. For these calls, we return success because when the
checkpoint is taken, the file descriptor is already invalidated and the resource will

be reset once the kernel is restarted. There are 3 such calls.

4. Update timeout: If the system call has a timeout associated with it, e.g., select, and
it uses a short timeout compared to the time it takes to restart the kernel, we simply
reissue the system call to avoid returning a spurious timeout. For long timeouts,
we restart the system call after calculating the remaining time and subtracting the
total time it took for the kernel to reboot and restore the thread. There are 11

calls that require timeout handling.

5. Undo modifications: Certain system calls, like pselect and ppoll, make a copy of
the process signal mask, and then temporarily modify it. Before restarting these
system calls, the signal mask has to be restored from the copy to the original state.
The pselect and ppoll calls also require timeout handling. There are 7 calls that

require undo modifications.

3.4 Checkpoint Format and Code

We checkpoint application-visible state, consisting of information exposed by the kernel to
applications via system calls, such as memory layout and open files, and via the network,
such as protocol state for network protocols implemented in the kernel. Checkpointing
this state requires programmer effort proportional to the system call API rather than the

size of the kernel implementation or the number of kernel updates. Furthermore, since



CHAPTER 3. APPROACH

21

Structure Fields

Notes

In checkpoint

vimn_begin, vm _end

Region of address space controlled by this vm area struct

vin_page prot

Address space is writable, readable or executable

vm_ flags Special attributes: for example direction the stack grows
v _ file Name of the file mapped by a vim_area_ struct
vim_pgoff Offset from the beginning of the file

vm _ private

Used for mmap operations

anon_ vm

Specifies the type of reverse mapping used

Not in checkpoint

mm _struct

Pointer to memory descriptor

vm_ next Pointer to the next vimm_area of the process
vmn_rb Tree node used to find vin_area based on virtual address
vm_ ops Pointer to functions operating on vmm_area_struct

vm_ set, prio_tree node

Used to implement reverse mapping

anon_vma_node, anon_vm

Used to implement reverse mapping

Table 3.1: Analysis of vin_area_struct

the system call API and the network protocols are standardized and change relatively

slowly over time, we expect that a carefully designed checkpoint format will evolve slowly.

Our approach raises several issues: 1) what state should be saved, 2) the format in

which it should be saved, 3) how sharing relationships between threads and their resources

are expressed, and 4) how the code should be implemented. We save information available

to the user space through system calls and via special filesystems like /proc and /sysfs.

We also save network protocol state, including buffered data, to ensure that a kernel

update is transparent to network peers. For example, we store port numbers, sequence

numbers and the contents of the retransmit queue for the TCP protocol.




CHAPTER 3. APPROACH 22

The checkpoint consists of a list of entries, representing either a thread or a resource
owned by the thread, such as open files and sockets, with each resource using a unique
format. As an example, Table 3.1 shows all the fields in the vim_area struct structure
in the kernel and the fields that are saved in our checkpoint. This structure represents
a region of an application’s address space, and the fields saved in our checkpoint are
exposed to applications via the smaps file in the /proc file system or when accessing
memory. For example, this information determines whether a memory access will cause
an exception or a memory mapped file to be read from disk. The data in the checkpoint
allows recreating the virtual memory region correctly, while the rest of the fields relate
to the data structures used to implement the regions. The implementation dependent
fields are not visible to the user, and thus not included in the checkpoint. We expect
that while these fields may change (and have changed) over time, the checkpoint fields

are unlikely to change significantly for backward compatibility.

Since we are saving state visible at the system call API, we save it in the same format.
Internally, the kernel may store this state in any implementation-dependent way, but it
needs to convert it when communicating with user applications. For example, a file path
is a string in user space, but the kernel represents it by a sequence of dentry, gstr and
mnt_point structures. By using a string for a file, we expect that the checkpoint will
not depend on the kernel version, and we can use existing kernel functions to convert
to the correct implementation-dependent kernel versions of the file-related structures.
For example, the do_filp _open function will convert a path name to a file descriptor,
and since it is the same function used to implement the open system call, we expect it
to perform any implementation dependent work required when opening a file. Besides
various data structures that are stored in the checkpoint, as described later in Section 5.1,
we also need to store the virtual memory state for each thread. To reuse existing pages
and page tables, we only explicitly store the user-visible contents of the per-thread global

page directory in the checkpoint, and we ensure that the new kernel does not clobber any



CHAPTER 3. APPROACH 23

user-level pages and page tables. To do so, we also need to store the physical address of
every used page.

We represent sharing of resources with pointer relationships in the checkpoint. We
use a single hash table to represent sharing of all resources between threads during
checkpointing. The address of a resource is used as the key, and the address of its
corresponding checkpoint entry as the value, which makes it simple to set up the pointer
relationships in the checkpoint. During restore, we use a similar hash table, but the key
and value are inverted, so that the address of the checkpoint entry is the key, and the
address of the restored resource is used as the value, which makes it simple to assign a
pointer to a shared recreated resource.

Beside a portable checkpoint format, the checkpoint code must also be easy to port
across different kernel versions for our update system to be practical. Ideally, the check-
point mechanism would be implemented entirely in user space, relying only on the stable
system call API. Unfortunately, some of the required functionality, such as page table
information, and resource sharing relationships are only available in the kernel. Our
code mostly uses functions exported to kernel modules, which evolve slower than internal
kernel functions. We use as high-level functions available in the kernel as possible for
saving and restoring state. For example to restore a pipe between two processes we call
a high-level function do_pipe flags which performs all the implementation dependent
work needed to create a pipe. Afterwards, we use another high-level function to assign the
newly created pipe to the two processes we are restoring. The high-level API takes care
of all the details involved with maintaining the file descriptor tables of the two processes.
Also, updates to the implementation of these functions will not affect our code. We also
do not rely on any virtualization or any indirection mechanism,which would itself need
to be maintained across kernel updates. Section 5.1 analyzes our checkpoint format and

code in more detail.



Chapter 4

Implementation

This section describes the implementation of our kernel update system. First, we describe
the process checkpoint-restore mechanism used for updating kernels. Then, we present
the interface to our update system that can be used by system-level utilities to interact
with our system. Finally, we describe the limitations of our current implementation and

methods for addressing the limitations.

4.1 Implementation of checkpoint and restore

The checkpoint save operation involves saving data structure values and is relatively
simple. The restore operation is more complicated because it requires recreating custom
processes from the checkpoint information, similar to creating the initial user process.

Hence, much of the description below focuses on the restore operation.

4.1.1 Threads

The stop machine kernel function used for quiescing the system (see Section 3.2). Tt
schedules a thread on each CPU and each thread disables interrupts. This process waits

until all other threads go through a context switch. At which point, the kernel stores the

24



CHAPTER 4. IMPLEMENTATION 25

register values and segment descriptors table entries in the thread struct structure. We
store this context switch data in our checkpoint. To restore a thread, we spawn a kernel
thread for each thread stored in the checkpoint. Within the context of each spawned
thread, we invoke a function, that we created, similar to the execve system call. The
execve system call replaces the state of the calling process with a new process whose
state is obtained by reading an executable file from disk. Our function converts the
kernel thread into a user thread by loading the state from the checkpoint in memory. We
restore the saved register values and segment descriptors for the thread so that the new
kernel’s context switch code can use these values to resume thread execution.

