
CS 1762—Fall, 2004 1 Drawing Trees

Drawing Trees
ECE 1762 Algorithms and Data Structures

Fall Semester, 2004

1 How to draw a tree

1.1 Defining the problem

The first algorithm we examine is one to determine a clean way to draw a tree. For instance, we

could draw a tree in this fashion:

This is undesirable. We can give an aesthetic to define properties that we would like to see in the

output:

Aesthetic 1: Nodes on the same level should be on a straight line, and lines defining levels should

be parallel and evenly spaced. As well, nodes on a level should be in the same left-to-right order

as in the level-order traversal.

These observations lead to this drawing:

This is better but still not great. Let us insist on a second aesthetic:



CS 1762—Fall, 2004 2 Drawing Trees

Aesthetic 2: A left child must be to the left of its parent; a right child must be to the right of its

parent.

How can we accomplish this algorithmically?

1.2 Knuth’s algorithm (1971)

Knuth’s algorithm is a simple recursive algorithm for drawing a tree. To understand the order of

the operations, think of the tree being printed on a line printer on its side, so the right part of the

tree comes out first.

1. Go down a level and print the right subtree recursively.

2. Go up a level and to the left and print the root.

3. Go down a level and to the right and print the left subtree recursively.

This algorithm yields results like this:

1.3 Redefining the problem: additional aesthetics

This is reasonable but still not quite what we’d like. We can propose a third aesthetic:



CS 1762—Fall, 2004 3 Drawing Trees

Aesthetic 3: A parent should be centered over its children.

A fourth aesthetic that we propose demands some form of symmetry:

Aesthetic 4: A tree and its mirror image should yield drawings that are mirror images. More

generally, a subtree should be drawn in the same way, wherever it occurs in the tree.



CS 1762—Fall, 2004 4 Drawing Trees

Note that this aesthetic requires that certain trees be drawn in more space than absolutely necessary.

Notice that this tree, drawn as narrowly as possible, requires that two identical subtrees be drawn

differently, violating aesthetic 4:

1.4 A new algorithm

1. Recursively place the left subtree.

2. Recursively place the right subtree.

3. Put the two rigidly formed subtrees as close together as possible. That is, place the two

subtrees so their roots overlap, and then move them apart just enough so no part of the left

subtree overlaps a part of the right subtree.

How can we follow the inner contours of the subtrees? We can use the notion of a threaded tree

to help us. Nodes whose “contour successors” are not their children must be leaves and thus have

must each have a null pointer. If, in the place of these null pointers, we insert auxiliary pointers,

or threads, we can follow the contour of a tree beyond a leaf.

1.5 What about narrow trees?

What happens if we modify our aesthetics and demand the narrowest output possible? The problem

then becomes significantly more difficult. The difficulty lies in the idea that to find the narrowest

possible drawing of a tree, its subtrees must sometimes be drawn more widely than necessary.

More generally, optimality of the substructure does not necessarily yield optimality of the whole

structure. This is similar to the difficulty found in the traveling salesman problem. We will return

to this problem later in the semester.