We restore the saved task struct fields and reestablish the parent-child process hi-
erarchy by changing the parent and real parent pointers so that they point to their
restored parents. We also make sure that all restored children are added to the list of
children associated with their parent, and for multi-threaded processes we add threads
to their thread group lists. After this setup, the kernel starts identifying the spawned

kernel thread as a regular user process.

4.1.2 Address Space

An address space consists of a set of memory mapping regions and page tables. Fach
memory mapping region describes a region of virtual addresses and stores information
about the mapping such as protection bits and the backing store. The page table stores
the mapping from virtual pages to physical pages. Currently, our implementation sup-
ports the x86 architecture where the page table structure is specified by the hardware
and thus will not change across kernel versions.

Linux manages memory mapping regions using a top-level memory descriptor data
structure (mm_ struct) and one or more memory region descriptors (vin_area_ struct).
We store various fields associated with these data structures, including the start and

end addresses of each memory region, protection flags, whether or not the region is



CHAPTER 4. IMPLEMENTATION 26

anonymous, and the backing store, as shown in Figure 3.1. For memory mapped files,
we store the file name and the offset of the file for the virtual memory region. We restore
these data structures by using the same functions that the kernel uses for allocating
them during the execve (mm _struct), mmap (vim_area_struct) and mprotect system
calls. These functions allow us to handle both anonymous regions and memory-mapped
files. For example, we restore a memory-mapped file region by reopening the backing file
and mapping it to the address associated with the region. The memory region structures
can be shared and we handle any such sharing as described earlier.

The x86 architecture uses multi-level pages tables, and the top-level page table is
called the page table directory. This page table format will not change across kernel
versions and so we do not copy page tables or user pages during the checkpoint and
restore. As a result, a process accesses the same page tables and physical pages before
and after the kernel update. However, one complication with restoring page tables is that
the Linux kernel executes in the address space context of the current user thread, and
it is mapped at the top of the virtual address space of all processes. The corresponding
page table entries for each process need to be updated after the kernel update. These
page table entries are located in the page table directory. The function that creates the
memory descriptor data structure (mm_ struct) also initializes the page table directory
with the appropriate kernel page table entries. We initialize the rest of this new page
table directory from its pre-reboot version and then release the latter. At this point, we
notify the memory manager to switch all process pages from being reserved to allocated

to the new process.

4.1.3 Files

The Linux kernel uses three main data structures to track the files being used by a
process. The top-level fs_struct structure keeps track of the current working directory

and the root directory of a process (the root directory can be changed with the chroot



CHAPTER 4. IMPLEMENTATION 27

system call). The file descriptor table contains the list of allocated file descriptors and
the corresponding open files. Finally, the file descriptor structure stores information
about each open file. All three structures can be independently shared between several
processes. For example, two processes might share the same working directory, may have

different file descriptor tables, and yet share one or more opened files.

For each process, we store its root and current working directory, list of open file
descriptors, and information about open files. Linux stores the current root and current
working directory of a process as dentry structures. In the checkpoint, we store them
as full path names. For files, we store its full path, inode number, current file position,
access flags, and file type. The full path of each file is obtained by traversing the linked
list of dentry structures. Each file structure has a pointer to a dentry structure, which
stores the file name. In turn, each dentry structure has a pointer to another dentry which
stores the name of the parent directory. For non-regular files (e.g., sockets, terminals),

we store additional data needed to restore them, as discussed in later sections.

When restoring each process, we call chroot to restore the current root and chdir
to restore the current working directory. Restoring open files requires calling functions
that together implement the open and dup system calls. We do not use these system
calls directly because our code has to be flexible enough to handle restoring shared data
structures. For example, when the entire file descriptor table is shared between threads
(or processes), once the table is setup for a thread, files do not need to be opened or
duped in the second thread. To restore an open file, we first call a function that creates
a file descriptor structure. Then we open the file using the flags, such as read/write,
non-blocking 1/0, etc., that were saved in the checkpoint. Next, we use the Iseek system
call to set the current file position. Then we dup the file descriptor so that it uses the
correct descriptor number, and finally, we install this descriptor in the file descriptor

table.

Temporary files require some additional steps before they can be restored. A tem-



CHAPTER 4. IMPLEMENTATION 28

porary file is created when unlink is called on a file in use (an open file) and the link
count of the file reaches zero. In this case, all directory entries referencing the file have
been removed and the file cannot be opened again. However, the contents of the file
exist until all applications using the file release their reference to it, at which point the
file is deleted permanently. If a system crash occurs, temporary files need to be removed
(garbage collected) since they are not accessible in the system (no directory entries point
to these files and the processes that were using the file before the crash do not exist
any longer). File systems remove temporary files (when an open file’s link count reaches
zero) by adding a reference to the file to an orphan list that is kept on disk. At mount
time, the orphan list is traversed and the temporary files are deleted. We do not want
the temporary files to be deleted so that the restored processes can continue using these
files. To do so, we create a hardlink to the temporary file when taking the checkpoint.
We use a function used by the hardlink system call to create a link to the file, but instead
of using the file name we use the inode of the temporary file as the source of the link.
We perform this step as part of deferred processing when the interrupts are enabled and
the disk can be accessed (See Section 3.2). During restore, a temporary file is handled
similar to a regular file, except that after it is opened, we invoke the unlink system call
to remove the reference to the file from the filesystem.

We ensure that all dirty file system buffers are committed to disk by calling the
file-system wide sync operation as part of deferred kernel processing, as described in
Section 3.2. As a result, we do not need to save and restore the contents of the file-

system buffer cache.

4.1.4 Network Sockets

A network socket provides the interface to the different Internet protocols supported by
the Linux kernel. Our update system currently supports UDP and TCP protocols because

these are the most common protocols used by applications. Other types of network



CHAPTER 4. IMPLEMENTATION 29

protocols such as ICMP and raw IP sockets are typically used by utility applications and
have little state. As a result, they do not benefit from our update approach and were not
implemented. The socket interface allows reading and writing packets using the read and
write system calls similar to files but it also provides operations such as bind, connect
and accept. The kernel represents sockets by file descriptors that store protocol state

associated with the socket.

Network applications and protocols must already handle network failures that cause
packets to be lost, duplicated or re-ordered. We rely on this behavior to simplify restoring
network connections. Once the application (and/or protocol) state is restored, the ap-
plication can handle any problems that arise as a result of packets being dropped during
the update. For example, TCP handles lost packets using retransmissions transparent to
TCP applications. From an application’s perspective, the update process will seem like

a temporary network delay.

4.1.4.1 TUDP Sockets

UDP is a stateless protocol for sending messages over the network. It does not provide
reliability, integrity or ordering, so this makes restoring UDP sockets straight forward.
When creating a checkpoint, we store the source and destination IP addresses and port
numbers of the socket. To restore a UDP socket, we call the socket function to create
the socket descriptor and then optionally call the bind function to assign a port number
to the socket. We discard any sent or received data that was still being processed by
the kernel and let the application handle packet loss. We rely on user utilities to set up
the IP address of the machine and the routing tables so that network communication is

possible after the update.



CHAPTER 4. IMPLEMENTATION 30
4.1.4.2 TCP Sockets

The TCP protocol provides a reliable, stream-oriented network connection to socket
endpoints. It guarantees delivery without packet loss, reordering or duplication. TCP
runs above the unreliable IP protocol and makes these guarantees by requiring the receiver
to send acknowledgments for the data it has received to the sender. The sender assigns
a sequence number to each byte of data that it has sent. Depending on the received
acknowledgments, it decides to transmit the next packet in the sequence or it retransmits
already sent packets. The sender also keeps a timer for each packet sent and retransmits
packets if an acknowledgment is not received for the packet before the timer expires or
if it receives too many duplicate acknowledgments. TCP is bidirectional so each socket
acts as both a sender and a receiver.

Internally, when an application writes to a TCP socket, the user data is either split
or combined (Nagle algorithm) into segments of a certain size (e.g., maximum segment
size). After each segment is created it is added to the sender’s write queue. TCP adds
a header to each segment in the write queue and passes it on to the lower layer protocol
(IP) that transmits the segment on the network. After the segment is transmitted, it is
moved to a retransmit queue in case it is needed for retransmission. A segment is taken
off the queue after an acknowledgment is received.

There are two types of TCP sockets, listen and communication sockets. Listen sockets
wait for incoming connection attempts and perform the TCP three-way handshake to
establish a connection. For these sockets, we save the local address and the port the
socket was listening on, as well as the maximum number of pending connections. This
state is specified by applications when creating sockets using the system call interface.
Restoring a listen socket involves issuing the same system calls as needed to create the
listen socket. A listening Unix socket creates a file name for the socket, but this name
does not get removed on a kernel reboot. We delete the name during restore, and the

socket restore code recreates this name. This file is owned by the restore process (root)



CHAPTER 4. IMPLEMENTATION 31

and we use chown system call to change the ownership to the original owner.

Communication sockets are used to transmit data. These sockets maintain much
more state than the listen sockets. Some of this state, such as the last received sequence
number, acknowledged sequence number and the packets in the write and retransmit
queues, must be checkpointed because it is essential for correct TCP operation. Failing to
restore such state will result in lost data and termination of the restored TCP connection.
Other TCP state, such as the congestion avoidance state, is performance related and
does not need to be checkpointed for correct TCP operation. This state can be reset to
default values and the TCP implementation will automatically adjust them to reflect the
network conditions. However, in some cases, ignoring the performance related state has

a significant impact on TCP throughput as discussed below.

When restoring a connection, we allocate the socket descriptor and then restore the
connection state. This state consists of the source and destination addresses, port num-
bers, and sequence numbers of the received and sent data. Then we restore the contents
of the write and retransmit queues while preserving TCP headers so that segmentation

does not need to be performed again.

At this point, we can resume sending packets. However, which packet should be sent
initially? The sending side maintains two counters, snd.una, the first unacknowledged se-
quence number (sender knows that all octets or bytes smaller than this sequence number
are acknowledged and does not keep them in its retransmit queue), and snd.nzt, the next
sequence number that the sender should send. Similarly, the receiving side maintains a
counter, rcv.nzt, the next sequence number expected on an incoming segment. Initially,
we started sending packets starting from the snd.una sequence number because the pack-
ets between snd.una and snd.nzt may not have arrived at the receiver during the update
and this would quickly perform retransmissions. However, this implementation would
deadlock occasionally. Upon inspection, we found that this deadlock would occur when

rcv.nxzt > snd.una. In this case, the receiver had acknowledged packets between snd.una



CHAPTER 4. IMPLEMENTATION 32

and rcv.nzt, but these acknowledgments had been dropped during the update. As a re-
sult, the sending side would observe acknowledgments for packets that it believed that it
had not yet sent. Linux kernel versions 2.6.28 and 2.6.29 discard these future acknowl-
edgments and our TCP connection would make no further progress at this point (later
Linux versions accept future acknowledgments). To fix this problem, we started sending
packets from the snd.nat sequence number, which is the same packet that TCP would
have sent before the update. The next acknowledgment would trigger retransmissions if

packets had been lost during the update.

During normal operation, TCP relies on incoming acknowledgments to advance its
transmit window and increase the window size. However, if acknowledgments are dropped
during the update, it may take a long time before they are retransmitted again. The
long retransmission timeout at the receiver becomes an issue when the flow control or
the congestion control window is so small that it does not allow the sender to send any
packets. To jump start the sending process, we set these windows so that at least one
packet can be sent after the connection is restored. After this packet is received, the

receiver sends an acknowledgment in response, which resumes communication quickly.

We found that TCP throughput declines significantly (by almost 40%) if the times-
tamp and selective acknowledgment extensions are disabled. So even though they are not
essential for reestablishing the connection, our implementation saves and restores both

the timestamp state and selective acknowledgment state as described below.

The timestamp extension allows TCP to estimate round trip time more accurately,
resulting in more efficient transmissions. The timestamp extension adds two fields to
the TCP header. The first field contains the current timestamp value at the sender.
The second field echoes the last timestamp seen by the sender from the receiver side.
These fields allow TCP to determine the roundtrip time by taking the difference between
the current time and the echoed time. Timestamps must increase monotonically, which

also serves to protect again wrap around of sequence numbers (PAWS). If a packet has



CHAPTER 4. IMPLEMENTATION 33

a higher sequence number than the previous one but an earlier timestamp, it indicates
that the sequence number has wrapped around and the packet is a duplicate and must

be discarded.

We checkpoint the timestamp values in the packet headers to support the timestamp
extension. Linux uses the number of timer interrupts since the kernel was started (jiffies)
to set the current timestamp value. However, a kernel update resets the jiffies counter
and so the timestamps do not increase monotonically after the update. As a result, the
receiver discards all packets that are sent after the kernel update. We fixed this issue
by adding an extra field to the TCP socket structure that holds the offset that must be
added to the jiffies counter to obtain the correct timestamp number after the update.
All timestamp calculations have been updated to use this offset as well. An alternative
implementation is to set the jiffies counter to the same value as before the reboot. The
advantage of our solution is that it keeps the change isolated to the TCP subsystem
rather than affecting all uses of the jiffies counter, who might rely on the counter being

initialized to a certain value.

Selective acknowledgment is another common extension that increases TCP through-
put by making retransmissions more efficient. In addition to regular cumulative ac-
knowledgments, the TCP receiver can add extra fields to the TCP header that allow
the receiver to acknowledge discontiguous blocks of data. The sender then only has to
retransmit just enough data to fill in the gaps. To restore selective acknowledgment on
the receiver side, its is only necessary to checkpoint whether it was enabled in the first
place. The sender stores an extra bit for each packet in the retransmit queue and sets
this bit if it receives a selective acknowledgment for the packet. When retransmission is
triggered, segments with the bit set are not retransmitted. Since our checkpoint preserves
segment boundaries, we added the selective acknowledgment bit to the saved segments

in the checkpoint and set this bit when restoring the retransmit queue.

Before the TCP subsystem is started by the kernel, all incoming TCP packets are



CHAPTER 4. IMPLEMENTATION 34

dropped by the kernel. These dropped packets will be eventually retransmitted by the
sender. However, there is a time period when the TCP subsystem has started but the
TCP connections have not been restored. During this time, if a packet arrives at a port
with an unrestored socket, then TCP sends a reset packet to the sender, which closes
the connection. To avoid this issue, we use the netfilter API to drop packets meant for
applications which have not yet been restored from the checkpoint. The netfilter API
allows inserting hooks at different layers of the network stack. We insert a hook that
drops all TCP packets destined to any of the sockets stored in the checkpoint. The
packet is dropped before the TCP subsystem receives the packet and so the reset is not
sent. Any other network communication is unaffected, and after all the applications are
restored, the hook is removed.

We do not save the state of the receive queue because we observed that it only con-
tained unacknowledged packets. In particular, the Linux kernel sends acknowledgments
only after packets have been copied to the user space. If these packets have been copied,
then their contents are restored when the application is restored. Otherwise, the sender
will retransmit the unacknowledged packets in the receive queue. The TCP protocol
allows the kernel to acknowledge received packets before they are copied to the applica-
tion. The receive queue is structured similar to the send queue, and so if future kernel
versions send acknowledgments before copying data to the user space, then the receive

queue must be restored in the same way as we restore the send queue.

4.1.5 Pipes

A Unix pipe is a unidirectional communication channel used for interprocess communi-
cation. There are two types of pipes, an unnamed pipe and a named pipe. An unnamed
pipe is typically used to communicate between a parent and a forked child process. It is
created using the pipe system call that returns two file descriptors, one for reading and

one for writing. Data written to the write descriptor can be read from the read descrip-



CHAPTER 4. IMPLEMENTATION 35

tor. After a fork, the file descriptors (but not the pipe itself) get copied, and the parent
and child communicate with one writing to one descriptor and the other reading from
the other descriptor. A named pipe (also known as FIFO) is created using the mknod
system call and has a name in the file system. Processes use named pipes by using the

open system call and then reading or writing to them.

Internally, a pipe is represented by two file descriptors that point to a shared memory
buffer consisting of a fixed number of pages. The memory buffer is used to store data
that has been written and is ready to be read. If multiple processes uses a pipe (e.g.,
after a fork), they share references to the same file descriptors. There is no difference in

the unnamed and named pipe implementation other than the way they are created.

To save a pipe in the checkpoint, we create two entries, one for each end of the pipe.
When a process uses a pipe, we create a reference from the process to the entry for the
pipe in the checkpoint. The memory buffers are not copied. Instead the checkpoint stores

the pointers to the data pages.

Restoring pipes is tricky because each end of the pipe might be referenced by several
processes and sometimes a process can close one end while the other end is open. For
example, a writer may have exited (which closes the write side of the pipe) while the
reader has not yet read all the data. For each pipe entry in the checkpoint, we initially
create both ends of the pipe (for simplicity), even if there is only one end saved in the
checkpoint. To create unnamed pipes, we use the pipe system call, and for named pipe,
we call open on the pipe file name. Then we use the dup system call to assign the original

file descriptor numbers.

We implement sharing of pipe file descriptors in the same way as we handle all shared
resources (see Section ?7). We also keep track of which processes use which end of the
pipe. After all processes have been restored, we consult the pipe usage count to see
if there are any pipe ends that are not being used. Unused pipe ends represent pipe

descriptors that were closed before the update. If any unused pipe ends are found, we



CHAPTER 4. IMPLEMENTATION 36

close them before allowing processes to resume execution. The pipe buffer pages are

restored similar to user pages, as described in Section 4.1.2.

4.1.6 Unix Sockets

Unix sockets are another interprocess communication channel. Similar to pipes, Unix
sockets can be unnamed or they can be bound to a file name (a listening socket) in the
filesystem. The major differences between Unix sockets and pipes are that Unix sockets
allow bidirectional communication and they can be created using the socket interface in
addition to the regular file interface used for pipes.

Internally, Unix sockets are represented by a pair of socket descriptors, and both
descriptors can be used to read and write data. Each socket keeps a reference to its
peer, and when the data is written, it is placed on the peer’s receive queue. Unlike TCP
sockets, Unix sockets don’t use a send queue.

For each socket descriptor, we create an entry in our checkpoint. The checkpoint entry
contains a a reference to the peer descriptor, the type of the socket, connection state
(connected or disconnected), file name for named sockets and the contents of the receive
queue. For listening sockets, we also store whether the socket is accepting incoming
connections. All processes using the socket keep a reference to the socket entry.

To restore Unix sockets, we first remove the existing file for named sockets. Then we
create both the ends of the socket using standard Unix socket creation code. Then we
set the socket connection state, file name and restore the contents of the receive queue.

Shared sockets are handled as described previously in Section ?7.

4.1.7 Terminals and Keyboard

The Linux kernel uses a terminal emulator to provide a simple interface to the keyboard
and text-mode display. An application accesses these devices by reading and writing

to terminal device files located in the /dev directory. The kernel implements multiple



CHAPTER 4. IMPLEMENTATION 37

consoles by virtualizing the single keyboard and display. When switching from one con-
sole to another, it saves the hardware terminal state of the current console (i.e., screen
contents) in memory, and restores the terminal state of the next console from memory.

When a process is using a virtual console (a file descriptor points to the terminal de-
vice), we first force the kernel to switch to a different console, which updates the terminal
state stored in kernel memory, and then save this memory state in the checkpoint. Be-
sides the screen contents, we also save the mode of the terminal (text or graphical), and
the way input is processed, e.g., as lines or character-by-character and how the escape
codes are processed.

To restore the terminal state, we open the terminal device that the application was
using, and then again switch to a different virtual console. We restore the screen contents
by copying them from the checkpoint and then we use the ioctl system call to set the
correct terminal mode. At this point, we switch back to the original console, which
synchronizes the hardware with the updated terminal state. Any status messages during

boot are overwritten and should be logged separately for debugging purposes.

4.1.8 Framebuffer

The framebuffer device is used by graphical applications to access the video card. Appli-
cations access the framebuffer by opening the /dev/fb file and issuing ioctl system calls
to set the desired resolution and bits per pixel. The framebuffer interface provides a
simple bitmap display. Applications update the bitmap display by memory mapping the
/dev /b file and writing to the mmapped region. The kernel implements a framebuffer
per virtual console (discussed in Section 4.1.7) by virtualizing the hardware framebuffer.

To add checkpointing support for the framebuffer, we have to save the framebuffer
contents and the display mode settings. The contents of the framebuffer are saved by
copying them into the checkpoint. A full copy is necessary because the framebuffer

contents are modified when the new kernel is changing display setting and outputting



CHAPTER 4. IMPLEMENTATION 38

status messages during its initialization. To restore the framebuffer, we recreate the
memory map that it was using originally and copy the contents from the checkpoint into
the video memory.

The display settings are stored in the fb_var screeninfo structure and control things
like resolution, pixel size (16-bit vs 32-bit) and pixel format (RGB vs BGR). This data is
modified by applications via the ioctl system call, so our checkpoint stores this informa-
tion in the format used by this system call. This format is not dependent on the kernel
version or the framebuffer driver and can be restored by calling the ioctl function.

We added framebuffer support for the Xfbdev X server. Xfbdev was chosen because it
does not rely on more advanced hardware dependent features, like hardware acceleration
or DRI. To add support for a more full featured X server like X11 would require a more
comprehensive solution for saving and restoring state of hardware devices and drivers.
Our implementation could successfully save and restore the state of the Xfbdev X server,
the window manager (twm) and some simple applications like xclock, xcale and xedit

without requiring any changes to these applications.

4.1.9 Mouse

Graphical applications use the mouse in addition to the framebuffer (see Section 4.1.8)
and the keyboard (see Section 4.1.7). We added support for saving and restoring the
/dev/input/mice mouse device because this device is used by the Xfbdev X server. The
mouse driver uses two structures mousedev and mousedev _client. The mousedev struc-
ture is shared among all the clients using the mouse. It is used to hold globally shared
mouse state, including the client list and for interfacing with the lower level mouse sub-
systems. The mousedev client structure maintains per-client information and queues
packets received from the mouse. When a mouse moves, it sends a packet which con-
tains the state of the buttons and displacement since the last packet. We saved and

restored both of those structures, which ensures that the mouse operates correctly after



CHAPTER 4. IMPLEMENTATION 39

the update.

4.2 System Call Interface

We have added two system calls for executing the update process. These system calls 1)
enable checkpointing specific processes, and 2) restoring all checkpointed processes. We
have also added two debugging system calls that 1) determine whether a checkpoint is
available, 2) help distinguish between a process that was started normally or was restored
from a checkpoint. We do not require changes to existing programs. These system calls
are intended to be used by user-level utilities and scripts to manage the update process

after the kernel is initialized.

1. Enable save state: Takes a pid as an argument and sets a flag that indicates that
a process with the given pid, all its children and all processes in the same thread

group will be checkpointed. Without this flag, the process is not checkpointed.
2. Load saved state: Restores all the processes stored in the checkpoint.
3. Is_state present: Checks if a checkpoint is available.

4. Was_state restored: Used by a processes to check if it was started normally from
scratch or if the process was created from a checkpoint. This system call can be

used if some action needs to be taken by a process after it is restored.

4.3 Limitations

In this section, we discuss several limitations of our current implementation. Currently,
we preallocate physically contiguous memory for the checkpoint when the kernel is first
booted at a fixed location. After an update, we do not release this memory so that the

kernel can be updated again from this fixed location. In the future, we plan to remove



CHAPTER 4. IMPLEMENTATION 40

this limitation by allocating discontiguous physical memory on demand when creating a
checkpoint. One approach is to allocate this memory to the checkpointing process and
save the state of the checkpointing process itself. After restoring the page tables of the
checkpoint process, the rest of the checkpoint would be read from virtually contiguous

memory. When this process exits, the checkpoint memory would be released.

Our implementation for handling temporary files currently only supports Linux ext3
file systems. The reason is that when we create a hardlink to a temporary file during
checkpointing, we do not remove the file from the file-system specific orphan list. As
a result, the file system still attempts to remove the file during the mount process.
To avoid this problem after a kernel update, when an ext3 file system is mounted, we
disable orphan list processing for the files associated with the checkpointed processes. A
full implementation should remove the temporary file from the file-system specific orphan

list when the checkpoint is taken.

We have added support for a wide variety of kernel features to enable supporting
many types of commonly used applications. Some of the feature we do not implement
include SYSV IPC, pseudo terminals, message queues, and the epoll system call. Our
implementation supports Unix stream sockets, but we do not support Unix datagram
sockets, which preserve message boundaries or the ability to pass file descriptors. We
preserve boundaries for TCP segments and this code could be used for Unix datagram
sockets also. Adding support for passing file descriptors would require supporting the
sendmsg/recvmsg system calls. Applications using these kernel features cannot be re-

stored in our system.

We do not see any fundamental issues that would prevent the missing functionality
from being added in future versions because some of the features that we do implement
already provide similar alternatives. For example, we provide Unix sockets and pipes for

IPC, shared memory via threads and synchronization via the futex system call.

Since our implementation does not support all kernel features, we are not able to save



CHAPTER 4. IMPLEMENTATION 41

all processes running on the system. In particular, system or administrative applications
like cron, udevd or getty are not saved and restored, and so these programs are shutdown
and restarted normally on reboot. However, these programs do not have much state, and
also do not require human intervention on restart. As more features are added to the
implementation, these applications could be checkpointed as well.

For network applications, we assume that the ports used by an application before the
update are not used by some other application before the application is restored. It is
possible to modify the kernel and prevent port numbers that are in the checkpoint from
being assigned to another process before the checkpoint is fully restored.

Our implementation does not restore the state of TCP sockets in which connection
initialization (three-way handshake) is in progress. This limitation does not affect the
server side because it is not notified about the connection until the connection is estab-
lished. However, the client side will receive a reset packet after the kernel update. In
our evaluation, clients do not make frequent connections and so this limitation did not
affect them. In the future, we plan to support checkpointing the state of connections in
progress.

The ability to save only some running processes creates challenges when processes
share resources. For example, if a group of processes is sharing a resource, but we only
restore some of them, then the restored processes may not work correctly if they rely on
the other processes in the group. Our implementation handles some of these cases, such
as the sharing of dynamic libraries among processes, by carefully tracking the reference
counts of virtual memory regions. However, we require that all processes sharing other

resources, e.g., pipes and Unix sockets, are saved and restored together.



Chapter 5

Evaluation

We evaluate our system by analyzing our checkpointing format and code in terms of
its suitability for supporting kernel updates. Then, we describe our experience with
updating major releases of the kernel. Finally, we present performance numbers in terms

of kernel update times and overhead.

5.1 Code Analysis

Table 5.1 provides a summary of our checkpoint format. There are a total of 13 data
structures that are saved in the checkpoint. The table shows the number of fields in
each data structure and the number of fields that we save from each data structure in
the checkpoint. The saved fields include both primitive types or pointers to buffers that
need to be saved. The rest of the fields are mostly implementation dependent and do not
need to be saved, although a few more would need to be saved if we add support for the
features discussed in Section 4.

The code consists of roughly 6,000 lines of code, as shown in Table 5.2. Roughly 90%
of the code resides in a separate kernel module, while the rest of the code is spread across
various sub-systems. We can characterize kernel functions into four categories, based on

how high-level it is and unlikely to be changed over time: system calls, exported functions,

42



CHAPTER 5. BEVALUATION 43

Data Nr of | Nr of saved
structure fields fields
vm_area_ struct 16 7
mm_ struct ol 5)
task struct 135 32
fs_struct 5 3
files_struct 7 1
file 18 10
sock 53 10
tep__sock 76 48
unix _sock 13 10
pipe_inode_info 13 4
ve_data 82 12
fb_info 23 6
mousedev 18 7

Table 5.1: Kernel structures and checkpoint format

global functions and private functions. System calls are available to user applications
and cannot be changed without breaking backwards compatibility and are thus the most
stable. Exported functions are available to loadable modules and usually only have
minor changes between kernel versions. (Global and private functions are expected to
change more frequently. Our checkpoint saving code uses 20 functions and all of them
are exported. The restore code uses 131 functions, of which 5 are system calls, 93 are

exported, 2 are global, and 31 are private.

We needed to use private functions for two purposes: 1) managing resource identifiers,
and 2) performing low-level process creation and initialization. The kernel provides user

threads with identifiers for kernel managed resources such as PID, file descriptors, port



CHAPTER 5. BEVALUATION 44

Subsystem Lines of code
Checkpoint module 5257
Architecture specific 81
Memory management 70

File system 23
Process management 10
Networking 428
Total 5869

Table 5.2: New or modified lines of code

numbers, etc. When a process is restored, we must ensure that the same resources
correspond to the same unique identifiers. However, since these identifiers are never
modified, the kernel does not provide any exported or high-level functions to manipulate
them. We believe that our solution is better suited for kernel updates because it doesn’t
impose any overhead for virtualizing identifiers during normal operation [16]. We also
used private functions during process creation. The restore code is similar in functionality
to the implementation of the execve system call that executes a file from disk. In our
case, we create a process from the in-memory checkpoint data. The modifications needed

were similar to the effort required to add support for another executable format.

We had to modify some architecture-specific code to reserve memory during kernel
boot. We also made some changes to memory management code to assign reserved mem-
ory to the restored processes. We needed to make some changes to the Ext3 filesystem
to prevent orphan clean up on boot so that temporary files are not deleted (See Sec-
tion 3.2). All changes to the networking code relate to adding progress tracking (See
Section 3.3) for reads and writes on TCP sockets, or changes needed to support TCP
timestamps. Some of the changes do not alter the functionality of the kernel but were

needed to provide access to previously private functions.



CHAPTER 5. EVALUATION 45
5.2 Experience with Updating Kernels

In this section, we describe the effort needed to use our system for performing kernel
updates. We implemented our system starting with the Linux kernel version 2.6.28,
released in December 2008, and have tested updating it, one major revision at a time,
until version 2.6.34, released in May 2010 (roughly one and a half years of kernel updates).
Table 5.3 shows that on average, each revision consists of 1.4 million lines of added or
modified code. There were six million lines of changed code over the six revisions in
23,000 files, including many data structure modifications. We updated our code from
one version to the next using a typical porting procedure: 1) extract all our code from
the kernel and keep it in a separate git branch, 2) merge our code into the next major
kernel release using git merge functionality, 3) compile the kernel and fix any errors, 4)
once the kernel compiles, run an automated test suite that checks that all the features
we have implemented are working correctly when updating between the kernel versions,
and 5) commit the changes to our code so they can be used when moving to the next
major release.

Table 5.3 shows the number of lines that had to be changed manually for each kernel
release. These changes are small, both compared to the number of lines changed in the
major release, as well as the number of lines in the checkpoint code. The majority of
the changes were simple and were caught either during merge or during compilation.
For example, several merge conflicts occurred when our code made a private function
globally accessible, and some other nearby code was changed in the kernel update. Sim-
ilarly, compilation errors occurred due to renaming. For example, we needed to use
the TCP maximum segment size variable, and it was renamed from xmit size goal to
xmit_size goal segs. These fixes are easy to make because they are caught by the
compiler and do not the affect the behavior of the kernel or our code.

More complicated changes involved renaming functions and changing the function

interface by adding arguments. In this case, we have to find out the new function name,



CHAPTER 5. BEVALUATION 46

Kernel | Lines of change | Lines of change
version | in major release | for checkpoint

2.6.29 1729913 42

2.6.30 1476895 16

2.6.31 1393049 7

2.6.32 1628415 5

2.6.33 1317386 50

2.6.34 882158 2

Table 5.3: Summary of updates needed for checkpoint code

and how to pass the new arguments to the function. For example, version 2.6.33 intro-
duced a significant change to the interface used by the kernel to create and modify files
and sockets. These changes were designed to allow calling file system and socket system
calls cleanly from within the kernel. As a result, some internal functions used by our

system were changed or removed, and our code needed to use the new file interface.

Our code needed to handle one significant data structure update conflict. Previ-
ously, the thread credentials, such as user id and group id, were stored in the thread’s
task struct. In version 2.6.29, these credentials were moved into a separate structure,
with the task struct maintaining a pointer to this structure. We needed to change our
system, similar to the rest of the kernel code, to correctly save and restore credentials.
Two other data structure that we save, as shown in Table 5.1, were updated, but they

required us to simply pass an additional parameter to a function.

Finally, the most difficult changes were functional bugs, that were not caused by
changes to data structures or interfaces. We found these bugs when running applica-
tions. We encountered two such issues with TCP code. Previously, a function called
tcp__current _mss was used to calculate and update the TCP maximum segment size.

In 2.6.31, this function was changed so that it only did a part of this calculation, and



CHAPTER 5. BEVALUATION 47

another function called tcp send mss was introduced that implemented the original
tcp__current _mss behavior. Similarly, in 2.6.32, the TCP code added some conditions
for setting the urgent flags in the TCP header, which indicates that out-of-band data is
being sent. Our code was setting the urgent pointer to the value of 0, which in the new
code set the urgent flag, thus corrupting TCP streams on restore. We needed to set the

urgent flags based on the new conditions in the kernel.

All these ports were done by us within a day to a few days. We expect that kernel
programmers would have found it much simpler to fix our code when updating their
code. An interesting observation is that during porting, we never had to change the
format of the checkpoint for any of the kernel versions. As a consequence, it is possible
to freely switch between any of these kernel versions in any order. For example, it is
possible to upgrade to version 2.6.33 from version 2.6.28, and then go back to version
2.6.30 seamlessly. This feature is not our goal, and we expect that the checkpoint format
will change over time. We only intend to have a common checkpoint format between two

consecutive major kernel releases.

5.3 Performance

We have tested our system for updating the kernel while running several desktop and
server applications. For desktop applications, we have tested the system with the simple
Xfbdev X server, the Twm window manager and several X programs. The mouse, key-
board, console and the graphics work correctly after the update, without requiring any
application modifications or user intervention. Interestingly, the mouse and keyboard
were initially freezing after an update, but only if we kept moving the mouse or typing
on the keyboard while the update occurred. This problem was solved after we fixed a
bug in the quiescence code. We were unable to test a modern GUI environment such

as Gnome/GTK because these applications use SYSV shared memory, which we do not



CHAPTER 5. BEVALUATION 48

70

. . 70 . . . .
KB/sreceived —— KB/sreceived ——
60 | KB/ssent -——— | 60 | KB/ssent - |
@ 50r W @ 90| m 1
g g
= 40t H = 40+t 1
2 =}
g £ N | AP B
© 301 2 30
< o
< <
F 20 2 F 20
10\ i 0]/
0 L )EAAAAAAAAAAAAAAA L O L L L
0 50 100 150 200 250 0 50 100 150 200 250
Time (9) Time (s)

Figure 5.1: Quake reboot vs. update

support currently.

We conducted two types of experiments. First, we measured the throughput of server
applications before and after the update. These experiments also show the downtime
during an update. We used the Collectl system monitoring tool to measure throughput
at the network interface level (sampled at one second interval). Second, we performed
microbenchmarks to measure the per-process checkpoint size and time. All of our ex-
periments run on the same machine with two Intel Xeon 3 GHz processors and 2GB of

RAM, running Ubuntu 8.04 with our kernel that had support for updating the kernel.

5.3.1 Application Benchmarks

We tested several UDP (Quake game server, Murmer/Mumble voice-over-IP server) and
TCP (Mysql, Memcached and Apache) server applications. Apache and Memcached used
the epoll system call that our system does not support currently. Apache was compiled
with epoll disabled and Memcached allows disabling epoll with environment variables.
All these applications run after the update, without interrupting any requests in progress,
and without requiring any other modifications. The Murmer and the Apache results were

similar to the Quake results and are not shown.



CHAPTER 5. BEVALUATION 49

5.3.1.1 Quake

We updated the kernel on the machine running the MVDSV 0.27 open source Quake
server, while it was serving 8 ezQuake clients. The Quake server does not preserve its
state across a reboot, and so the game needs to be restarted from the beginning. With
our system, the clients resume after a short pause exactly where they were in the game
before the update. For example, if a player was jumping through the air, the jump

continues.

The ezQuake client was modified to make it easier to compare seamless updates and
reboot. The unmodified client shuts down the current session and goes to the menu
screen if the client stops receiving messages from the server for 60 seconds. To avoid the
need to reconnect to the server by navigating the menu screen manually after a reboot,
we modified the client so that it automatically attempts to reconnect to the server when
no messages are received for 15 seconds. This change allows the client to reconnect to
the rebooted server much faster and without any user interaction, making it easier to
compare the systems. We chose the 15 second timeout because this time is much shorter
than the time it takes for the server to reboot, and longer than the time it takes to update
the kernel with our system. As a result, the client will reconnect as soon as the server is
running again after the reboot, but it will not attempt to reconnect while the update is
in progress. Note that the game state is still lost after the reboot, but not with seamless

updates.

Figure 5.1 shows the network throughput with reboot versus update. With reboot,
the clients timeout after 15 seconds and then begin attempting to reconnect every 5
seconds as shown by the little ticks at the bottom on the “sent” line. The server is
down for roughly 90 seconds. In the update case, the server is operational in roughly 10

seconds, and all the clients resume normally.



CHAPTER 5. BEVALUATION 50

2000 ; T .
KB/sreceived ——

o 1 W 1
<
2
< 1000 | |
[=2]
]
(=]
IS
|_

500 |

0

0 20 40 60 80 100 120 140
Time(s)

Figure 5.2: Mysql/sysbench update

5.3.1.2 MySQL

We used the sysbench OLTP benchmark to test the performance of MySQL server. This
test involves starting transactions on the server and performing select and update queries
in a transaction. The sysbench benchmark has no support for handling server failure.
It returns an error when the MySQL server machine is rebooted and so we could not
complete this test. Figure 5.2 shows the graph of TCP throughput as observed at the
sysbench client while running the test. Similar, to the Quake results, the update time
is again roughly 10 seconds in our system. The output of the server drops to zero while
the update is being performed, but the connection to the client is not dropped. Once
the update is finished and the new kernel is started, MySQL can continue to operate
normally and the test runs to completion. There is no observable performance change
before and after the update. No changes were required to MySQL or sysbench for this

test.

5.3.1.3 Memcached

Memcached is a popular in-memory key-value caching system intended to speed up dy-
namic web applications. For example, it can be used to cache the results of database

calls or page rendering. An application can typically survive a memcached server being



CHAPTER 5. BEVALUATION 51

3000 : ‘ ‘ : : : ‘ 3000 ‘ ‘ ‘ : :
Before reboot with Oms delay - Before reboot with 12ms delay -~
After update with Oms delay After update with 12ms delay
2500 After reboot with Omsdelay = 4 2500 + After reboot with 12msdelay =
2 2
g 2000 r 2000 Time of restart/update
2 s00f g 1500 |
] : [%]
g | * g
g 1000 Time of restart/update B g 1000 -
o4 14
500 |- / ] 500 |
. . | . . . . . . oL . . a . .
0 20 40 60 80 100 120 140 160 180 200 0 500 1000 1500 2000 2500 3000
Time(s) Time(s)

Figure 5.3: Memcached results after reboot vs. update

shutdown, because it can recalculate the results from scratch and start using the cache
when it becomes available again. However, cache contents are lost on a reboot, while
our system preserves the cache and so the application can use its contents right after the

update.

In this test, we compare the performance impact of the Memcached cache being
lost after a reboot versus being preserved in our system. We generated 200,000 key-
value pairs, consisting of 100 byte keys and 400 byte values. Then, we used a Pareto
distribution to send requests to prime the cache, so that 20% of the keys from the 200,000
key-pairs make up 80% of all the requests. Then we simulate a web application that uses
Memcached for caching the results of database queries. This application makes key
lookup requests to the Memcached server. For each key, the application first makes a get
request from the cache. If the key is found, it makes the next get request. If it is not
found, then it waits for a short time (delay) to simulate calculating a result, and then

issues a set request to store the result in the server, before making the next get request.

We use 12 ms for the delay value for a database access, which is the average time per
transaction in our previous sysbench OLTP test. We also use 0 ms for the delay value to
represent the best case, in which there is no cost for calculating a result. However, when

a cache miss occurs, this instantaneous result still needs to be sent to the Memcached



CHAPTER 5. BEVALUATION 52

Application Quiescence Save state Restore state Checkpoint
time time time size
Quake 334.1 £ 7.5 ms | 98.59 + 2.1 ms | 22.85 £+ 0.01 ms || 135.2 £ 0.03 KB
MySQL 3377 £ 25 ms | 332.0 £ 45 ms | 74.63 + 3.1 ms 463.1 £ 24 KB
Memcached 329.5 £ 0.02 ms 6.4 £ 0.1 ms 38.1 £ 15ms | 112.3 + 0.2 KB

Table 5.4: Per-application checkpoint time and size

Stage Time

Initialize kernel 4.5+ 0.3 s

Initialize services | 6.9 &= 0.3 s

Table 5.5: Kernel restart time

server, thus requiring a get and a set request.

In the first part of the experiment we prime Memcached by sending requests to it,
and then in the second part we send a second set of request after doing a clean reboot or
an update with our system and compare the performance in terms of requests per second.
The results of the experiment with 0 ms delay and 12 ms delay are shown in figure 5.4.
For 0 ms case we primed Memcached with 100,000 requests in the first part and issued
another set of 100,000 requests in the second part. In the 12 ms case we primed with
500,000 requests and made another 500,000 requests in the second part. The time where
the Memcached server was rebooted or updated is shown with an arrow in both graphs.

The graphs show that after a reboot the number of requests per second declines
because the contents of the cache are lost, and each miss adds extra overhead by restoring
the lost cached value. In contrast when using our system the contents of the cache are
preserved which results in a smaller number of misses and the request rate stays at the
same level as before the update. Performing a regular reboot temporarily removes the
benefit of using the in-memory cache until the contents of the cache are restored, while

our approach preserves the performance benefit.



CHAPTER 5. BEVALUATION 53

30

Time to save state —e— > ‘ ‘ ‘ "Timetorestorestate @
g Best Fit line
25
20 +
2 3
s £
E g
= =
1 1 1 1 1 1 O 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 18
Number of processes Number of processes

Figure 5.4: Mmap checkpoint-restore time

5.3.2 Microbenchmarks

Table 5.4 breaks down the time to reach quiescence, save the process state and restore the
process state for the three applications described above. Quiescence time is measured
from the time when we start the checkpoint process until we are ready to take the
checkpoint (i.e., the last step in Section 3.2) and includes the time to shutdown all
the devices. The save state time is the time it takes to copy the kernel state into the
checkpoint. The time to initialize the kernel is measured from when the new kernel’s
code starts executing to when the kernel starts the init process. The time to initialize
services is measured from when the init process starts to when the saved processes begin
to be restored, and the restore time is the time it takes for the saved applications to
be restored and start running. The kernel quiescence time is roughly 330 milliseconds
for each of these experiments. The checkpoint save time ranges from 6-350 ms, but as
discussed below, we expect that this time can be reduced significantly with some simple
optimizations. The checkpoint restore time has a smaller range from 25-55 ms. All these
times are much lower than the time it takes to initialize the new kernel and the system
services, as shown in Table 5.5. The last column of Table 5.4 shows the checkpoint size
for each application excluding the memory pages of the application.

We also conducted a microbenchmark to measure the checkpoint and restore time



CHAPTER 5. BEVALUATION 54

with increasing number of allocated frames in the system. The benchmark is run with
1, 2, 4, 8 and 16 processes. Each process in this benchmark allocates 16 MB of private
memory using the mmap system call and writes to this memory to ensure that the kernel
assigns page frames to the process. Figure 5.4 shows the checkpoint save and restore time
with increasing number of processes. The save time is roughly one second per process
in this benchmark with 16 processes and it grows with increasing number of processes
because our implementation for saving state is not optimized. In particular, the code
uses a linked list to detect shared pages. With 16 processes, and 16 MB of memory per
process, there are 64K (2'9) pages in the linked list, making the search for those many
pages in the list very slow (7232 operations). These lookups can be sped up with a hash
table or we could use the reverse mapping information available in the memory manager
to detect shared pages. The restore time per process is roughly one ms per 16MB process
because we take advantage of the kernel memory manager to ensure that shared pages are
assigned to each process correctly. Note that this time mainly accounts for restoring the
address space and is much smaller than the restore time for the benchmark applications

(25-65 ms) which also need to restore other resources such as the network buffers.



Chapter 6

Conclusions

We have design a reliable and practical kernel update system that checkpoints application-
visible state, updates the kernel, and restores the application state. We have argued that
this approach requires minimal programmer effort, no changes to applications, and can
handle all backward compatible patches. Our system can transparently checkpoint the
state of network connections, some common hardware devices and user applications. It
can achieve quiescence for any kernel update, and it restarts all system calls transparently
to applications. We also performed a detailed analysis of the effort needed to support
updates across major kernel releases, representing more than a year and a half of changes
to the kernel. Our system required a small number changes to existing kernel code, and
minimal effort to handle major kernel updates, consisting of a million lines of code. Fi-
nally, we evaluated our implementation and showed that it works seamlessly for several,
large applications, with no perceivable performance overhead, and reduces reboot times
significantly. As future work, we plan to add features currently missing in our implemen-
tation, such as support for SYSV IPC, epoll, and pseudo terminals, and checkpointing

state for all hardware devices.

%)



Bibliography

1]

[5]

Oracle database high availability features and products. http://docs.oracle.com/cd/

B28359_01/server.111/b28281/hafeatures.htm.

Performing rolling updates and upgrades in a db2 high availability disaster recovery (hadr)
environment. http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.

ibm.db2.luw.admin.ha.doc/doc/t0011766 . html.

Jeff Arnold and M. Frans Kaashoek. Ksplice: automatic rebootless kernel updates. In
Proceedings of the ACM SIGOPS European Conference on Computer Systems (Eurosys),

pages 187-198, 2009.

Andrew Baumann, Jonathan Appavoo, Robert W. Wisniewski, Dilma Da Silva, Orran
Krieger, and Gernot Heiser. Reboots are for hardware: challenges and solutions to updating
an operating system on the fly. In Proceedings of the USENIX Technical Conference, pages
1-14, 2007.

Fernando Luis Vazquez Cao. Reinitialization of devices after a soft-reboot. Usenix Linux

Storage & Filesystem Workshop, February 2007.

Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang, and Pen-Chung Yew. Live updating
operating systems using virtualization. In Proceedings of the International Conference on

Virtual Execution Environments, pages 3544, 2006.

Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. Polus: A powerful live
updating system. In Proceedings of the International Conference on Software Engineering,

pages 271-281, 2007.

o6


http://docs.oracle.com/cd/B28359_01/server.111/b28281/hafeatures.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28281/hafeatures.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.ha.doc/doc/t0011766.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.ha.doc/doc/t0011766.html

BIBLIOGRAPHY 57

8]

[10]

[11]

[12]

[13]

[14]

[15]

Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H. Campbell. Curios:
improving reliability through operating system structure. In Proceedings of the Operating

Systems Design and Implementation (OSDI), pages 59-72, 2008.

Alex Depoutovitch and Michael Stumm. Otherworld: giving applications a chance to
survive os kernel crashes. In Proceedings of the ACM SIGOPS FEuropean Conference on

Computer Systems (Eurosys), pages 181-194, 2010.

Greg Kroah-Hartman, Jonathan Corbet, and Amanda McPherson. Linux kernel develop-
ment: How fast it is going, who is doing it, what they are doing, and who is sponsor-
ing it. Linux Foundation, December 2010. www.linuxfoundation.org/publications/

whowriteslinux.pdf.

Oren Laadan and Serge E. Hallyn. Linux-CR: Transparent application checkpoint-restart

in linux. In Proceedings of the Linux Symposium, 2010.

David E. Lowell, Yasushi Saito, and Eileen J. Samberg. Devirtualizable virtual machines
enabling general, single-node, online maintenance. In Proceedings of the International Con-
ference on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS), pages 211-223, 2004.

Kristis Makris and Kyung Dong Ryu. Dynamic and adaptive updates of non-quiescent
subsystems in commodity operating system kernels. In Proceedings of the ACM SIGOPS

European Conference on Computer Systems (Eurosys), pages 327-340, 2007.

Tulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical dynamic soft-
ware updating for c¢. In Proceedings of the ACM SIGPLAN conference on programming

language design and implementation (PLDI), pages 72-83, 2006.

Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The design and imple-
mentation of zap: a system for migrating computing environments. In Proceedings of the

Operating Systems Design and Implementation (OSDI), pages 361-376, December 2002.


www.linuxfoundation.org/publications/whowriteslinux.pdf
www.linuxfoundation.org/publications/whowriteslinux.pdf

BIBLIOGRAPHY 58

[16]

[17]

18]

[19]

[20]

[21]

Shaya Potter and Jason Nieh. Reducing downtime due to system maintenance and up-
grades. In Proceedings of the USENIX Large Installation Systems Administration Confer-

ence, pages 47-62, 2005.

Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Robert W. Wisniewski, Dilma Da
Silva, Gregory R. Ganger, Orran Krieger, Michael Stumm, Marc Auslander, Michal Os-

trowski, Bryan Rosenburg, and Jimi Xenidis. System support for online reconfiguration.

In Proceedings of the USENIX Technical Conference, pages 141-154, 2003.

Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C.
Arpaci-dusseau, Remzi H. Arpaci-dusseau, and Michael M. Swift. Membrane: Operat-
ing system support for restartable file systems. In Proceedings of the USENIX Conference

on File and Storage Technologies (FAST), 2010.

Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Henry M. Levy. Re-
covering device drivers. In Proceedings of the Operating Systems Design and Implementation

(OSDI), pages 1-16, 2004.

Michael M. Swift, Damien Martin-Guillerez, Muthukaruppan Annamalai, Brian N. Ber-
shad, and Henry M. Levy. Live update for device drivers. Computer Sciences Technical

Report CS-TR-2008-1634, University of Wisconsin, March 2008.

Dmitrii Zagorodnov, Keith Marzullo, Lorenzo Alvisi, and Thomas C. Bressoud. Engineering
fault-tolerant tcp/ip servers using ft-tcp. In Proceedings of the IEEE Dependable Systems

and Networks (DSN), 2003.



	Introduction
	Related Work
	Approach
	Implementation Overview
	Quiescence
	Restarting System Calls
	Checkpoint Format and Code

	Implementation
	Implementation of checkpoint and restore
	Threads
	Address Space
	Files
	Network Sockets
	UDP Sockets
	TCP Sockets

	Pipes
	Unix Sockets
	Terminals and Keyboard
	Framebuffer
	Mouse

	System Call Interface
	Limitations

	Evaluation
	Code Analysis
	Experience with Updating Kernels
	Performance
	Application Benchmarks
	Quake
	MySQL
	Memcached

	Microbenchmarks


	Conclusions

